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Generating a unitary transformation in the shortest péssiime is of practical importance to quantum in-
formation processing because it helps to reduce decotesdfects and improve robustness to additive control
field noise. Many analytical and numerical studies havetifled the minimum time necessary to implement a
variety of quantum gates on coupled-spin qubit systemss Work focuses on exploring the Pareto front that
quantifies the trade-off between the competitive objestafenaximizing the gate fidelitfFf and minimizing the
control timeT'. In order to identify the critical timg™, below which the target transformation is not reachable,
as well as to determine the associated Pareto front, wedinteoa numerical method of Pareto front tracking
(PFT). We consider closed two- and multi-qubit systems withstant inter-qubit coupling strengths and each
individual qubit controlled by a separate time-dependeméraal field. Our analysis demonstrates that unit
fidelity (to a desired numerical accuracy) can be achievedg > T in most cases. However, the optimiza-
tion search effort rises superexponentiallyZaslecreases and approacties Furthermore, a small decrease
in control time incurs a significant penalty in fidelity f@r < 7, indicating that it is generally undesirable to
operate below the critical time. We investigate the deperoe®f the critical time&™ on the coupling strength
between qubits and the target gate transformation. Pahciimsequences of these findings for laboratory im-
plementation of quantum gates are discussed.

I. INTRODUCTION ing control fields that enact a target quantum gate to
a specified fidelity in the minimum time, called time-
The goal of controlling the dynamics of a quantum OPtimal control (TOC) £], is important for practical
system in order to generate a target unitary transformgdua@ntum information processing. The minimum time
tion is both of fundamental interest and directly appli- Féduired to implement a multi-qubit gate is also re-
cable to implementation of logic operations in quan-!atéd to the gate’'s complexity expressed as the num-
tum information processingl]. Two strategies are P€r 0f one-and two-qubit gates necessary to construct
commonly employed to design control fields that en-th€ target unitary transformatio8]. TOC was orig- -
act the desired evolution: (i) geometric techniques fornally formulated as a geometric problem of identi-
analytically constructing control pulse sequencas [ ¥ing the geodesic between two elements of the uni-
4] and (iiy numerical methods employing optimal con- &y 9roupU(V) and solved using Lie group meth-
trol theory (OCT) p-8]. The effectiveness of the OCT ©ds and Pontryagin's minimum principl@]{ This
approach has been demonstrated both for the ideafnalytical technique has been applied to identify con-
ized case of closed quantum systems undergoing un_f_rol pul_se sequences and _assomated values of the min-
tary evolution and for open quantum systems whosdMum time 7™ for generating quantum gates in two-
dynamics are affected by coupling to the environmen@nd three-qubit NMR and other coupled-spin systems
[5, 6]. Control fields producing quantum unitary trans- 124 31, 32]. An alternative approach is to solve varia-
formations with a high fidelity have been successfu||y'“0n_aI equations for the optimal time-dependent Hamil-
identified using OCT for a variety of models involving tonianH (t) under the constraint of finite energy using
coupled-spin system®{17], molecular systemsLB- the quantum _brach|stochrone meth@&3,[34], which
20], and other physical realization21-28]. can provide improved™ valugs for some systems
An important physical parameter for quantum com-[34- Other OCT-based algorithms utilize additional
putation is the control tim&" required to generate a COSt_ 'germs to penalize the contro_l durau@&:'n,[3ﬂ._ In
target quantum gate. In general, decreasing the Corf";_tddmon, several numerical studies have identifiéd

trol duration helps to reduce the effect of decoher—values approaching or even improving upon analytical

ence resulting from the interaction of a quantum sys-reSUItS when employing OCT to design optimal fields

tem with the environmentl]. Also, the gate error due [9,10,37.

to additive white noise in the control fields grows lin-  In this work, we incorporate the goal of TOC by con-
early with T' [29], which means that shorter control sidering a more general problem of quantum Pareto op-
times will enhance the robustness to this type of noisetimization [38] for the objectives of maximizing the
Due to these considerations, the problem of identify-gate fidelity #/ and minimizing the control timé&".



These two objectives compete with each other wheract as “traps” for a gradient-based search. The lack
T < T*, with the relationship between the best si- of traps on the control landscape has been verified with
multaneously achievable values @f and 7' consti-  carefully conducted numerical simulations that ensured
tuting the Pareto front. Previously, Pareto optimiza-that no significant constraints were placed on the con-
tion has been explored both theoretically and experitrol fields [42]. Since the goal of TOC inherently in-
mentally for the goal of discriminating between simi- volves limiting an important control resource (specifi-
lar quantum systems9, 40], as well as theoretically cally, the control timel’), it is possible that the favor-
for maintaining persistent field-free contrall]. For  able landscape topology may break down as the critical
TOC, some numerical simulations have sought the bedime 7* is approached (fortunately, as we will show,
fidelity value attainable at a givehn[10, 37], but with-  this possibility does not materialize). Furthermore, it is
out explicitly investigating the Pareto front, especially of interest to explore how the local structure of the con-
in regions of high fidelity that are important for quan- trol landscape changes néar and how this change is
tum information processing. We explore these Paretaelated to the rise of the search effortin this region. The
fronts with the goal of identifying the relationship be- PFT method introduced in this work is well-suited for
tween the simultaneously achievabfeandl values, exploring the landscape regions in the vicinity of the
as well as their dependence on the target unitary trangnaximum fidelity while approaching* fromT" > T*.
formation and inter-qubit coupling strength. In order In order to quantify how the local landscape structure
to numerically implement this analysis, we introduce changes upon approachiig, we employ metrics sim-
the Pareto front tracking (PFT) algorithm, which se- ilar to those developed in Ref4lZ, 50, 51] and demon-
quentially (a) makes a small variation in one objectivestrate their correlation with the search effort.

(here, decreases the control tifhig and (b) searches  The remainder of this paper is organized as follows.
for a control field that optimizes the second objectiveSectionll presents the background and motivation for
(here, maximizes the gate fidelify). Unlike the pro-  the current study, including the formulation of the opti-
cedures described in Refs3g, 39, the PFT method mal control problem, the optimization algorithm, met-
does not simultaneously optimize both control objec-rics on the control landscape, model physical systems,
tives, and thus may be less computationally expensivethe relationship between robustness to additive white
especially when the value of one objective (hé&fgis  control noise and control time, and the method for
easily varied, but not easily optimized using OCT. Thetracking the Pareto front. In Setl, we explore the
PFT algorithm is applicable to any such pair of objec-fidelity-time Pareto fronts and the effect of control-
tives, for example, control field fluence and fidelity. In time reduction on the search effort for two-qubit gates.
this work, we consider only the objectives of minimiz- The study is extended to three- and four-qubit gates in
ing 7" and maximizingr. Sec.lV. Finally, SecV presents concluding remarks.

In addition to exploring the region of the Pareto front
corresponding td@’ < T (where the maximum attain-

able fidelity is limited to values below), it is also Il BACKGROUND AND MOTIVATION
of interest to understand how the optimization search
effort (quantified as the number of algorithmic itera- A. Formulation of the control objective

tions needed to reach the optimum to a desired numeri-

cal accuracy) is affected when approaching the critical \ve consider anN-level closed quantum system

valueT™ fromT" > T™. For the objective of generat- \hose evolution is governed by the time-dependent
ing unitary transformations, the search effortwas foundscnrgdinger equation (in units whefe= 1):

to exhibit large variations with respect to the Hamilto-

nian structure42]. In this work, we observe that the QU(t,0)
search effort to find optimal control solutions grows =, — = H({ex()}U(¢,0), U(0,0) =1,
very rapidly asl’ decreases towards*, even though a ()

fidelity value arbitrarily close to the maximutfi =1  where H({sx(¢)}) is the Hamiltonian,{s(¢)} are
is, in principle, attainable at ariy > 7. To facilitate  time-dependent external control fieldg(¢,0) is the
the understanding of this behavior, we consider properunitary propagator (time-evolution operator) from time
ties of the optimal control landscape, which is definedt = 0 to ¢, andd is the identity operator. We will use
by the functional dependence of the physical objecthe shorthand notatioti (¢) = U (¢, 0) for simplicity,
tive (here, the gate fidelity”) on the applied controls where applicable. The propagator at some final tifne
[5, 6, 43-46]. For controllable quantum system&7] is denoted a¢/r = U(T) and is a functional of the
with unconstrained control resources, the set of regueontrol fields: Ur = Ur({ex(t)}). We assume linear
lar critical points on the unitary-transformation control (dipole-type) coupling to the control fields:
landscape contains no local optin¥6] 48, 49]. This

property of the landscape topology is directly relevant H({ex(t)}) = Ho + Z sk(t)HC(k), 2)
to the optimization behavior, since local optima may A



where H, is the field-free Hamiltonian an@Hék)}
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For the Hamiltonian of Eq.2), the variation is given

are the control-Hamiltonian operators. The quantumpy SH(t) = Y, Hc(k)(sgk(t); by using this result in
system is assumed to be evolution-operator controlgq. (7), one obtains49 the variation of the propagator

lable, which means that any desireg € U(XN) [or,
Ur € SU(N) for a traceless Hamiltonian] can be gen-
erated through the Schrodinger evolutidi oy some
choice of control field§e,(¢)} at a sufficiently large
time T' [6, 8, 47]. The necessary and sufficient con-
dition for evolution-operator controllability is that the
operators{Ho,HC(k)} generate the Lie algebra V)
[su(V) for a traceless Hamiltonian}i].

