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Generating a unitary transformation in the shortest possible time is of practical importance to quantum in-
formation processing because it helps to reduce decoherence effects and improve robustness to additive control
field noise. Many analytical and numerical studies have identified the minimum time necessary to implement a
variety of quantum gates on coupled-spin qubit systems. This work focuses on exploring the Pareto front that
quantifies the trade-off between the competitive objectives of maximizing the gate fidelityF and minimizing the
control timeT . In order to identify the critical timeT ∗, below which the target transformation is not reachable,
as well as to determine the associated Pareto front, we introduce a numerical method of Pareto front tracking
(PFT). We consider closed two- and multi-qubit systems withconstant inter-qubit coupling strengths and each
individual qubit controlled by a separate time-dependent external field. Our analysis demonstrates that unit
fidelity (to a desired numerical accuracy) can be achieved atanyT ≥ T ∗ in most cases. However, the optimiza-
tion search effort rises superexponentially asT decreases and approachesT ∗. Furthermore, a small decrease
in control time incurs a significant penalty in fidelity forT < T ∗, indicating that it is generally undesirable to
operate below the critical time. We investigate the dependence of the critical timeT ∗ on the coupling strength
between qubits and the target gate transformation. Practical consequences of these findings for laboratory im-
plementation of quantum gates are discussed.

I. INTRODUCTION

The goal of controlling the dynamics of a quantum
system in order to generate a target unitary transforma-
tion is both of fundamental interest and directly appli-
cable to implementation of logic operations in quan-
tum information processing [1]. Two strategies are
commonly employed to design control fields that en-
act the desired evolution: (i) geometric techniques for
analytically constructing control pulse sequences [2–
4] and (ii) numerical methods employing optimal con-
trol theory (OCT) [5–8]. The effectiveness of the OCT
approach has been demonstrated both for the ideal-
ized case of closed quantum systems undergoing uni-
tary evolution and for open quantum systems whose
dynamics are affected by coupling to the environment
[5, 6]. Control fields producing quantum unitary trans-
formations with a high fidelity have been successfully
identified using OCT for a variety of models involving
coupled-spin systems [9–17], molecular systems [18–
20], and other physical realizations [21–28].

An important physical parameter for quantum com-
putation is the control timeT required to generate a
target quantum gate. In general, decreasing the con-
trol duration helps to reduce the effect of decoher-
ence resulting from the interaction of a quantum sys-
tem with the environment [1]. Also, the gate error due
to additive white noise in the control fields grows lin-
early with T [29], which means that shorter control
times will enhance the robustness to this type of noise.
Due to these considerations, the problem of identify-

ing control fields that enact a target quantum gate to
a specified fidelity in the minimum time, called time-
optimal control (TOC) [2], is important for practical
quantum information processing. The minimum time
required to implement a multi-qubit gate is also re-
lated to the gate’s complexity expressed as the num-
ber of one- and two-qubit gates necessary to construct
the target unitary transformation [30]. TOC was orig-
inally formulated as a geometric problem of identi-
fying the geodesic between two elements of the uni-
tary groupU(N) and solved using Lie group meth-
ods and Pontryagin’s minimum principle [2]. This
analytical technique has been applied to identify con-
trol pulse sequences and associated values of the min-
imum timeT ∗ for generating quantum gates in two-
and three-qubit NMR and other coupled-spin systems
[2–4, 31, 32]. An alternative approach is to solve varia-
tional equations for the optimal time-dependent Hamil-
tonianH(t) under the constraint of finite energy using
the quantum brachistochrone method [33, 34], which
can provide improvedT ∗ values for some systems
[34]. Other OCT-based algorithms utilize additional
cost terms to penalize the control duration [35, 36]. In
addition, several numerical studies have identifiedT ∗

values approaching or even improving upon analytical
results when employing OCT to design optimal fields
[9, 10, 37].

In this work, we incorporate the goal of TOC by con-
sidering a more general problem of quantum Pareto op-
timization [38] for the objectives of maximizing the
gate fidelityF and minimizing the control timeT .
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These two objectives compete with each other when
T < T ∗, with the relationship between the best si-
multaneously achievable values ofF and T consti-
tuting the Pareto front. Previously, Pareto optimiza-
tion has been explored both theoretically and experi-
mentally for the goal of discriminating between simi-
lar quantum systems [39, 40], as well as theoretically
for maintaining persistent field-free control [41]. For
TOC, some numerical simulations have sought the best
fidelity value attainable at a givenT [10, 37], but with-
out explicitly investigating the Pareto front, especially
in regions of high fidelity that are important for quan-
tum information processing. We explore these Pareto
fronts with the goal of identifying the relationship be-
tween the simultaneously achievableF andT values,
as well as their dependence on the target unitary trans-
formation and inter-qubit coupling strength. In order
to numerically implement this analysis, we introduce
the Pareto front tracking (PFT) algorithm, which se-
quentially (a) makes a small variation in one objective
(here, decreases the control timeT ) and (b) searches
for a control field that optimizes the second objective
(here, maximizes the gate fidelityF ). Unlike the pro-
cedures described in Refs. [38, 39], the PFT method
does not simultaneously optimize both control objec-
tives, and thus may be less computationally expensive,
especially when the value of one objective (here,T ) is
easily varied, but not easily optimized using OCT. The
PFT algorithm is applicable to any such pair of objec-
tives, for example, control field fluence and fidelity. In
this work, we consider only the objectives of minimiz-
ing T and maximizingF .

In addition to exploring the region of the Pareto front
corresponding toT < T ∗ (where the maximum attain-
able fidelity is limited to values below1), it is also
of interest to understand how the optimization search
effort (quantified as the number of algorithmic itera-
tions needed to reach the optimum to a desired numeri-
cal accuracy) is affected when approaching the critical
valueT ∗ from T > T ∗. For the objective of generat-
ing unitary transformations, the search effort was found
to exhibit large variations with respect to the Hamilto-
nian structure [42]. In this work, we observe that the
search effort to find optimal control solutions grows
very rapidly asT decreases towardsT ∗, even though a
fidelity value arbitrarily close to the maximumF = 1
is, in principle, attainable at anyT ≥ T ∗. To facilitate
the understanding of this behavior, we consider proper-
ties of the optimal control landscape, which is defined
by the functional dependence of the physical objec-
tive (here, the gate fidelityF ) on the applied controls
[5, 6, 43–46]. For controllable quantum systems [47]
with unconstrained control resources, the set of regu-
lar critical points on the unitary-transformation control
landscape contains no local optima [46, 48, 49]. This
property of the landscape topology is directly relevant
to the optimization behavior, since local optima may

act as “traps” for a gradient-based search. The lack
of traps on the control landscape has been verified with
carefully conducted numerical simulations that ensured
that no significant constraints were placed on the con-
trol fields [42]. Since the goal of TOC inherently in-
volves limiting an important control resource (specifi-
cally, the control timeT ), it is possible that the favor-
able landscape topology may break down as the critical
time T ∗ is approached (fortunately, as we will show,
this possibility does not materialize). Furthermore, it is
of interest to explore how the local structure of the con-
trol landscape changes nearT ∗ and how this change is
related to the rise of the search effort in this region. The
PFT method introduced in this work is well-suited for
exploring the landscape regions in the vicinity of the
maximum fidelity while approachingT ∗ fromT > T ∗.
In order to quantify how the local landscape structure
changes upon approachingT ∗, we employ metrics sim-
ilar to those developed in Refs. [42, 50, 51] and demon-
strate their correlation with the search effort.

The remainder of this paper is organized as follows.
SectionII presents the background and motivation for
the current study, including the formulation of the opti-
mal control problem, the optimization algorithm, met-
rics on the control landscape, model physical systems,
the relationship between robustness to additive white
control noise and control time, and the method for
tracking the Pareto front. In Sec.III , we explore the
fidelity-time Pareto fronts and the effect of control-
time reduction on the search effort for two-qubit gates.
The study is extended to three- and four-qubit gates in
Sec.IV. Finally, Sec.V presents concluding remarks.

II. BACKGROUND AND MOTIVATION

A. Formulation of the control objective

We consider anN -level closed quantum system
whose evolution is governed by the time-dependent
Schrödinger equation (in units where~ = 1):

i
∂U(t, 0)

∂t
= H({εk(t)})U(t, 0), U(0, 0) ≡ 11,

(1)
where H({εk(t)}) is the Hamiltonian,{εk(t)} are
time-dependent external control fields,U(t, 0) is the
unitary propagator (time-evolution operator) from time
t = 0 to t, and11 is the identity operator. We will use
the shorthand notationU(t) ≡ U(t, 0) for simplicity,
where applicable. The propagator at some final timeT
is denoted asUT ≡ U(T ) and is a functional of the
control fields:UT = UT ({εk(t)}). We assume linear
(dipole-type) coupling to the control fields:

H({εk(t)}) = H0 +
∑

k

εk(t)H
(k)
c , (2)
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whereH0 is the field-free Hamiltonian and{H(k)
c }

are the control-Hamiltonian operators. The quantum
system is assumed to be evolution-operator control-
lable, which means that any desiredUT ∈ U(N) [or,
UT ∈ SU(N) for a traceless Hamiltonian] can be gen-
erated through the Schrödinger evolution (1) by some
choice of control fields{εk(t)} at a sufficiently large
time T [6, 8, 47]. The necessary and sufficient con-
dition for evolution-operator controllability is that the
operators{H0, H

(k)
c } generate the Lie algebrau(N)

[su(N) for a traceless Hamiltonian] [47].
In circuit-model quantum computing, the goal is to

generate specified unitary transformations that imple-
ment desired logic operations on a system of qubits.
The corresponding control objective is to guide the sys-
tem’s final-time propagatorUT to match a specified
unitary transformationW . A convenient mathemati-
cal formulation of this objective is to minimize the dis-
tance betweenUT andW :

D(UT ) = ‖W−UT ‖2HS = 2N−2ReTr(W †UT ), (3)

where‖X‖2HS ≡ Tr(X†X) is the squared Hilbert-
Schmidt norm. The desired minimumD = 0 is
achieved whenUT = W , and the maximumD = 4N
corresponds toUT = −W . It is often convenient to
use the normalized distancẽD:

D̃(UT ) =
1

4N
D =

1

2
− 1

2N
ReTr(W †UT ), (4)

so thatD̃ takes values in the interval[0, 1]. A com-
monly employed gate fidelityF is related to the dis-
tance as

F(UT ) = 1− D̃ =
1

2
+

1

2N
ReTr(W †UT ). (5)

The minimum distance (D = D̃ = 0) at UT = W
corresponds to the maximum fidelityF = 1. The
functional dependence of the objective on the control
fields, i.e.,D = D({εk(t)}) or, equivalently,F =
F({εk(t)}) determines the optimal control landscape.

OCT is often formulated by applying the variational
principle to an objective functional, such asF (or,
equivalently,D), along with Lagrange multipliers to
ensure satisfaction of the Schrödinger equation (1) as
well as to impose a constraint on the control field flu-
ence [6, 18, 42]. An alternative approach [49, 51, 52]
is to consider small responses in the propagatorU(t)
due to changes in the control fieldsδεk, subject to the
Schrödinger equation:

i
∂

∂t
δU(t, 0) = H(t)δU(t, 0) + δH(t)U(t, 0), (6)

with the initial conditionδU(0, 0) = 0. Equation (6)
can be integrated [49, 52] to give

δU(t, 0) = −i

∫ t

0

dt′ U(t, t′)δH(t′)U(t′, 0). (7)

For the Hamiltonian of Eq. (2), the variation is given
by δH(t) =

∑

k H
(k)
c δεk(t); by using this result in

Eq. (7), one obtains [49] the variation of the propagator
UT with respect to the controlεk(t):

δUT

δεk(t)
= −iUTH

(k)
c (t), (8)

whereH(k)
c (t) = U †(t)H

(k)
c U(t). Combining Eqs. (3)

and (8), we obtain the desired functional derivative of
the distanceD(UT ) with respect toεk(t):

δD
δεk(t)

= −2ReTr

[

W † δUT

δεk(t)

]

= −2ImTr
[

W †UTH
(k)
c (t)

]

. (9)

The critical points of the control landscape (also
referred to as extremal solutions) are control fields
{εk(t)} that satisfy

δD
δεk(t)

= 0, ∀k and ∀t ∈ [0, T ]. (10)

Quantum control landscape theory has shown [6, 46]
that when (a) the system is controllable, (b) no signif-
icant constraints are placed on the control fields, and
(c) the Jacobian in Eq. (8) is full-rank, dynamiccriti-
cal points satisfying Eq. (10) occur only atkinematic
critical points that satisfy∇D(UT ) = 0. The val-
ues of the distanceD at the critical points areD =
0, 4, 8, . . . , 4N [48, 49]. The optimality of a critical
point can be determined by inspecting eigenvalues of
the Hessian matrixH(t, t′) = δ2D/δε(t)δε(t′) [53].
Thus, the valuesD = 0 andD = 4N correspond to the
global minimum (the Hessian is positive semidefinite)
and global maximum (the Hessian is negative semidef-
inite), respectively. Moreover, it has been shown
through analysis [48, 49] and numerical simulations
[42] that, under the conditions (a)–(c) above, all the
intermediate critical points (i.e.,D = 4, . . . , 4N − 4)
have a saddle-point topology (the Hessian has positive,
negative, and zero eigenvalues), meaning that no local
maxima or minima exist on the landscape. However,
when control resources are severely constrained (e.g.,
by limiting the control timeT as considered here), the
trap-free landscape topology is no longer guaranteed.