In circuit-model quantum computing, the goal is to

generate specified unitary transformations that imple-
ment desired logic operations on a system of qubits.
The corresponding control objective is to guide the sys-

tem’s final-time propagatot/; to match a specified

unitary transformatioriV. A convenient mathemati-

cal formulation of this objective is to minimize the dis-
tance betweetyy andW:

D(Ur) = [W—Urlfks = 2N —2ReTr(W'U7), (3)

where | X3¢ = Tr(XTX) is the squared Hilbert-
Schmidt norm. The desired minimur® 0 is
achieved whei/r = W, and the maximun® = 4N

corresponds td/r = —W. Itis often convenient to
use the normalized distange
D(Ur) = Lp_1_ 1 ReTr(W'U7), (4)
TITANT T 2 N T

so thatD takes values in the intervéd, 1]. A com-
monly employed gate fidelityF is related to the dis-
tance as

1

FUr)=1-D=3

1

+ ﬁReTI‘(WTUT). (5)
The minimum distancel} = D = 0) atUp = W
corresponds to the maximum fidelitf = 1. The

Ur with respect to the contral,():

oUr

= —iUrH® (¢
55k(t) wWril, ()a

(8)

whereH ™ (t) = Ut () HM U (). Combining Eqs.g)
and @), we obtain the desired functional derivative of
the distancé (Ur) with respect taey, (¢):

oUr
— _9ReTr |WT-22L
e [W 5%@}

= —2ImTr [WTUTHC(k) (t)} :

5€k(t)
)
The critical points of the control landscape (also

referred to as extremal solutions) are control fields
{ex(t)} that satisfy

oD

5€k(t) 0,

VEk and Vvt € [0, T]. (10)

Quantum control landscape theory has shoG;Mp]

that when (a) the system is controllable, (b) no signif-
icant constraints are placed on the control fields, and
(c) the Jacobian in Eq8J is full-rank, dynamiccriti-

cal points satisfying Eq.10) occur only atkinematic
critical points that satishwWD(Ur) = 0. The val-
ues of the distanc® at the critical points ar® =
0,4,8,...,4N [48 49]. The optimality of a critical
point can be determined by inspecting eigenvalues of
the Hessian matrid(t,t') = 62D/de(t)de(t’) [53.
Thus, the value® = 0 andD = 4N correspond to the
global minimum (the Hessian is positive semidefinite)
and global maximum (the Hessian is negative semidef-

functional dependence of the objective on the controlnite), respectively. Moreover, it has been shown

fields, i.e.,D = D({ex(t)}) or, equivalently,F =
F({ex(t)}) determines the optimal control landscape.
OCT is often formulated by applying the variational
principle to an objective functional, such & (or,
equivalently,D), along with Lagrange multipliers to
ensure satisfaction of the Schrodinger equatinaé

well as to impose a constraint on the control field flu-

ence B, 18, 42]. An alternative approachip, 51, 52]
is to consider small responses in the propag&tar
due to changes in the control fields;,, subject to the
Schrodinger equation:

0

i5:0U (t,0) = H(HSU(£,0) + SH(HU t,0),  (6)

with the initial conditiondU/(0,0) = 0. Equation 6)
can be integratedip, 52] to give

SU(L,0) = —i / U OSHE(E0). ()
0

through analysis48, 49] and numerical simulations
[42] that, under the conditions (a)—(c) above, all the
intermediate critical points (i.e) = 4,...,4N — 4)
have a saddle-point topology (the Hessian has positive,
negative, and zero eigenvalues), meaning that no local
maxima or minima exist on the landscape. However,
when control resources are severely constrained (e.g.,
by limiting the control timel" as considered here), the
trap-free landscape topology is no longer guaranteed.
Values of the distances and fidelity of EgS),((4),
and 6) depend on the global phase of the transforma-
tion Ur. Since this global phase is physically irrelevant
for a given quantum gate, a phase-independent version
of the distance (or fidelity) is often employed instead
[49]. In particular, a normalized phase-independent
distance can be defined &s1]

1 .
G(Ur) = TN m(gnD(e“bUT). (11)



The minimization over the global phasein Eq. 11)  isfies the differential equation
can be easily carried out to obtain:
Oep(s,t oD
1 : olet) _ . (14)
G(Ur) =1~ — [Te(WiUr)|. (12) s der(s, 1)

d The functional derivative on the right-hand side of
Eq. (14) can be evaluated using E®)( In numerical
simulations, we determine control fields at each itera-
tion by solving Eq. 14) using a fourth-order Runge-
Kutta integrator with a variable step size incorporated

einto MATLAB (routine ode45) [60]. The initial set

of fields {¢1(0,¢)} is selected randomly for each op-

timization run, as described in SedD below. In

the simulations, we evaluate the normalized distance
and specify the convergence threshold for the optimiza-
tion. Specifically, the D-MORPH procedure described
above is performed until either (a) the desired conver-

Correspondingly, the minimum valge= 0 is attaine
whenUr = e'*W for any phasep. Note that for a
traceless Hamiltonian, when bolli andUr must be
in SU(V), the phasey can take only discrete values
corresponding to solutions of the equatig ¢ = 1.
The topology of the control landscape for the distanc
G of Eqg. (12) is very similar to that for the distance
D of Eqg. 3), and an analytical formula for the func-
tional derivativedG/dey(t) can be obtained analogous
to Eq. ©) [49]. Optimization of the phase-independent
distanceg will be considered in SedlIB, where we
study how searches with different initial control fields Lo Tg X
converge to optimal solutions corresponding to differ-9&nce criteriorD < 107 is reached or (b) the im-
ent values of the global phase. Optimization of theProvement of the distance value satisfiBgs + ds) —
phase-dependent distangeis considered in the re- P(s)| < 107°D(s), indicating that an extremal value
mainder of this paper (of course, minimizing the dis- of D has been reached. Sufficient algorithmic itera-

tanceD is equivalent to maximizing the fidelit§). tions are allowed to prevent premature termination be-
fore reaching an extremal value Bt

B. Optimization procedure for control of unitary
transformations C. Metrics of landscape structure

A variety of deterministic first-order algorithms, in-  The issue of the search effort growth Hs— T*
cluding the Krotov method18, 37, 58], GRAPE al- s jmportant because the computational cost of iden-
gorithm [9, 10}, and D-MORPH (diffeomorphic mod- jfying optimal control fields near or at the critical
ulation under observable-response-preserving homdime may become prohibitively high, particularly as the
topy) [42 56] have been employed for optimization in numper of controlled qubits increases. We are also in-
control of quantum unitary transformations. A recentterested in exploring the relationship between the num-
work [42] demonstrated that these algorithms share &er of D-MORPH algorithmic iterations needed to con-
common fixed point topology and common bounds onyerge to an optimal solution and metrics that quantify
their convergence rates. Also, methods for comparijpcal properties of the control landscape. One such
son and benchmarking of various quantum control almetric is thepath lengthof the search trajectory for a
gorithms were presented in Ret7. Second-order p.\MORPH optimization. The search starts out from an
algorithms such as the Broyden—Fletcher-Goldfarbntia| set of control fields{c,, (0, )} at the algorithmic
Shanno (BFGS) quasi-Newton meth&d[58 and the  jngex values = 0 and progresses in steps— s + ds
Newton—Raphson metho&g were also utilized re-  ntjl the trajectory ends at a set of optimal control fields
cently in quantum optimal control. In this work, we {1} = {er(s*, 1)} with s = s*. The path lengti (s)

employ the D-MORPH method. of the search trajectory from= 0 to s is defined as
In D-MORPH, a variables (referred to as the al-

gorithmic index) is introduced to label the progres-

s T 9y 1/2
sion of the optimization, rendering the control fields: As) = / ds’ 1 Z/ dt [M] _
{ex(t)} — {ek(s,t)}. The objective valu® depends 0 T =)o s’

on s through its functional dependence on the set of (15)
control fields, i.e.,D(s) = D({ex(s,t)}). Thus, the The total path length traveled along the search tra-
change in the objective value corresponding to a differjectory to reach the optimum id* = A(s*). In

ential changels is given bydD = (0D/0s) ds, where  the absence of local traps, a D-MORPH search mono-
tonically converges towards the optimum, resulting in
aD /Tdtz 6D Oei(s,t) (13 @ one-to-one mapping between the algorithmic index
ds  Jo p der(s,t)  Os values and the objective valuP for a given search tra-
jectory. Therefore, it is possible to cast the path length
As the goal is to minimiz®, we require thabD/ds <  as a function of the distancet = A(D). The value
0, which is guaranteed when each contrg(s, ¢t) sat-  of A(D) quantifies how much the control fields have to




change from the initial guesg (0,¢)} to achieve the
objective valueD.
In Ref. [42], it was found that metrics of the local
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Hamiltonian of the form Z). The field-free Hamilto-
nian Hy is given by

predicting the search effort. In particular, one can em-

. n n—1 n
landscape structure near the optimum can be useful forH0 _ wagk) n Z Z Jkgk) . gG) (18)
k=1

ploy theslope metricX(s), which is given by thel,-
norm of the landscape gradiemt.D evaluated at an
algorithmic index value:

T 2) 1/
(s) = |V-D(s)]2 = {;/0 dt [%} } '

(16)
During the D-MORPH optimization, the derivative of
thekth control field with respect te and the landscape
gradient along this field are related by Eq4). Sub-
stituting Eq. @4) into Eq. (L5) and using Eq.X6), we
obtain B1]:

dA(s)
ds
17)

A(s) = % /Osds’Z(s') & N(s)=VT

k=1 j=k+1

Here, the operatoﬁék) (a = z,y, z) denotes the ten-
sor product of the spin operator for tihth qubit with
identity operators for all other qubits:

SH =1, 0 ®1L,S, Lo - ©1, (19)
—_—— —

k—1 n—k

where the spin operators afe = (S5;,5,,5.) =
5(04,0y,02), in terms of the Pauli matrices, arlg

is the2 x 2 identity matrix. Each qubit has a unique
transition frequencyw (corresponding to the pres-
ence of a static magnetic field in thalirection in the
spin model), and isotropic coupling strength§-7) be-
tween pairs of qubits are constant. In the simulations
reported here, we used model systems with up to four

This simple relationship shows that the slope metricqubits with frequencies, = 20,24, 30,40 and cou-
5(s) is proportional to the rate of change of the pathpling constants/*/) in the range fron0.08 to 400.
lengthA(s) along the D-MORPH search trajectory. As This broad range of coupling strengths represents the

was the case for optimization searches in R&Z),[we
will show that the decrease of the slope meffis)

freedom inherent in considering coupled-spin systems
in contexts other than NMR, such as semiconductor

(i.e., the increase of the landscape “flatness”) at arfluantum dots, where interactions between qubits may
algorithmic iteration close to the landscape optimumbe tuned by application of electric fieldsd 62-64).

(e.g., forD ~ 10~°) correlates with the increase of the

search effort.

D. Model control systems

The control HamiltonianH.(¢) corresponds to the
application of a separate time-dependent control field
polarized in ther direction to each individual qubit:

Hc(t) = igk(ﬁ)Hék) = igk(t)sa(ck)a (20)
k=1 k=1

Various types of coupled-spin systems have been

considered in TOC studies, with many works using

wheree(t) is the control field applied to theth qubit

models relevant to the liquid-state NMR, where spinsand the operatas” is defined by Eq.19). In the opti-
are coupled via an Ising-type interaction and couplingmization prqcedure, each control field is labeled by the
strengths are much smaller than differences betweeglgorithmic indexs (see Secll B above). The fluence

spin frequenciesd, 9, 10, 34]. Other models such as
anisotropic controllable inter-qubit coupling33 37]

have also been studied. In NMR models, control fields
typically address each spin separately with independent

x andy polarizations 9, 10].

In this work, we study TOC of generic coupled-spin
model systems motivated by implementations of quan
tum computing in physical devices such as semicon-

ductor quantum dot$p]. In our model, each qubit has

a characteristic transition frequency and is controlled

by a separate field with only the polarization; ex-

of thekth field at the index is given by
T
fr(s) = / dt £3(s,t). (21)
0

At the start of the optimizations(= 0), each field is

initialized in the parameterized form:

ex(0,t) = A(t) Y _sin (it + 1),

i=1

(22)

change interactions between qubits are of the Heiser+ ¢ [0, T'|. Here, A(t) = Ag exp[—8n(t — T/2)?/T?]
berg type with fixed isotropic coupling strengths. All is the Gaussian envelope function, frequendies;
system and control parameters are expressed in dimefeorresponding td/ spectral components of the field;

sionless units.
Generally, we consider a system ofqubits (the
Hilbert space dimension i = 2"), with the model

we usually usél/ = 10) are randomly selected from a
uniform distribution o0, Q] (with Q2 being the largest
transition frequency indy), {¢;} are random phases
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on [0, 27]. The normalization constan, is chosen so  Substituting Eq.24) into Eq. @3), one obtains an ex-

that the fluencé(0) of each initial field is equal to 1. pression that reveals the linear dependence of the ex-
The parameterized forn2p) is used only for ini- pected gate error of:

tial control fields. At each step of the optimization

algorithm after the initialization (i.e., fos > 0), the

value of thekth control field at each point on the

time discretization mesh is allowed to vary freely and

independently. This flexible set of control ‘knobs’ For the control Hamiltonian of quo) emp|0yed here,
{sk(s,$tr){ akk(]s%Qﬁt), . .,skf(s,ll“)} I,?HOWS the frl]u- Tr[HC(k)HC(j)] _ Tr[Sg(Ek)Séj)] — (N/4)5;;. Using this
ence of thekth field to vary freely whers > 0. The : oy -
time stepAt is chosen such thakt < 7/(292), corre- gebstg:;.(together Wittt = 1) in Eq. @5), we finally
sponding to the Nyquist frequeney = /At > 29. '
In agreement with the Nyquist—-Shannon sampling the-
orem, this criterion was found to be sufficient to ensure

that the time discretization does not affect the reacha- . . L
bility of the global optimum 42, 51]. Equation 26) shows that the error in the objective

value is expected to grow linearly both in the number
of qubitsn and control timel’. Thus, it is practically

important to minimizel” when AWN in control fields
E. Relationship between control time and robustness to s present.

additive white control noise

~ 1 n .
E{D} ~ =0T Y By Tr {HC(’“HC(J)} . (25)

k=1

E{D} ~ 1—1602nT. (26)

An important motivation for finding the minimum F.PFT algorithm for quantifying the trade-off between
time necessary to enact a target unitary transforma- minimizations of distance and control time
tion is to improve the robustness of the gate operation
to noise in control fields. Specifically, additive white  The PFT algorithm introduced here is designed to
noise (AWN) in optimal control fields induces gate er- identify the Pareto front for the dual objectives of min-
rors that are linearly proportional I8 [29]; a briefout-  imizing D andT, as well as to explore the correspond-
line of this analysis is provided here. In the presenceng domain of the optimal control landscape. We use
of additive noise, the actual control field is given by PFT to move along the Pareto front by identifying opti-
e(t)+£(t), whereg(t) is a classical stochastic variable. mal control solutions corresponding to different values
For white noise(t) has zero mearE{{(¢)} = 0, and  of 7. Analogous to the algorithmic indexdescribing
is delta-correlatedE{< (¢)E(t')} = o26(t — ¢'). Here,  the progression of a D-MORPH search, we define the
E{-} denotes the statistical expectation value over alindexing variable to describe the progress of the PFT
noise realizations and? is the variance of the noise algorithm. The PFT algorithm works as follows:
amplitude distribution. For AWN in multiple con- . ,
trol fields, in general, we should also consider cross- 1+ Select a starting value of the control tinfe, =
correlationsE{&, ()& (')} = o2By;0(t — t'), where T(p = 0). Then run the D-MORPH optimiza-
0 < Br; < 1andpy, = 1 (if noise processes in differ- tion (as described in SedlB), starting from

ent control fields are independent, th&n = d;).
According to the analysis in Ref2§], for weak
AWN in optimal control fields{e7(¢)}, the statistical

expectation value of the normalized distarieds ap-

proximated (by expanding up to the second orderinthe o

noise amplitude) as

B 1 2 S ’ 1x
E{D} ~ 50 Zﬁkj/o dtHy;(tt).  (23)
k

J=1

Here,H*(¢,#') denotes the Hessian matrix bf eval-

uated at the optimum, and the diagonal elements (i.e.,

for t = t') of its blocks are time-independe2d, 49:

5°D
dek(t)oe;(t)

L {HC("‘)HC(J')} ,

H* (. 1) = -
k_](? ) IN
o

(24)

a set of randomly selected initial control fields
{ex(p = 0,8 = 0,t)}, until it converges to a
set of optimal fieldgex(p = 0,s = s*,¢)} that
minimizesD.

Reduce the value of the control tirfig so that
T(p+1)=T(p)— AT, whereAT is an incre-
ment on the order AT < 0.017.

. Resample each of the optimal control fields in

the set{e(p, s*,t)} on the updated time inter-
val [0,T(p + 1)]. Employ the resulting set of
fields as the initial gues&,(p + 1,s = 0,1)}
for the next D-MORPH optimization that pro-
ceeds to identify the next set of optimal fields

{ex(p+ 1,8 =s*1)}.