Values of the distances and fidelity of Eqs. (3), (4),
and (5) depend on the global phase of the transforma-
tionUT . Since this global phase is physically irrelevant
for a given quantum gate, a phase-independent version
of the distance (or fidelity) is often employed instead
[49]. In particular, a normalized phase-independent
distance can be defined as [54]

G(UT ) =
1

2N
min
φ

D(eiφUT ). (11)
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The minimization over the global phaseφ in Eq. (11)
can be easily carried out to obtain:

G(UT ) = 1− 1

N

∣
∣Tr(W †UT )

∣
∣ . (12)

Correspondingly, the minimum valueG = 0 is attained
whenUT = eiφW for any phaseφ. Note that for a
traceless Hamiltonian, when bothW andUT must be
in SU(N ), the phaseφ can take only discrete values
corresponding to solutions of the equationeiNφ = 1.
The topology of the control landscape for the distance
G of Eq. (12) is very similar to that for the distance
D of Eq. (3), and an analytical formula for the func-
tional derivativeδG/δεk(t) can be obtained analogous
to Eq. (9) [49]. Optimization of the phase-independent
distanceG will be considered in Sec.III B , where we
study how searches with different initial control fields
converge to optimal solutions corresponding to differ-
ent values of the global phase. Optimization of the
phase-dependent distancẽD is considered in the re-
mainder of this paper (of course, minimizing the dis-
tanceD̃ is equivalent to maximizing the fidelityF ).

B. Optimization procedure for control of unitary
transformations

A variety of deterministic first-order algorithms, in-
cluding the Krotov method [18, 37, 55], GRAPE al-
gorithm [9, 10], and D-MORPH (diffeomorphic mod-
ulation under observable-response-preserving homo-
topy) [42, 56] have been employed for optimization in
control of quantum unitary transformations. A recent
work [42] demonstrated that these algorithms share a
common fixed point topology and common bounds on
their convergence rates. Also, methods for compari-
son and benchmarking of various quantum control al-
gorithms were presented in Ref. [57]. Second-order
algorithms such as the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) quasi-Newton method [57, 58] and the
Newton–Raphson method [59] were also utilized re-
cently in quantum optimal control. In this work, we
employ the D-MORPH method.

In D-MORPH, a variables (referred to as the al-
gorithmic index) is introduced to label the progres-
sion of the optimization, rendering the control fields:
{εk(t)} → {εk(s, t)}. The objective valueD depends
on s through its functional dependence on the set of
control fields, i.e.,D(s) = D({εk(s, t)}). Thus, the
change in the objective value corresponding to a differ-
ential changeds is given bydD = (∂D/∂s)ds, where

∂D
∂s

=

∫ T

0

dt
∑

k

δD
δεk(s, t)

∂εk(s, t)

∂s
. (13)

As the goal is to minimizeD, we require that∂D/∂s ≤
0, which is guaranteed when each controlεk(s, t) sat-

isfies the differential equation

∂εk(s, t)

∂s
= − δD

δεk(s, t)
. (14)

The functional derivative on the right-hand side of
Eq. (14) can be evaluated using Eq. (9). In numerical
simulations, we determine control fields at each itera-
tion by solving Eq. (14) using a fourth-order Runge-
Kutta integrator with a variable step size incorporated
into MATLAB (routine ode45) [60]. The initial set
of fields {εk(0, t)} is selected randomly for each op-
timization run, as described in Sec.II D below. In
the simulations, we evaluate the normalized distanceD̃
and specify the convergence threshold for the optimiza-
tion. Specifically, the D-MORPH procedure described
above is performed until either (a) the desired conver-
gence criterionD̃ ≤ 10−8 is reached or (b) the im-
provement of the distance value satisfies|D̃(s+ ds)−
D̃(s)| ≤ 10−6D̃(s), indicating that an extremal value
of D̃ has been reached. Sufficient algorithmic itera-
tions are allowed to prevent premature termination be-
fore reaching an extremal value ofD̃.

C. Metrics of landscape structure

The issue of the search effort growth asT → T ∗

is important because the computational cost of iden-
tifying optimal control fields near or at the critical
time may become prohibitively high, particularly as the
number of controlled qubits increases. We are also in-
terested in exploring the relationship between the num-
ber of D-MORPH algorithmic iterations needed to con-
verge to an optimal solution and metrics that quantify
local properties of the control landscape. One such
metric is thepath lengthof the search trajectory for a
D-MORPH optimization. The search starts out from an
initial set of control fields{εk(0, t)} at the algorithmic
index values = 0 and progresses in stepss → s + ds
until the trajectory ends at a set of optimal control fields
{ε⋆k} = {εk(s⋆, t)} with s = s⋆. The path lengthΛ(s)
of the search trajectory froms = 0 to s is defined as

Λ(s) =

∫ s

0

ds′

{

1

T

∑

k

∫ T

0

dt

[
∂εk(s

′, t)

∂s′

]2
}1/2

.

(15)
The total path length traveled along the search tra-
jectory to reach the optimum isΛ⋆ = Λ(s⋆). In
the absence of local traps, a D-MORPH search mono-
tonically converges towards the optimum, resulting in
a one-to-one mapping between the algorithmic index
values and the objective valuẽD for a given search tra-
jectory. Therefore, it is possible to cast the path length
as a function of the distance:Λ = Λ(D̃). The value
of Λ(D̃) quantifies how much the control fields have to
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change from the initial guess{εk(0, t)} to achieve the
objective valueD̃.

In Ref. [42], it was found that metrics of the local
landscape structure near the optimum can be useful for
predicting the search effort. In particular, one can em-
ploy theslope metricΣ(s), which is given by theL2-
norm of the landscape gradient∇εD evaluated at an
algorithmic index values:

Σ(s) = ‖∇εD(s)‖2 =

{
∑

k

∫ T

0

dt

[
δD

δεk(s, t)

]2
}1/2

.