Steps 2 and 3 are repeated until the D-MORPH opti-
mization can no longer attain the desired valueDof
Specifically, we set the PFT “stop value”®= 102



when the goal is to explore the “competitive” part of 7' = 4.12. For each value of’, 10 D-MORPH opti-
the Pareto front, and t® = 10~® when the goal is mization runs beginning from different random initial
to only determine the critical tim&™. The process of fields of unit fluence were performed. All optimiza-
decreasing’ in small increments coupled with the use tions reached the desired objective valbe< 108
of optimal control fields as the initial guess for the D- and no trapping or slowdown of searches at a sub-
MORPH run in the next PFT iteration biases towardsoptimal distance value was observed (including runs
identifying families of related control solutions along for 7' = T*). The search effort, however, increased
the Pareto front. Therefore, running multiple PFT tra-as7 was made smaller, especially fér < 6. This
jectories beginning from different random initial con- behavior is shown in Figl(a) as a plot of the num-
trol fields at various values dfy may be useful for ber of D-MORPH algorithmic iterations (averaged over
proper identification of the Pareto front. 10 searches started from random initial fields) versus
T. In particular, forT < 6, the search effort in-
creases superexponentially (note the logarithmic scale
lll. EXPLORING THE PARETO FRONT FOR of the left-side ordinate) and is well approximated as
CONTROL OF TWO-QUBIT GATES exp(aT~ + ¢), wherea ~ 2.1 x 107, b ~ 11.0,

In this section, we explore the Pareto front for
fidelity- and time-optimal control of unitary transfor- (a) 105

mations in two-qubit systems. In Sdd.A , we study . e iterations
in detail how the optimization search effort, landscape § - -¥- - slope metric &
metrics, and optimal control fields change along the ,§ 1013
Pareto front for the controlled NOT (CNOT) target gate e 3
and one representative set of system parameters. In = loor 2
SecsllIB andlll C, we identify Pareto fronts and de- 5 =
termine critical times for a variety of target gates and % o
inter-qubit coupling strengths. S ] jo001g
S )
10 'I o . 10,0001
A. Optimization search effort and Pareto front 4 8 12 16 20 24 28 32 36 40
exploration for CNOT gate (b) control time T (arb. units)
% ‘—v‘—con‘trol flt‘Jence‘ °
As an illustrative case on which to conduct a de- £ - -~ - path length 5
tailed examination of the search effort dependence on 5 2
the control time and properties of the distance-time € 20 )
Pareto front, we consider the objective of performing % )
the CNOT gate in the two-qubit model system= 2) © 10 =
with w; = 20, wy = 24, and.J1:2) = 0.8. Since the E 3
system Hamiltonian is traceless, the target transforma- < s =
tion W is defined as the CNOT gate with a global phase £ @
factor chosen so that is in SU(4): 8 I
2 +10.2

4 8 12 16 20 24 28 32 36 40

1000 control time T (arb. units)
i 0100
W _ i /4 27
CNOT = € 0001 27) FIG. 1. (Color online) The search effort and metrics of the
0010 control landscape as functions of the control tifidor D-

MORPH optimizations performed at select fixed value% of
The target gate i$Vcnor. (a) Search effort (black circles
with solid line, left-side ordinate) and slope metric (the-
1. Search effort of D-MORPH optimizations and its norm of the Iands~cape gradieii)s) evaluated at the value
relationship to landscape metrics corresponding t@ = 10~° (red triangles with dashed line,
right-side ordinate). (b) Total fluencg of optimal control
fields (black triangles with solid line, left-side ordinpsnd
For the selected target gate and control system, thgya| path length\* along the search trajectory (red circles
critical time valueT™ ~ 4.12 was found by running  with dashed line, right-side ordinate). Circles and triasg
PFT trajectories (see Setil A2 below for details). show average values and error bars denote the left and right
In order to study how the control time affects the op- standard deviation over the sample of 10 D-MORPH searches
timization search effort, D-MORPH trajectories were with randomly selected initial control fields performed for
obtained for 15 values of’ betweenT = 40 and  each value of’".



andc ~ 6.1. The corresponding decrease in the slope 10’
metric ¥(s) evaluated at the value corresponding to

D ~ 10~% is also shown in Figl(a) (with values onthe 1’}
right-side ordinate). The complementary trends for the =
search effort and gradient norm indicate that the con—g 107
trol landscape in regions near the optimum becomes=
“flatter” asT decreases. 210%

To examine how the distance between the initiali )
and optimal fields grows &% decreases towardg*, %, '°
we consider the total fluence of optimal control fields, < B/
f* =3, fr(s*), and the total path length* = A(s*) 00
traveled along the search trajectory to reach the op-
timum. These quantities (averaged over 10 searches
started from random initial fields) are plotted versus
T in Fig. 1(b). Both f* and A* rise asT’ decreases,
and this rise significantly accelerates for< 8. Since . 2. (Color online) Path length differendg(s*) — A(s)
all D-MORPH searches began from unit-fluence fields,ajong the optimization trajectory as a function of the objec
the value off* is an indicator of the distance between tive D. As the optimization progresses, the path length dif-
the initial and optimal fields, which explains the sim- ference decreases towards zero along Wit he target gate
ilarity in the trends off* and A*. The behavior of is Wonor. Each value of the control timé is denoted by
the fluence as a function of the control time can beline style and color in the legend. The order of trajectories
qualitatively explained by a simple example of a two- in t_he Iegend corresponds_ to that on the figur_e, withi_tﬁe
level system driven by a resonant control field. Thelraiectories (green, solid line) at the top, afidncreasing
rotation angle produced by the control Hamiltonianfrom top to bottom. Different trajectories for the_ same ealu
on the Bloch sphere during tim& is QxT, where of T corrgspond to 10.D-MORPH searches with randomly

. . L . selected initial control fields.
Qp is the Rabi frequency which is proportional to the
control-field amplitudezy. If the goal is to generate
the same rotation &6 changes, the optimal-field am-
plitude should scale as; « 1/T. Since the fluence

can be approximated g5 ~ %E(Q)T, the optimal-field - _ 7« approach the final path length(s*) much

fluence scales ag* oc 1/7'. Of course, for a multi- more slowly untilD becomes very close to the opti-
qubit system controlled by several external fields, themum' there, the path length changes very quickly, as
dynamics is much more complicated (in fact, even for aA(S*)’ B A(s’) drops by three orders of magnitude t;e—
single qubit,1 /7" scaling is periodically modulated by ~ s ~ s :

the effect of free evolution). Nevertheless, this simpletweenpf 2x10"*andD = 107°. This _result shows
picture helps to explain qualitatively why the fluence that atT™, Iar_ge changes of the control field occur very
rises wherl’ decreases. The non-monotonicity of near the optimurm.

andA* as functions of”, seen in Figl(b), is explained

by the fact that, a§’ changes, free evolution takes the

linear change on the log—log plot) over the range from
D ~1072to D ~ 10~ 7. In contrast, the searches with

system closer to or further away from the target, thus 2. PFT results
modulating the amount of control-field energy required
to reach the optimum. The PFT procedure described in S#d was per-

Further insight into the dependence of the controlformed for the purposes of (a) identifying the critical
landscape structure on the control time can be gainedme 7 (determined numerically as the minimum con-
by examining the path length(s) accumulated as the trol time at whichD < 108 can be achieved) and (b)
D-MORPH search progresses. The value/fofin-  following the Pareto front to obtain the best attainable
creases monotonically along the search trajectory fronD value as a function df” in the “competitive” region
s = 0to s = s*; correspondingly, the path length dif- of 7" < 7T*. A total of 10 PFT trajectories beginning
ferenceA(s*) — A(s) indicates the extent to which the from random initial control fields at different values of
control field has reached its optimal form. Figlte T, (ranging fromT, = 4.2 through7, = 6) were gen-
showsA (s*) —A(s) as a function of the objective value erated for the target gaté’cnor and the same two-
D for optimization trajectories with selected values of qubit system as used in the D-MORPH optimizations
T, with 10 trajectories corresponding to different ran-in Sec.lllA1 above. Four of these trajectories were
dom initial fields shown for eacti’. This plot illus-  run along the Pareto front by decreasifigintil it was
trates the dependence of the search trajectory’'on impossible to attairD < 102, while the remaining
For all searches with" > 7™, the path length differ- trajectories were run only to values ‘bfranging from
ence follows a similar power law (which appears as aI' = 3.8 to T = 4 due to computational expense.
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the objectiveD for control times within a selected in-
terval. While all PFT trajectories achieve essentially
the same minimum value @? at a givenT’, each tra-
jectory produces a distinct family of optimal control
solutions. The “evolution” of optimal control fields
within such a family, corresponding to the changé&of
along a PFT trajectory, is visualized in Figy. Specif-
ically, two families of optimal fields obtained for PFT
trajectories initialized afy, = 4.4 andT, = 4.6 are
shown in Figs4(a), (b) and4(c), (d), respectively. For
each of these two families, pairs of fields (correspond-
ing to separate control fields acting on two qubits) are
shown for several values @f ranging fromT" = Tj to
‘ ‘ ‘ i i T = 3.0.
3 32 34 36 38 4 42 The optimal control fields obtained for different PFT
T (arb. units) trajectories have distinct shapes, which is expected
. based on the existence of an infinite number of optimal
FIG. 3. (Color online) The normalized distanZeplotted  sp|utions p6]. Nevertheless, the fields share a number
versus the control tim@ for 10 separate PFT trajectories de- of common features. First, field amplitudes increase
noted by shape and color. The target gatélisxor. The ;o7 jocreases. As explained in SHtA 1, this am-

PFT trajectories were started at different value§of{given litude behavior is needed to maintain the red r
in the legend) with different randomly selected initial eon plitude behavioris needed to mainta erequiredro-

trol fields, but are very closely aligned, which suggests thetation qngle ad’ changes, and the associ_ated change
existence of a unique Pareto front. of the field fluence roughly follows$/T" scaling. Sec-

ond, forT < T*, each field exhibits spikes at= 0

andt = T that grow in amplitude a%' decreases. For
All 10 trajectories, shown in Fig3, are very closely T < 3.9, these sp|ke_s are the I_argest amphtude_f_ea-
aligned for all values of", with the critical time value ~ turés of the control fields. Besides the two families
estimated a§™ = 4.12 + 0.01 (i.e., the dispersion of shown in Fig.4, this field feature was observed for all
theT* value is on the order of the PFT st&d’). This other PFT trajectories that were run bel@W. Similar
near coincidence of different PFT trajectories indicatecharacteristics of optimal fields were also observed for
that, for a given quantum system and a target gate, therbOC Of a three-qubit system in Rei.(]. We made no
exists a unique distance-time Pareto front. Correspond?ttempt to impose any control constraints that would
ingly, the minimum control time needed to enact a tar-SUPPress such spiky features; the extreme difficulty of
get unitary transformation with a high fidelity appears tN€ distance minimization in the regidh < 7™ in-
to be an inherent property of the controlled quantumd'cates that further constraints could adversely affect
system, independent of the path taken to iderifify attainable values dP and thus preclude reaching the

The Pareto front fofl’ < 7™ has the unfavorable genuine distance-time Pa}retq front..

property of an extremely steep slope, i.e., a small de- Th_e results presented in t_hls section suggest that the
crease inl” below T* results in a very large increase location of the Pareto front is essentially independent

in D. Specifically,D rises more than three orders of of the PFT trajectory taken for.the present numerical
magnitude fronD < 10~5 to D > 10~° with a rela- model. Thus, for other selections of the target gate

tively small decrease iff from T = 4.12 t0 T = 4.0. and/or system parameters considered in Sdd.and

Beyond this steep region, the distance growth moderl!! € Pelow, Pareto fronts were identified by 2running
ates with decreasing, such thatD ~ 102 can still  °nly one complete (i.e., followed untp < 10~ be-
be obtained &’ = 3.0. However, since a fault-tolerant €0Mes unattainable) PFT trajectory. For cases where

quantum computation requires very low gate error rateQN!Y identification of 7™ was desired, the PFT algo-

i A) —8
(typically, less tharl0—*) [1, 65], the steep slope of the thm was stopped soon aftér < 10~ was no longer
Pareto front immediately belo@* presents a funda- attainable, and at least three trajectories started with

mental limitation on gate implementation times. Fur- different initial random fields were run in this fashion

thermore, uncertainty introduced under experimental™ Order to verify the obtained value &f".
conditions would make operation neart difficult be-
cause small errors in control time could cause substan-
tial decreases in attainable fidelity. 3. Efficiency of the PFT algorithm
In addition to being a reliable numerical method to
identify the distance-time Pareto front (and, in particu- In Seclll A1, a superexponentialincrease of the op-
lar, determine the value @f*), the PFT algorithm gen- timization search effort (in terms of algorithmic itera-
erates families of related control fields that minimize tions) was observed as the control tiffielecreases and
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FIG. 4. (Color online) Optimal control field& 7 (¢)} for the target gaté&Vcnor. The control fields for the first qubit(= 1)
are shown in (a) and (c), and the control fields for the secarit & = 2) in (b) and (d). These plots show fields obtained
for various values of the control tinig, ranging from1" = Ty (the starting point of the PFT trajectory) 10 = 3 (where the
best attainable objective value 13 ~ 0.01). Each value off" is denoted by color in the legend, with yellow (lightest gray
corresponding td@" = T* = 4.12. The shown sets of fields represent two PFT trajectorietestat’, = 4.4 ((a) and (b))
andT, = 4.6 ((c) and (d)); these PFT trajectories are presented amaegad®thers in Fig3. An apparent increase in the DC
field component (i.e., a positive shift of the entire fieldJfadecreases is an artifact of the perspective of the threestsianal
plot; the field power spectra (not shown) do not reveal a St zero-frequency component.

approacheg™*. The D-MORPH searches considered in PFT trajectories fronily; = 4.6 to 7* = 4.12 and
Sec.lllA1 were initialized at randomly selected fields (b) sets of 10 D-MORPH searches with random ini-
for all values ofT", with typical initial objective val- tial fields at selected values @f € [4.12,4.6]. Fig-
uesD(s = 0) ~ 0.5. In contrast, the PFT algorithm ure5 presents the search effort as a functiorvofor
employs random initial fields only for the search with each PFT trajectory (colored circles, diamonds, trian-
the starting value of the control tim&, = T'(p = 0); gles, crosses, and x’s) and for each set of D-MORPH
every consequent search will(p + 1) < Ty is ini-  searches (black squares and error bars indicating the
tialized at the fieldqex(p, s*,t)} that are optimal for average and standard deviation, respectively, over the
the preceding search with(p) = T(p + 1) + AT.  set of 10 runs). The results show that, while different
Correspondingly, D-MORPH searches along a PFT traPFT trajectories exhibit varying convergence speeds, at
jectory begin, forp > 0, with initial objective values each value ofl" < 4.45, the search effort for PFT is
D(s = 0) ~ 0.01 to 0.05 and thus may be expected to significantly lower than that for randomly initialized D-
reachD < 108 with a smaller number of algorithmic MORPH, typically by a factor of 2 to 4. Af* = 4.12,
iterations. Here, we investigate to what degree the PFthe convergence of the best PFT trajectory was faster
algorithm can lower the search effort, as compared tghan that of the average D-MORPH search by a factor
D-MORPH optimizations with random initial fields. of ~ 8; even the worst PFT trajectory outperformed the
average D-MORPH search by a factor-of2. Thus,
To directly compare the two methods, we ran (a) five
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50000 i 7 7 7 7 7 T 7 considered in SedllA. Pareto fronts and values of
@ D-MOPRH T* for various target gates are identified using the PFT
k] —— procedure, as described in detail above. In addition to
10000 1 & X o PR | theWenor gate of Eq. 27), we considered a number
_§ | of gates, all incorporating appropriate global phase fac-
2 tors to make them elements of S\J). The SWAP gate
=t has the form
5
2 o 1000
[S] r .
g Wswap = e ™/4 8 (1) (1) 8 (28)
0001

e S S S S ]
4124.164.2 424 428 4324.36 4.4 444 448452456 4.6 We also consider the square root of SWAP (an entan-

control time T (arb. units) gling two-qubit gate), given by

FIG. 5. (Color online) The search effort versus the control

time T for five PFT trajectories (denoted by distinct symbol (1) 1 Om/4 1 91-,,/4 8
shapes and colors) and D-MORPH searches with random ini- 5, — ¢im/8 v2& 2¢

tial fields (black squares with error bars denoting the ayera VSWAP 0 %e‘”/“ %e“’/“ 0
and standard deviation, respectively, over the set of 18)run 0 0 0 1

At each value ofl" < 4.45, the PFT search effort is sizably (29)
smaller than the average D-MORPH effort.

Matrix elements of the Quantum Fourier Transform

: . QFT) gate generalized for qubits are given b
the search effort can be substantially lowered if a D-( )gate g q 9 y

MORPH search is initialized at control fields that are 1 & ;

8 ; ) . _ _— _bim/(2N), jk
optimal for a related search (here, with a slightly larger WaorTn(j, k) = ¢ W, (30)
value ofT’) rather than at random fields.