(16)
During the D-MORPH optimization, the derivative of
thekth control field with respect tos and the landscape
gradient along this field are related by Eq. (14). Sub-
stituting Eq. (14) into Eq. (15) and using Eq. (16), we
obtain [61]:

Λ(s) =
1√
T

∫ s

0

ds′Σ(s′) ⇔ Σ(s) =
√
T
dΛ(s)

ds
.

(17)
This simple relationship shows that the slope metric
Σ(s) is proportional to the rate of change of the path
lengthΛ(s) along the D-MORPH search trajectory. As
was the case for optimization searches in Ref. [42], we
will show that the decrease of the slope metricΣ(s)
(i.e., the increase of the landscape “flatness”) at an
algorithmic iteration close to the landscape optimum
(e.g., forD̃ ≈ 10−6) correlates with the increase of the
search effort.

D. Model control systems

Various types of coupled-spin systems have been
considered in TOC studies, with many works using
models relevant to the liquid-state NMR, where spins
are coupled via an Ising-type interaction and coupling
strengths are much smaller than differences between
spin frequencies [3, 9, 10, 34]. Other models such as
anisotropic controllable inter-qubit couplings [33, 37]
have also been studied. In NMR models, control fields
typically address each spin separately with independent
x andy polarizations [9, 10].

In this work, we study TOC of generic coupled-spin
model systems motivated by implementations of quan-
tum computing in physical devices such as semicon-
ductor quantum dots [62]. In our model, each qubit has
a characteristic transition frequency and is controlled
by a separate field with only thex polarization; ex-
change interactions between qubits are of the Heisen-
berg type with fixed isotropic coupling strengths. All
system and control parameters are expressed in dimen-
sionless units.

Generally, we consider a system ofn qubits (the
Hilbert space dimension isN = 2n), with the model

Hamiltonian of the form (2). The field-free Hamilto-
nianH0 is given by

H0 =

n∑

k=1

ωkS
(k)
z +

n−1∑

k=1

n∑

j=k+1

J (k,j)
S
(k) ·S(j). (18)

Here, the operatorS(k)
a (a = x, y, z) denotes the ten-

sor product of the spin operator for thekth qubit with
identity operators for all other qubits:

S(k)
a = 112 ⊗ · · · ⊗ 112

︸ ︷︷ ︸

k−1

⊗ Sa ⊗ 112 ⊗ · · · ⊗ 112
︸ ︷︷ ︸

n−k

, (19)

where the spin operators areS = (Sx, Sy, Sz) =
1
2 (σx, σy, σz), in terms of the Pauli matrices, and112
is the2 × 2 identity matrix. Each qubit has a unique
transition frequencyωk (corresponding to the pres-
ence of a static magnetic field in thez direction in the
spin model), and isotropic coupling strengthsJ (k,j) be-
tween pairs of qubits are constant. In the simulations
reported here, we used model systems with up to four
qubits with frequenciesωk = 20, 24, 30, 40 and cou-
pling constantsJ (k,j) in the range from0.08 to 400.
This broad range of coupling strengths represents the
freedom inherent in considering coupled-spin systems
in contexts other than NMR, such as semiconductor
quantum dots, where interactions between qubits may
be tuned by application of electric fields [15, 62–64].

The control HamiltonianHc(t) corresponds to the
application of a separate time-dependent control field
polarized in thex direction to each individual qubit:

Hc(t) =
n∑

k=1

εk(t)H
(k)
c =

n∑

k=1

εk(t)S
(k)
x , (20)

whereεk(t) is the control field applied to thekth qubit
and the operatorS(k)

x is defined by Eq. (19). In the opti-
mization procedure, each control field is labeled by the
algorithmic indexs (see Sec.II B above). The fluence
of thekth field at the indexs is given by

fk(s) =

∫ T

0

dt ε2k(s, t). (21)

At the start of the optimization (s = 0), each field is
initialized in the parameterized form:

εk(0, t) = A(t)

M∑

i=1

sin (ηit+ ϕi) , (22)

t ∈ [0, T ]. Here,A(t) = A0 exp[−8π(t − T/2)2/T 2]
is the Gaussian envelope function, frequencies{ηi}
(corresponding toM spectral components of the field;
we usually useM = 10) are randomly selected from a
uniform distribution on[0,Ω] (with Ω being the largest
transition frequency inH0), {ϕi} are random phases
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on [0, 2π]. The normalization constantA0 is chosen so
that the fluencefk(0) of each initial field is equal to 1.

The parameterized form (22) is used only for ini-
tial control fields. At each step of the optimization
algorithm after the initialization (i.e., fors > 0), the
value of thekth control field at each point on the
time discretization mesh is allowed to vary freely and
independently. This flexible set of control ‘knobs’
{εk(s,∆t), εk(s, 2∆t), . . . , εk(s, T )} allows the flu-
ence of thekth field to vary freely whens > 0. The
time step∆t is chosen such that∆t < π/(2Ω), corre-
sponding to the Nyquist frequencyωN = π/∆t > 2Ω.
In agreement with the Nyquist–Shannon sampling the-
orem, this criterion was found to be sufficient to ensure
that the time discretization does not affect the reacha-
bility of the global optimum [42, 51].

E. Relationship between control time and robustness to
additive white control noise

An important motivation for finding the minimum
time necessary to enact a target unitary transforma-
tion is to improve the robustness of the gate operation
to noise in control fields. Specifically, additive white
noise (AWN) in optimal control fields induces gate er-
rors that are linearly proportional toT [29]; a brief out-
line of this analysis is provided here. In the presence
of additive noise, the actual control field is given by
ε(t)+ξ(t), whereξ(t) is a classical stochastic variable.
For white noise,ξ(t) has zero mean:E{ξ(t)} = 0, and
is delta-correlated:E{ξ(t)ξ(t′)} = σ2δ(t − t′). Here,
E{·} denotes the statistical expectation value over all
noise realizations andσ2 is the variance of the noise
amplitude distribution. For AWN in multiple con-
trol fields, in general, we should also consider cross-
correlations:E{ξk(t)ξj(t′)} = σ2βkjδ(t − t′), where
0 ≤ βkj ≤ 1 andβkk = 1 (if noise processes in differ-
ent control fields are independent, thenβkj = δkj ).

According to the analysis in Ref. [29], for weak
AWN in optimal control fields{ε⋆k(t)}, the statistical
expectation value of the normalized distanceD̃ is ap-
proximated (by expanding up to the second order in the
noise amplitude) as

E{D̃} ≈ 1

2
σ2

n∑

k,j=1

βkj

∫ T

0

dt H̃⋆
kj(t, t). (23)

Here,H̃⋆(t, t′) denotes the Hessian matrix of̃D eval-
uated at the optimum, and the diagonal elements (i.e.,
for t = t′) of its blocks are time-independent [29, 49]:

H̃
⋆
kj(t, t) =

δ2D̃
δεk(t)δεj(t)

∣
∣
∣
∣
∣
ε⋆

=
1

2N
Tr

[

H(k)
c H(j)

c

]

.

(24)

Substituting Eq. (24) into Eq. (23), one obtains an ex-
pression that reveals the linear dependence of the ex-
pected gate error onT :

E{D̃} ≈ 1

4N
σ2T

n∑

k,j=1

βkjTr
[

H(k)
c H(j)

c

]

. (25)

For the control Hamiltonian of Eq. (20) employed here,
Tr[H

(k)
c H

(j)
c ] = Tr[S

(k)
x S

(j)
x ] = (N/4)δkj . Using this

result (together withβkk = 1) in Eq. (25), we finally
obtain:

E{D̃} ≈ 1

16
σ2nT. (26)

Equation (26) shows that the error in the objective
value is expected to grow linearly both in the number
of qubitsn and control timeT . Thus, it is practically
important to minimizeT when AWN in control fields
is present.

F. PFT algorithm for quantifying the trade-off between
minimizations of distance and control time

The PFT algorithm introduced here is designed to
identify the Pareto front for the dual objectives of min-
imizing D̃ andT , as well as to explore the correspond-
ing domain of the optimal control landscape. We use
PFT to move along the Pareto front by identifying opti-
mal control solutions corresponding to different values
of T . Analogous to the algorithmic indexs describing
the progression of a D-MORPH search, we define the
indexing variablep to describe the progress of the PFT
algorithm. The PFT algorithm works as follows:

1. Select a starting value of the control time,T0 =
T (p = 0). Then run the D-MORPH optimiza-
tion (as described in Sec.II B), starting from
a set of randomly selected initial control fields
{εk(p = 0, s = 0, t)}, until it converges to a
set of optimal fields{εk(p = 0, s = s⋆, t)} that
minimizesD̃.

2. Reduce the value of the control timeT , so that
T (p+ 1) = T (p)−∆T , where∆T is an incre-
ment on the order of∆T . 0.01T .

3. Resample each of the optimal control fields in
the set{εk(p, s⋆, t)} on the updated time inter-
val [0, T (p + 1)]. Employ the resulting set of
fields as the initial guess{εk(p + 1, s = 0, t)}
for the next D-MORPH optimization that pro-
ceeds to identify the next set of optimal fields
{εk(p+ 1, s = s⋆, t)}.

Steps 2 and 3 are repeated until the D-MORPH opti-
mization can no longer attain the desired value ofD̃.
Specifically, we set the PFT “stop value” tõD = 10−2
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when the goal is to explore the “competitive” part of
the Pareto front, and tõD = 10−8 when the goal is
to only determine the critical timeT ∗. The process of
decreasingT in small increments coupled with the use
of optimal control fields as the initial guess for the D-
MORPH run in the next PFT iteration biases towards
identifying families of related control solutions along
the Pareto front. Therefore, running multiple PFT tra-
jectories beginning from different random initial con-
trol fields at various values ofT0 may be useful for
proper identification of the Pareto front.

III. EXPLORING THE PARETO FRONT FOR
CONTROL OF TWO-QUBIT GATES

In this section, we explore the Pareto front for
fidelity- and time-optimal control of unitary transfor-
mations in two-qubit systems. In Sec.III A , we study
in detail how the optimization search effort, landscape
metrics, and optimal control fields change along the
Pareto front for the controlled NOT (CNOT) target gate
and one representative set of system parameters. In
Secs.III B andIII C, we identify Pareto fronts and de-
termine critical times for a variety of target gates and
inter-qubit coupling strengths.

A. Optimization search effort and Pareto front
exploration for CNOT gate

As an illustrative case on which to conduct a de-
tailed examination of the search effort dependence on
the control time and properties of the distance-time
Pareto front, we consider the objective of performing
the CNOT gate in the two-qubit model system (n = 2)
with ω1 = 20, ω2 = 24, andJ (1,2) = 0.8. Since the
system Hamiltonian is traceless, the target transforma-
tionW is defined as the CNOT gate with a global phase
factor chosen so thatW is in SU(4):

WCNOT = e−iπ/4






1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




 . (27)

1. Search effort of D-MORPH optimizations and its
relationship to landscape metrics

For the selected target gate and control system, the
critical time valueT ∗ ≈ 4.12 was found by running
PFT trajectories (see Sec.III A 2 below for details).
In order to study how the control time affects the op-
timization search effort, D-MORPH trajectories were
obtained for 15 values ofT betweenT = 40 and

T = 4.12. For each value ofT , 10 D-MORPH opti-
mization runs beginning from different random initial
fields of unit fluence were performed. All optimiza-
tions reached the desired objective valueD̃ ≤ 10−8

and no trapping or slowdown of searches at a sub-
optimal distance value was observed (including runs
for T = T ∗). The search effort, however, increased
asT was made smaller, especially forT ≤ 6. This
behavior is shown in Fig.1(a) as a plot of the num-
ber of D-MORPH algorithmic iterations (averaged over
10 searches started from random initial fields) versus
T . In particular, forT ≤ 6, the search effort in-
creases superexponentially (note the logarithmic scale
of the left-side ordinate) and is well approximated as
exp(aT−b + c), wherea ≈ 2.1 × 107, b ≈ 11.0,
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FIG. 1. (Color online) The search effort and metrics of the
control landscape as functions of the control timeT for D-
MORPH optimizations performed at select fixed values ofT .
The target gate isWCNOT. (a) Search effort (black circles
with solid line, left-side ordinate) and slope metric (theL2-
norm of the landscape gradient)Σ(s) evaluated at thes value
corresponding tõD ≈ 10−6 (red triangles with dashed line,
right-side ordinate). (b) Total fluencef⋆ of optimal control
fields (black triangles with solid line, left-side ordinate) and
total path lengthΛ⋆ along the search trajectory (red circles
with dashed line, right-side ordinate). Circles and triangles
show average values and error bars denote the left and right
standard deviation over the sample of 10 D-MORPH searches
with randomly selected initial control fields performed for
each value ofT .
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andc ≈ 6.1. The corresponding decrease in the slope
metricΣ(s) evaluated at thes value corresponding to
D̃ ≈ 10−6 is also shown in Fig.1(a) (with values on the
right-side ordinate). The complementary trends for the
search effort and gradient norm indicate that the con-
trol landscape in regions near the optimum becomes
“flatter” asT decreases.