It is also of interest to compare the PFT algorithmwherej, k = 0,1,...,N — 1 andw = e2*/N (recall

to methods that aim at minimizin@ by including  thatN = 2"). For two-qubit systemsy(= 2), the QFT
penalty terms into the cost functiona88g, 36]. For  gateis
the latter approach, a recent wo36] assigneda pri-

ori weights to a term in the cost functional that pe- 11 1 1
nalizes the control field fluence and control time. It W Ll sl wow?W? 31
is known (8] that OCT algorithms employing such QFT,2 = 5¢ 1 w? w* Wb (31)
cost functionals are typically incapable of identifying 1 w? Wb W

the genuine Pareto front. Indeed, the algorithm used

in Ref. [36] converges to a value df that overesti- We also consider a similar gate denotedVége - ,,,
mates the actual critical time, while also underestimatwhich is given by Eq. 30) with 5,k = 1,2,..., N.

ing the achievable gate fidelity. A PFT trajectory that Finally, we consider controlled phase (CPHASE) gates,
we ran for the quantum system and target gate used iaf the form

Ref. [36] identified T* ~ 1.80 with 7 > 1 — 1078,

while Ref. [36] reported convergence 6 ~ 2.01 with 100 0
F ~1—17x 1075, These results suggest that the PFT Wepnasge(@) = eia/4 0100 . (32)
algorithm is better suitable for accurately determining 8 8 (1) E_L

&

the fidelity-time Pareto front and, in particular, the true
value of T* than methods that employ time-penalizing

terms in the cost functional. with the phasea = 7 anda = /2.

In addition to the explicit forms of the CNOT, SWAP,
VSWAP, QFT, QFT, and CPHASE gates presented
above, we also consider the effect of changing the
B. Pareto fronts and critical times for various target global phase of the target gate. In earlier work by
gates Schulte-Herbriiggeat al.[10], different values ofl™*
were found for distinct global phases of the three-qubit
Simulations presented in this section examine howQFT gate in a linear spin-chain system with Ising-type
the distance-time Pareto front and, in particular, theinteractions. ldentifying critical times that correspond
critical time are affected by the choice of the targetto all possible values of the target gate’s global phase
transformationi? for the same two-qubit system as is importantin the context of TOC. For anqubit gate
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10 o TABLE |I. Critical times T™(¢,,) obtained using the PFT
method for the selected set of target gates and four global
phase values,, = mx/2 (m =0, 1,2, 3).
10741 Gate T*(¢m)
m=0 m=1 m =2 m=3
Q CNOT 4.12 411 415 4.09
SWAP 4.19 11.80 4.34 11.84
Tod! SWAP 2.26 9.84 2.20 9.82
¥ W=SWAP, ¢ =0 QFT 5.98 9.86 5.94 9.86
= W=QFT,$=0 QFT 6.19 9.92 5.96 9.90
© W=QFT, §=n2 CPHASE() 4.22 3.98 4.21 3.96
e ‘ W= SWAP, ¢ = 2 CPHASE(/2) 2.25 5.98 2.38 5.96

6 8 10 12
T (arb. units)

FIG. 6. (Color online) Distance-time Pareto fronts for the tially, experiments, where implementing the target gate

QFT and SWAP gates with global phasgs= 0 and¢ =  in minimum possible time is often desirable. In a com-
7/2. Each front is denoted by a distinct symbol shape andmon situation where initial control fields are selected
color, as listed in the legend. Fronts for= 7 and¢ = randomly, a search aimed at minimizing the distance

3m/2 (not shown here) closely match those for= 0 and D for the target gate with a certain value @inay, in
¢ = /2, respectively. The significant difference in front lo- principle, converge to a control solution that enacts the
cations (and correspondifl* values) .demonstrates the im- gate with another value ef. For the target transforma-
portance of the gate’s global phase in TOC. The black stargj,, in SU(V), the discreteness of allowed phase val-
denote the average values Dfobtained from the searches ueso,, of Eq '(33) means that the probability of such
reported in Tablél. m ’ .
an event depends on the distance between transforma-

tions with nearby values af. While the fraction of
searches that converge to solutions corresponding to a
“wrong” value of ¢ is negligible for two-qubit gates,
it will increase for multi-qubit gates as the number
W () = €4 W, of aIIo;ved.lor)lasFe vz;lues grovyfs (hsee ﬁl@/cb.elgw ford

_ _ more details). Furthermore, if the phase-independent
Om =2mm /N, m=01,....N=1 (33)  gicianced of Eq. (12) is employed (which is likely in
For two-qubit gates considered in this section, four dis-Practical situations where the global phase of a gate is

W e SU(N), transformations withV distinct global
phase values are allowed:

tinct global phase values are allowed in SU(4); = undetectable), randomly initialized searches will con-
mm/2, m = 0,1,2,3. The critical time for the trans- Verge to control solutions corresponding togj| val-
formation\ (¢.,,) is denoted ag™ (¢, ). ues (the probability for each,,, should be equal to

The effect of global phase on the location of the 1//V, provided that a local search algorithm is em-
distance-time Pareto front is demonstrated in Bitpr ~ Ployed and initial control fields are generated in a truly
the SWAP and QFT gates with = 0 and¢ = /2. random manner). Therefore, in order to m.ake all trans-
It is seen that the Pareto fronts for= 0 are shifted formationsiV(¢,,) reachable, the control tini€ must
significantly to the left on the time axis (and have cor-be not smaller than any of the critical timés (¢, ),
respondingly smaller values @) as compared to the €7 = max{T™(¢n,)}.
fronts for ¢ = w/2. This behavior shows that the In particular, due to the difference between the
global phase is an important parameter in TOC of uni-7*(¢,, ) values, an undesirable situation will aris€’if
tary transformations, consistent with the findings ofis selected such th&t*(¢,,) < T" < T*(¢,). Then
Ref. [10]. We also observed for all target gates con- W (¢,,) will be reachable, whiléV (¢,,,/) will not, and
sidered here that the Pareto front for= = lies very  therefore local searches convergindgq¢,,,) will at-
close to the one fop = 0, and the Pareto front for tain a desired objective value (e.¢.,< 10~8), while
¢ = 3m/2 lies very close to the one far = 7/2. The  local searches moving towarts(¢,,.) will be unable
pairwise separation af*(¢,, ) values for global phases to improve the objective value beyond the limit set by
with m = {0,2} andm = {1, 3} is reported in Tablé  the corresponding Pareto front. If such a situation is en-
for several target transformations. For all gates exceptountered in a numerical simulation, it may appear as
CNOT, there is a significant difference in tfi& values if a fraction of searches are “trapped,” which seems to
corresponding to the two pairs ¢f,, values. contradict the trap-free topology of the quantum con-

The dependence of the critical tirfi& on the gate’s trol landscape. However, in reality, this behavior arises
global phasep has important practical implications due to the limitation on the control time (i.e., a con-
for optimizations in numerical simulations and, poten- straint on a critical control resource) that makes one or



more of the target transformations unreachable. Obvi- 10'; ‘

ously, if the control time is increased to satisfy the con-

dition T > max{T*(¢,,)}, this spurious “trapping” &

will be completely eliminated. S
We explored this effect by running 500 D-MORPH g 107

searches (with random initial fields), aimed at mini- &

mizing the phase-independent distagcor QFT and %% ¢

SWAP gates withl" = 9 andT" = 10, respectively. <

These searches may approach solutions correspondir}g10 i

to any ¢, (0,7/2,,3n/2), with optimization trajec- £

tories determined by initial fields. As expected based™ "¢

on theT™ values in Tablé, all searches that converged ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

to W(¢ = 0) andW (¢ = =) attained desired objec- 10° 107 10° 10° _10* 10° 107 10" 10

tive values; < 10~8, while all searches that moved to-

wardsW (¢ = w/2) andW (¢ = 37 /2) halted well be-

fore reaching the target. Tabllepresents the percent- FIG. 7. (Color online) Path length differeneg(s*) — A(s)

age of searches approaching each target transformatiétng optimization trajectories seekimorr with 7' = 9,

W (¢), along with the associated mean valuedof as a fungtlon of'the phase-lndependent dlstggceBIa_(:g

For the “trapped” cases (occurring for = /2 and (dashed line) trajectories: searphes that attafiied 10

¢ = 37/2), the standard deviation around the mean2S ey converged (¢, with ¢, = {0,7}. Red
o = T (solid line) trajectories: searches that were “trapped” at

objective valueg is less than 0.3, which indicates =" j047 as they approachedl (¢m) with ¢, —

Same Garse. For those searches, we aiss computed AgeL L2y Treecories for the comverged searches be-

averaged the correspondifigvalues, which are shown other hand, as the red trajectories approach the “trap” at

as black stars on Fi@. They lie exactly on the respec- G = 0.0047, they show a very large change in the field struc-

tive Pareto fronts, thus demonstrating that the attainture (A changes by~ 4 orders of magnitude) with negligible

able distance values are determined by the limitatiorimprovement in fidelity.

on the control time.

)

10°L

TABLE II. Optimization results for 500 D-MORPH runs timization trajectories corresponding {9, = {0, 7}
performed to minimize the phase-independent distghoé  (shown as black dashed lines) successfully converged
Eq. 12). The target gates ard/qrr2 and Wswar With (G < 10~%) to the respective transformations and ex-
control timesI" = 9 andT" = 10, respectively. The percent- hibit a behavior similar to that of the trajectories with
age of searches that approached each target transformatign -, 7+ in Fig. 2. Specifically,A(s*) — A(s) changes

— by i i : . . :
W(dm) = €W is recorded, along with the associated it G according to a power law (which appears as
mean value of;. The difference of the reported percentagesa linear change on the log—log plot) over the range

from 25% (1/N probability) is mostly due to the fact that 10-7 < G < 10-3. In contrast, the optimization tra-

initial control fields are not completely random, as they are: ‘ .
generated using the parameterized fol®) ( jectories corresponding 10,, = {7 /2,37 /2} (shown
as red solid lines) halted at a suboptimal objective

Gate T Pm % of searches g valueG ~ 0.0047, near which the “trapping” of these
QFT 9 0 285 9.87x107° searches is manifested by a very large changg(in
/2 86 4.77x107° (over ~ 4 orders of magnitude) that produces negli-
™ 156 9.91 x 1072 gible improvement in fidelity. These trajectories also
3m/2 4r3 471 x 107 exhibit a significant “flattening” ¢ ~ 0.1. The qual-
SWAP 10 0 433 9.95x 107" jiative difference between the trajectories correspond-
/2 22'4 2.14 x 1079 ing to the converged searches and those destined to be
3:/2 7.'2 g?; i 18,2 “trapped” due to unreachability of their target trans-

formations can be utilized to identify the latter ones at
an early stage of the D-MORPH optimization. We did
Further insight into the difference between searchedl0t observe any search whose trajectory would indicate
that approach transformations corresponding,to= that it was gttracted to an unreachable transformatlon
{0, 7} andg,, = {r/2,37/2} can be gained by exam- (corresponding t@,,, = /2 or 37 /2) en routeto fi-
ining the path length differenc&(s*) — A(s). From nally converging to a reachable one (corresponding to
500 D-MORPH runs listed in Tabld for the gate @m = 00rm).
Worr2 andT = 9, we selected 20 typical searches: We also verified that for sufficiently lardg values
five for each value of,,. In Fig. 7, A(s*) — A(s)is  (i.e.,T > 9.86 for the QFT gate an@ > 11.84 for the
plotted as a function af for these 20 searches. The op- SWAP gate)all searches attaingtl < 10~3. These re-
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sults demonstrate that the critical times corresponding . oNOT
to all values of the target gate’s global phase have to » QFT
be accounted for in order to ensure that all relevant tar- RS
get transformations are reachable at the selected cong 10¢ v rgndﬂm 1
trol time. From a practical point of view, due to the 'S ¢ ldently
extremely high search effort in the vicinity of the crit- 5
ical time, it is preferable to use A value that safely g
exceeds all™(¢,). E ]
C. Dependence of critical time on inter-qubit coupling s, .

strength A B ¥ s

L L L L ° hd
) ) ) 01 0.1 1 10 100 1000
For two- and multi-qubit gates, the implementa- J (arb. units)

tion speed is limited, in most practical situations, by

strengths of inter-qubit interactions. To explore the re-FIG. 9. (Color online) Critical times™ identified using
lationship between the critical timé&* and the cou- the PFT method are plotted versus the inter-qubit coupling
pling strength = J(:2) for a given target gatéV, strength/. Points corresponding to different two-qubit target
the PFT procedure was performed with various valuegates are denoted by distinct symbol shapes and colors. Re-
of .J for an otherwise fixed two-qubit Hamiltonian. The 9gression lines obtained from the least squares fit have slope
resulting distance-time Pareto fronts for systems within the range from-0.980 to —1.015 and are shown over the
0.2 < J < 3.2andW = Wqpr.» are shown in Fig8 ranges ofJ values for which the power-law relation holds.

As J varies, the front’s shape remains approximatel The scalingl™ oc 1/J breaks down whew 2, 0.2 for

' P PPrO Yihe identity transformation/ > 10 for the CNOT gate, and
the same (on the log—log plot), but the entire curve ; ~ 54 tor the other gates.
is shifted on thel" axis. In Fig.8, the coupling con- ~
stant is doubled for each successive Pareto front from
J = 0.2 (the rightmost curve) to/ = 3.2 (the left-  opq0m transformatiof,,q € SU(NN) produced by
most curve), and the equal spacing between the front§V 4 = ¢4, whereA is a random, traceless Hermi-
on the logarithmic-scale abscissa suggestskhdias a ”‘ ’ '

law d q ohwith i ; tian matrix. For each of these target gates, the power-
powerlaw dependence ohwith a negative exponent. 5, exponent was evaluated as the slope of the corre-

sponding regression line on the log—log plot of Fg.

2 .
10 ‘ J=02 These slopes range from0.980 to —1.015, in excel-
103 o4 lent agreement with the scaliig® o« 1/J. As the re-

J=08 ' gression lines for various choices bf have different
104k 16 | intercepts on the ordinate, the prefactor in the relation-

Q ' shipT = ¢/J is a function of the gatec = ¢(W).
I f ] The value of the prefactar for the identity transfor-

mation is much smaller than for any other gate, while
106 ¢ | the largest value af (among the gates considered here)
is found for the random transformation.
107 ¢ 4 In previous studies of TOQ[ 3, 9, 10, 33, 34], the
scalingT™* « 1/J has been assumed to hold for var-
1078 " s m 50 3  Ious two- and multi-qubit gates. However, an explicit

T (arb. units) numerical validation of this property has not been pre-
viously demonstrated over large ranges.Joalues.
FIG. 8. (Color online) Distance-time Pareto fronts for se- Figure 9 shows that this scaling breaks down when

lected values of the inter-qubit coupling strengthThe tar- J 2 0.01w; for the identity transformation] 2 0.5w;

get gate iSVqrr.». Each Pareto front is shown by a differ- for the CNOT gate, and 2 w, for the other gates (re-

ent symbol shape and color, with thevalue indicated to the ~ Call thatw; = 20 is the smaller transition frequency of

right of the corresponding curve. The equal spacing betweeithe two qubits). The breakdown of thé.J scaling for

the fronts on the logarithmic-scale abscissa indicatespo non-identity gates happens when inter-qubit and intra-

law dependence &f”* on J. qubit dynamics can occur on roughly the same time

scale, i.e., when the rate of the quantum information

Figure9 confirms thatl'™* scales ad/J for a sig- exchange between qubits stops being the “bottleneck”

nificant range of coupling strength values and variougfor the speed of the gate implementation.

target gates. Specifically, we considered QFT, QFT  Distance-time Pareto fronts for strong inter-qubit

CNOT, SWAP, the identity transformatiafy, and a couplings (/' > wi) exhibit a distinct structure as
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x direction. The obtained values @f* suggest that a
target transformation would become unreachable when
the control time is too short to perform a phase flip
(a7 rotation around the axis) of the qubit with the
smaller transition frequency. A similar situation where
the critical time is set by the minimum transition fre-
quency was also encountered in state con@€l [That
work [69] also reported an analytical form of the Pareto
front, for a variety of controlled quantum systems. The
distinct Pareto front shapes shown on Fif.indicate
that such a universal analytical form likely does not ex-

(a) 107

ZQ 107t

5 . . .
10 37 075 08 085 09 095 ™05 ist for control of unitary transformations.
T/T*
(b) 107 ‘
IV. CRITICAL TIMES FOR CONTROL OF THREE-
1073} ] AND FOUR-QUBIT GATES
1074 : : . .
ZQ In thls section, we explore TOC of unitary trans-
1078 ] formations in three- and four-qubit systems, with the
primary goal of identifying critical time values as the
107°} ] number of qubits increases. In particular, we investi-
107 | gate whether the scaliff* ~ 1/.J that was demon-

strated for a range of values in the two-qubit case
-8 ‘ ‘ also holds for multi-qubit gates. In all simulations
1008 0.9 K T2 o - :
: : /T : : reported in this section, we consider the target gate
Warr » [EQ. 30)]. In most simulations, the inter-

_ . . qubit coupling strengths in Eql8) are selected equal,
FIG. 10. (Color online) Distance-time Pareto fronts for the ie., gk = J, Vk, j. However, several cases of un-

target gatesVenor, Warr,2, andWswap (denoted by red o451 couplings are considered as well for three-qubit
circles, blue diamonds, and green squares, respectiviig).

normalized distancé is plotted versus the reduced time Sys.temsl Wl(t,r]jt)he focus on tv.volphysmally realistic sce-
T/T*. (a) The fronts for] — 0.8, whereD < 10~ is attain- narios: HJ ! valu_es are S|m|Iar_but not equal (e.g_._,
able for all values of” > 7. (b) The fronts forJ = 400, spins on a lattice or in a polyatomic molecule) and (ii)

where the QFT and SWAP transformations are unreachable/"? = J&3) s g3) (e.g., a linear Spi” chain).
in a range of time values faf > T*. The choices of unequd(*7) values along with the av-

erage coupling strength= [J(1:2) 47 (1.3) 4 j(2:3)] /3
are displayed in TablHl .

compared to those for smallef values. In Fig.10,

we compare the Pareto fronts for (a) weak coupling: v

J = 0.8 = 0.04w;, and (b) strong couplingJ = TABLE llI. Values of inter-qubit coupling strengthg*-?)
400 = 20w, obtained for three target gates (CNOT, employed in_ simulatiogs_ with three-qubit systems. The_ av-
QFT, and SWAP). To facilitate the comparison, the €7ad€ coupling strengli is also shown. The corresponding
distanceD is plotted versus the reduced tirde/T*. T values are plotted versusin Fig. 11

When coupling is weak, the fronts for different target (.2 J13) J23) 7
gates have similar, but distinct shapes. When coupling™ 2.0 1.2 1.6 1.600
is strong, the fronts for the QFT and SWAP gates ex- 1.2 0.4 0.8 0.800
hibit non-monotonic behavior, as the target transforma- 2.0 0.4 2.0 1.467
tion is unreachable in a range of control times larger 2.0 0.0 2.0 1.333
than7*. Such behavior was also observed in other 4-0 0.4 4.0 2.800
4.0 0.0 4.0 2.667

multiobjective optimization studie$Y, 68].