To examine how the distance between the initial
and optimal fields grows asT decreases towardsT ∗,
we consider the total fluence of optimal control fields,
f⋆ =

∑

k fk(s
⋆), and the total path lengthΛ⋆ = Λ(s⋆)

traveled along the search trajectory to reach the op-
timum. These quantities (averaged over 10 searches
started from random initial fields) are plotted versus
T in Fig. 1(b). Both f⋆ andΛ⋆ rise asT decreases,
and this rise significantly accelerates forT ≤ 8. Since
all D-MORPH searches began from unit-fluence fields,
the value off⋆ is an indicator of the distance between
the initial and optimal fields, which explains the sim-
ilarity in the trends off⋆ andΛ⋆. The behavior of
the fluence as a function of the control time can be
qualitatively explained by a simple example of a two-
level system driven by a resonant control field. The
rotation angle produced by the control Hamiltonian
on the Bloch sphere during timeT is ΩRT , where
ΩR is the Rabi frequency which is proportional to the
control-field amplitudeε0. If the goal is to generate
the same rotation asT changes, the optimal-field am-
plitude should scale asε⋆0 ∝ 1/T . Since the fluence
can be approximated asf ∼ 1

2ε
2
0T , the optimal-field

fluence scales asf⋆ ∝ 1/T . Of course, for a multi-
qubit system controlled by several external fields, the
dynamics is much more complicated (in fact, even for a
single qubit,1/T scaling is periodically modulated by
the effect of free evolution). Nevertheless, this simple
picture helps to explain qualitatively why the fluence
rises whenT decreases. The non-monotonicity off⋆

andΛ⋆ as functions ofT , seen in Fig.1(b), is explained
by the fact that, asT changes, free evolution takes the
system closer to or further away from the target, thus
modulating the amount of control-field energy required
to reach the optimum.

Further insight into the dependence of the control
landscape structure on the control time can be gained
by examining the path lengthΛ(s) accumulated as the
D-MORPH search progresses. The value ofΛ in-
creases monotonically along the search trajectory from
s = 0 to s = s⋆; correspondingly, the path length dif-
ferenceΛ(s⋆)− Λ(s) indicates the extent to which the
control field has reached its optimal form. Figure2
showsΛ(s⋆)−Λ(s) as a function of the objective value
D̃ for optimization trajectories with selected values of
T , with 10 trajectories corresponding to different ran-
dom initial fields shown for eachT . This plot illus-
trates the dependence of the search trajectory onT .
For all searches withT > T ∗, the path length differ-
ence follows a similar power law (which appears as a
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FIG. 2. (Color online) Path length differenceΛ(s⋆) − Λ(s)
along the optimization trajectory as a function of the objec-
tive D̃. As the optimization progresses, the path length dif-
ference decreases towards zero along withD̃. The target gate
is WCNOT. Each value of the control timeT is denoted by
line style and color in the legend. The order of trajectories
in the legend corresponds to that on the figure, with theT ∗

trajectories (green, solid line) at the top, andT increasing
from top to bottom. Different trajectories for the same value
of T correspond to 10 D-MORPH searches with randomly
selected initial control fields.

linear change on the log–log plot) over the range from
D̃ ∼ 10−3 to D̃ ∼ 10−7. In contrast, the searches with
T = T ∗ approach the final path lengthΛ(s⋆) much
more slowly untilD̃ becomes very close to the opti-
mum; there, the path length changes very quickly, as
Λ(s⋆) − Λ(s) drops by three orders of magnitude be-
tweenD̃ ≃ 2×10−8 andD̃ ≃ 10−8. This result shows
that atT ∗, large changes of the control field occur very
near the optimum.

2. PFT results

The PFT procedure described in Sec.II F was per-
formed for the purposes of (a) identifying the critical
timeT ∗ (determined numerically as the minimum con-
trol time at whichD̃ ≤ 10−8 can be achieved) and (b)
following the Pareto front to obtain the best attainable
D̃ value as a function ofT in the “competitive” region
of T < T ∗. A total of 10 PFT trajectories beginning
from random initial control fields at different values of
T0 (ranging fromT0 = 4.2 throughT0 = 6) were gen-
erated for the target gateWCNOT and the same two-
qubit system as used in the D-MORPH optimizations
in Sec.III A 1 above. Four of these trajectories were
run along the Pareto front by decreasingT until it was
impossible to attaiñD ≤ 10−2, while the remaining
trajectories were run only to values ofT ranging from
T = 3.8 to T = 4 due to computational expense.
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FIG. 3. (Color online) The normalized distancẽD plotted
versus the control timeT for 10 separate PFT trajectories de-
noted by shape and color. The target gate isWCNOT. The
PFT trajectories were started at different values ofT0 (given
in the legend) with different randomly selected initial con-
trol fields, but are very closely aligned, which suggests the
existence of a unique Pareto front.

All 10 trajectories, shown in Fig.3, are very closely
aligned for all values ofT , with the critical time value
estimated asT ∗ = 4.12 ± 0.01 (i.e., the dispersion of
theT ∗ value is on the order of the PFT step∆T ). This
near coincidence of different PFT trajectories indicates
that, for a given quantum system and a target gate, there
exists a unique distance-time Pareto front. Correspond-
ingly, the minimum control time needed to enact a tar-
get unitary transformation with a high fidelity appears
to be an inherent property of the controlled quantum
system, independent of the path taken to identifyT ∗.

The Pareto front forT . T ∗ has the unfavorable
property of an extremely steep slope, i.e., a small de-
crease inT belowT ∗ results in a very large increase
in D̃. Specifically,D̃ rises more than three orders of
magnitude fromD̃ < 10−8 to D̃ > 10−5 with a rela-
tively small decrease inT from T = 4.12 to T = 4.0.
Beyond this steep region, the distance growth moder-
ates with decreasingT , such thatD̃ ≈ 10−2 can still
be obtained atT = 3.0. However, since a fault-tolerant
quantum computation requires very low gate error rates
(typically, less than10−4) [1, 65], the steep slope of the
Pareto front immediately belowT ∗ presents a funda-
mental limitation on gate implementation times. Fur-
thermore, uncertainty introduced under experimental
conditions would make operation nearT ∗ difficult be-
cause small errors in control time could cause substan-
tial decreases in attainable fidelity.