According to the data presented in Fig. in the 2?)'8 8'8 2%‘% 1%%%%
strong coupling limit § >> w;), the critical times™ 40.0 0.0 40.0 26.667
saturate at values on the ordermfw; ~ 0.157. A 80.0 0.0 80.0 53.333

possible explanation for this effect is that, in the con-
sidered model systems [c.f., Eq48| and @0)], one-
qubit rotations around the axis (or, in fact, any arbi- Critical times 7™ obtained from PFT trajectories
trary axis) cannot be accomplished in arbitrarily shortare plotted in Figl1 versus the coupling strength
time because the control fields are polarized only in thefor equal couplings) or versus the average coupling
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2 qubit termined by the minimum time required to accomplish
ggﬁg:: 52:2{;' ; one-qubit rotations.

4 qubit When the system size increases, the difference be-
tween nearby allowed values of the global phase de-
3 1 creases agb,, — ¢m+1| = 27/N, and the normalized

o

=

c . . .

= distance between the corresponding transformations
o

—

T

*x

4deoo0on

decreases a®[W (¢,,), W(pm+1)] = sin’(x/N).
Therefore, when the phase-dependent distaRcis
~ ' 1 employed as the control objective for three- and four-
- qubit systems, a small fraction of randomly initialized
. . searches may converge to transformations that differ
LI from the target one by a global phase. Indeed, we en-
0.1 : 10 100 1000 countered such a situation in our simulations, when a
J (arb. units) small number of D-MORPH searches aimed at reach-
ing the target gatélgpr 3 or Wqpr 4 cOnverged in-
FIG. 11. Critical imes/™ plotted versus the inter-qubit cou- stead to gates™/4Wqpr 3 or e/ S Wt 4, re-
pling strengthJ, for n-qubits systemsr{ = 2,3,4). Dif-  spectively. As discussed in Sdt.B, when such con-
ferent system sizes are denoted by distinct symbol shapegergences to gates with nearby valuesydiappen, a
and colors. The target gate Wqr1 . Regression lines sufficiently large control im& > max{T*(¢,,)} is
ot?talned from the least squares fit are shown for Sysmm?equired to ensure that all transformatidfig ., ) are
with equal couplings, and their slopes range fro.99 10 o5 naple |If this condition dfi is not satisfied, at least
—1.015. The scalingl™* « 1/.J breaks down whed > 20. . - .
For three-qubit systems with unequal couplin@s, values Some .Iocal searches will be unable to attaqn a des!red
are plotted versus the average coupling strengimagenta  OPjective value due to the character of the distance-time
diamonds), and these points fit very well with those obtainedPareto front below the critical time. Such a situation
for equal couplings (blue circles). where a small fraction of optimization runs employ-
ing the BFGS method were seemingly “trapped” was
reported in Ref. %8| for a three-qubit spin-chain sys-
strength.J (for unequal couplings). For two-, three-, tem and the QFT target gate. This effect is fully ex-
and four_qubit SystemS, the dependencéogfj"* on plained by the fact that the Optimizations 58_[ used
log J, in the range of coupling strengths < wy, is  theT value such thal™ (¢,,) < T < T"(¢m) [70),
evaluated using the least squares fit. The slopes of thUs making transformations corresponding to some
resulting regression lines on the log—log plot of ig.  Phase values unreachable. We reproduced the results
are—1.015+0.002forn = 2, —1.00+0.02forn = 3,  Of Ref. [58 and verified that this spurious “trapping”
and—0.99 & 0.07 for n = 4. Thus, in the range of IS completely eliminated when the control tinfieis
validity, these numerical data agree with the scalingmade sufficiently large.
T* « 1/J very well for eachn. Also, theT™ values
for three-qubit systems with unequal couplings follow
(for J < w;) the same scaling with respect fo(i.e., V.. CONCLUSIONS
T* « 1/.J), and, overall, these points fit very well with
those obtained for equal couplings. Thus, critical times  This work examined TOC of quantum unitary trans-
for systems with arbitrary (%) values may be reason- formations through the exploration of the Pareto front
ably well estimated from equal-coupling results with that quantifies the trade-off between the goals of min-
J=J. imizing the distance to the target gate and the control
The data obtained for both two- and three-qubit systime. The PFT algorithm was introduced to (1) identify
tems demonstrate that the scalifig o 1/J breaks the critical timeT™* below which the target transfor-
down for.J 2 w; = 20. As J increases beyond;, mation is not reachable and (2) move along the Pareto
the 7™ values for two- and three-qubit systems grad-front to find families of optimal control fields that min-
ually converge and trend towardsw; ~ 0.157. As  imize the distance (or, equivalently, maximize the fi-
noted in SecllIC above, this value coincides with delity) at various values &f. Our results suggest that a
the minimum time required to perform a phase flip of distinct Pareto front exists for each selection of the con-
the qubit with transition frequenay;. At J = 400  trol system and the target gate. A practically relevant
(the strongest coupling that we considered), this criticafeature observed for many gates is the strong depen-
time value is already reached for= 2 (T* ~ 0.157)  dence of the critical time on the global phase of the tar-
and is very closely approached far = 3 (T* ~  get transformation. We also examined the dependence
0.162). The saturation of * at nearly the same value of 7 on the inter-qubit coupling strength and con-
for both two- and three-qubit systems further suggestsirmed the universal scaling* o 1/.J (or, T* o 1/.J
that, in the strong coupling limit, the critical time is de- for unequal couplings), consistent with expectations in
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the literature 2, 3, 9, 10, 33, 34]. However, we found tified in this work has important implications for exper-
that, while this scaling holds for a wide range.b¥al-  imental implementation of high-fidelity quantum gates
ues, it breaks down whe#t 2> w;, wherew; is the in shorttimes. Taking into account the very steep slope
smallest of the qubit transition frequencies in the sys-of the Pareto frontaf’ < 7™* and realistic experimental
tem. Thus the critical time cannot be made arbitrarilyuncertainties in the gate control time, operating dt a
small by increasing the coupling strength, and the ulti-value that safely exceeds the critical times correspond-
mate limit on theT™ value is set by the smallest tran- ing to all allowed values of the target gate’s global
sition frequencyw; which, for the considered model phase is desirable to avoid a significant loss of fidelity.
systems, is the minimum speed of one-qubit rotations.Furthermore, values df very close to7™* should be
One of the goals of this work was to relate the ob-avoided in order to keep the optimization search effort
tained TOC results to properties of the optimal quan-at a reasonable level.
tum control landscape. In particular, we observed In summary, this work extensively investigated the
that, for a given quantum system and a target transforeffects of limiting the time as a resource for optimal
mation, different randomly initialized PFT trajectories control of quantum unitary transformations. While our
produce essentially the same Pareto front. This resultudy employed a particular physical model, the above
suggests that (1) as long@&s> T, the favorable land- results are expected to be qualitatively applicable to
scape topology characteristic for unconstrained contropther coupled-spin systems. In addition to the goal
fields remains intact, and (2) f@t < 7, the limitation ~ of generating target unitary transformations, the meth-
on the control time significantly affects the value of the 0ds presented here can be applied to other objectives in
landscape’s global optimum (so that unit fidelity/zero quantum control, including state preparation and opti-
distance is no longer attainable), but does not lead ténization of observable expectation values.
landscape fragmentation and formation of local traps ACKNOWLEDGMENTS
(provided that we distinguish between landscapes for
target transformations that differ by the global phase). This work was supported by the Laboratory Di-
We also found that the optimization search effort risesrected Research and Development program at Sandia
superexponentially &5 decreases and approachies  National Laboratories. Sandia National Laboratories
with corresponding changes observed in metrics quaris a multi-program laboratory managed and operated
tifying the local structure of the control landscape. In by Sandia Corporation, a wholly owned subsidiary of
particular, “flattening” of the landscape near the opti-|_ockheed Martin Corporation, for the U.S. Department
mum correlates remarkably well with the search effortof Energy’s National Nuclear Security Administration
growth as the control time decreases. under contract DE-AC04-94AL85000. H.R. also ac-
The structure of the distance-time Pareto fronts idenknowledges support from IARPA and the ARO.
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