In addition to being a reliable numerical method to
identify the distance-time Pareto front (and, in particu-
lar, determine the value ofT ∗), the PFT algorithm gen-
erates families of related control fields that minimize

the objectiveD̃ for control times within a selected in-
terval. While all PFT trajectories achieve essentially
the same minimum value of̃D at a givenT , each tra-
jectory produces a distinct family of optimal control
solutions. The “evolution” of optimal control fields
within such a family, corresponding to the change ofT
along a PFT trajectory, is visualized in Fig.4. Specif-
ically, two families of optimal fields obtained for PFT
trajectories initialized atT0 = 4.4 andT0 = 4.6 are
shown in Figs.4(a), (b) and4(c), (d), respectively. For
each of these two families, pairs of fields (correspond-
ing to separate control fields acting on two qubits) are
shown for several values ofT ranging fromT = T0 to
T = 3.0.

The optimal control fields obtained for different PFT
trajectories have distinct shapes, which is expected
based on the existence of an infinite number of optimal
solutions [66]. Nevertheless, the fields share a number
of common features. First, field amplitudes increase
asT decreases. As explained in Sec.III A 1 , this am-
plitude behavior is needed to maintain the required ro-
tation angle asT changes, and the associated change
of the field fluence roughly follows1/T scaling. Sec-
ond, forT < T ∗, each field exhibits spikes att = 0
andt = T that grow in amplitude asT decreases. For
T < 3.9, these spikes are the largest amplitude fea-
tures of the control fields. Besides the two families
shown in Fig.4, this field feature was observed for all
other PFT trajectories that were run belowT ∗. Similar
characteristics of optimal fields were also observed for
TOC of a three-qubit system in Ref. [10]. We made no
attempt to impose any control constraints that would
suppress such spiky features; the extreme difficulty of
the distance minimization in the regionT < T ∗ in-
dicates that further constraints could adversely affect
attainable values of̃D and thus preclude reaching the
genuine distance-time Pareto front.

The results presented in this section suggest that the
location of the Pareto front is essentially independent
of the PFT trajectory taken for the present numerical
model. Thus, for other selections of the target gate
and/or system parameters considered in Secs.III B and
III C below, Pareto fronts were identified by running
only one complete (i.e., followed until̃D ≤ 10−2 be-
comes unattainable) PFT trajectory. For cases where
only identification ofT ∗ was desired, the PFT algo-
rithm was stopped soon after̃D ≤ 10−8 was no longer
attainable, and at least three trajectories started with
different initial random fields were run in this fashion
in order to verify the obtained value ofT ∗.

3. Efficiency of the PFT algorithm

In Sec.III A 1 , a superexponential increase of the op-
timization search effort (in terms of algorithmic itera-
tions) was observed as the control timeT decreases and
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FIG. 4. (Color online) Optimal control fields{ε⋆k(t)} for the target gateWCNOT. The control fields for the first qubit (k = 1)
are shown in (a) and (c), and the control fields for the second qubit (k = 2) in (b) and (d). These plots show fields obtained
for various values of the control timeT , ranging fromT = T0 (the starting point of the PFT trajectory) toT = 3 (where the
best attainable objective value is̃D ≈ 0.01). Each value ofT is denoted by color in the legend, with yellow (lightest gray)
corresponding toT = T ∗ = 4.12. The shown sets of fields represent two PFT trajectories started atT0 = 4.4 ((a) and (b))
andT0 = 4.6 ((c) and (d)); these PFT trajectories are presented among several others in Fig.3. An apparent increase in the DC
field component (i.e., a positive shift of the entire field) asT decreases is an artifact of the perspective of the three-dimensional
plot; the field power spectra (not shown) do not reveal a significant zero-frequency component.

approachesT ∗. The D-MORPH searches considered in
Sec.III A 1 were initialized at randomly selected fields
for all values ofT , with typical initial objective val-
uesD̃(s = 0) ∼ 0.5. In contrast, the PFT algorithm
employs random initial fields only for the search with
the starting value of the control time,T0 = T (p = 0);
every consequent search withT (p + 1) < T0 is ini-
tialized at the fields{εk(p, s⋆, t)} that are optimal for
the preceding search withT (p) = T (p + 1) + ∆T .
Correspondingly, D-MORPH searches along a PFT tra-
jectory begin, forp > 0, with initial objective values
D̃(s = 0) ∼ 0.01 to 0.05 and thus may be expected to
reachD̃ ≤ 10−8 with a smaller number of algorithmic
iterations. Here, we investigate to what degree the PFT
algorithm can lower the search effort, as compared to
D-MORPH optimizations with random initial fields.

To directly compare the two methods, we ran (a) five

PFT trajectories fromT0 = 4.6 to T ∗ = 4.12 and
(b) sets of 10 D-MORPH searches with random ini-
tial fields at selected values ofT ∈ [4.12, 4.6]. Fig-
ure 5 presents the search effort as a function ofT for
each PFT trajectory (colored circles, diamonds, trian-
gles, crosses, and x’s) and for each set of D-MORPH
searches (black squares and error bars indicating the
average and standard deviation, respectively, over the
set of 10 runs). The results show that, while different
PFT trajectories exhibit varying convergence speeds, at
each value ofT ≤ 4.45, the search effort for PFT is
significantly lower than that for randomly initialized D-
MORPH, typically by a factor of 2 to 4. AtT ∗ = 4.12,
the convergence of the best PFT trajectory was faster
than that of the average D-MORPH search by a factor
of ∼ 8; even the worst PFT trajectory outperformed the
average D-MORPH search by a factor of∼ 2. Thus,
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FIG. 5. (Color online) The search effort versus the control
timeT for five PFT trajectories (denoted by distinct symbol
shapes and colors) and D-MORPH searches with random ini-
tial fields (black squares with error bars denoting the average
and standard deviation, respectively, over the set of 10 runs).
At each value ofT ≤ 4.45, the PFT search effort is sizably
smaller than the average D-MORPH effort.

the search effort can be substantially lowered if a D-
MORPH search is initialized at control fields that are
optimal for a related search (here, with a slightly larger
value ofT ) rather than at random fields.

It is also of interest to compare the PFT algorithm
to methods that aim at minimizingT by including
penalty terms into the cost functional [35, 36]. For
the latter approach, a recent work [36] assigneda pri-
ori weights to a term in the cost functional that pe-
nalizes the control field fluence and control time. It
is known [38] that OCT algorithms employing such
cost functionals are typically incapable of identifying
the genuine Pareto front. Indeed, the algorithm used
in Ref. [36] converges to a value ofT that overesti-
mates the actual critical time, while also underestimat-
ing the achievable gate fidelity. A PFT trajectory that
we ran for the quantum system and target gate used in
Ref. [36] identifiedT ∗ ≈ 1.80 with F > 1 − 10−8,
while Ref. [36] reported convergence toT ≈ 2.01 with
F ≈ 1− 7× 10−6. These results suggest that the PFT
algorithm is better suitable for accurately determining
the fidelity-time Pareto front and, in particular, the true
value ofT ∗ than methods that employ time-penalizing
terms in the cost functional.

B. Pareto fronts and critical times for various target
gates

Simulations presented in this section examine how
the distance-time Pareto front and, in particular, the
critical time are affected by the choice of the target
transformationW for the same two-qubit system as

considered in Sec.III A . Pareto fronts and values of
T ∗ for various target gates are identified using the PFT
procedure, as described in detail above. In addition to
theWCNOT gate of Eq. (27), we considered a number
of gates, all incorporating appropriate global phase fac-
tors to make them elements of SU(N ). The SWAP gate
has the form

WSWAP = e−iπ/4






1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




 . (28)

We also consider the square root of SWAP (an entan-
gling two-qubit gate), given by

W√
SWAP = eiπ/8







1 0 0 0
0 1√

2
eiπ/4 1√

2
e−iπ/4 0

0 1√
2
e−iπ/4 1√

2
eiπ/4 0

0 0 0 1







.

(29)

Matrix elements of the Quantum Fourier Transform
(QFT) gate generalized forn qubits are given by

WQFT,n(j, k) =
1√
N

e5iπ/(2N)ωjk, (30)

wherej, k = 0, 1, . . . , N − 1 andω = e2iπ/N (recall
thatN = 2n). For two-qubit systems (n = 2), the QFT
gate is

WQFT,2 =
1

2
e5iπ/8






1 1 1 1
1 ω ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9




 . (31)

We also consider a similar gate denoted asWQFT′,n,
which is given by Eq. (30) with j, k = 1, 2, . . . , N .
Finally, we consider controlled phase (CPHASE) gates,
of the form

WCPHASE(α) = e−iα/4






1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiα




 , (32)

with the phasesα = π andα = π/2.
In addition to the explicit forms of the CNOT, SWAP,√
SWAP, QFT, QFT′, and CPHASE gates presented

above, we also consider the effect of changing the
global phase of the target gate. In earlier work by
Schulte-Herbrüggenet al. [10], different values ofT ∗

were found for distinct global phases of the three-qubit
QFT gate in a linear spin-chain system with Ising-type
interactions. Identifying critical times that correspond
to all possible values of the target gate’s global phase
is important in the context of TOC. For ann-qubit gate



12

4 6 8 10 12
10

−8

10
−6

10
−4

10
−2

 

 

T (arb. units)

D

W = SWAP, φ = 0

W = QFT, φ = 0

W = SWAP, φ = π/2

W = QFT, φ = π/2

~

FIG. 6. (Color online) Distance-time Pareto fronts for the
QFT and SWAP gates with global phasesφ = 0 andφ =
π/2. Each front is denoted by a distinct symbol shape and
color, as listed in the legend. Fronts forφ = π andφ =
3π/2 (not shown here) closely match those forφ = 0 and
φ = π/2, respectively. The significant difference in front lo-
cations (and correspondingT ∗ values) demonstrates the im-
portance of the gate’s global phase in TOC. The black stars
denote the average values ofD̃ obtained from the searches
reported in TableII .

W ∈ SU(N), transformations withN distinct global
phase values are allowed:

W (φm) = eiφmW,

φm = 2mπ/N, m = 0, 1, . . . , N − 1. (33)

For two-qubit gates considered in this section, four dis-
tinct global phase values are allowed in SU(4):φm =
mπ/2, m = 0, 1, 2, 3. The critical time for the trans-
formationW (φm) is denoted asT ∗(φm).

The effect of global phase on the location of the
distance-time Pareto front is demonstrated in Fig.6 for
the SWAP and QFT gates withφ = 0 andφ = π/2.
It is seen that the Pareto fronts forφ = 0 are shifted
significantly to the left on the time axis (and have cor-
respondingly smaller values ofT ∗) as compared to the
fronts for φ = π/2. This behavior shows that the
global phase is an important parameter in TOC of uni-
tary transformations, consistent with the findings of
Ref. [10]. We also observed for all target gates con-
sidered here that the Pareto front forφ = π lies very
close to the one forφ = 0, and the Pareto front for
φ = 3π/2 lies very close to the one forφ = π/2. The
pairwise separation ofT ∗(φm) values for global phases
with m = {0, 2} andm = {1, 3} is reported in TableI
for several target transformations. For all gates except
CNOT, there is a significant difference in theT ∗ values
corresponding to the two pairs ofφm values.

The dependence of the critical timeT ∗ on the gate’s
global phaseφ has important practical implications
for optimizations in numerical simulations and, poten-

TABLE I. Critical times T ∗(φm) obtained using the PFT
method for the selected set of target gates and four global
phase valuesφm = mπ/2 (m = 0, 1, 2, 3).

Gate T ∗(φm)
m = 0 m = 1 m = 2 m = 3

CNOT 4.12 4.11 4.15 4.09
SWAP 4.19 11.80 4.34 11.84√
SWAP 2.26 9.84 2.20 9.82
QFT 5.98 9.86 5.94 9.86
QFT′ 6.19 9.92 5.96 9.90

CPHASE(π) 4.22 3.98 4.21 3.96
CPHASE(π/2) 2.25 5.98 2.38 5.96

tially, experiments, where implementing the target gate
in minimum possible time is often desirable. In a com-
mon situation where initial control fields are selected
randomly, a search aimed at minimizing the distance
D̃ for the target gate with a certain value ofφ may, in
principle, converge to a control solution that enacts the
gate with another value ofφ. For the target transforma-
tion in SU(N ), the discreteness of allowed phase val-
uesφm of Eq. (33) means that the probability of such
an event depends on the distance between transforma-
tions with nearby values ofφ. While the fraction of
searches that converge to solutions corresponding to a
“wrong” value of φ is negligible for two-qubit gates,
it will increase for multi-qubit gates as the numberN
of allowed phase values grows (see Sec.IV below for
more details). Furthermore, if the phase-independent
distanceG of Eq. (12) is employed (which is likely in
practical situations where the global phase of a gate is
undetectable), randomly initialized searches will con-
verge to control solutions corresponding to allφm val-
ues (the probability for eachφm should be equal to
1/N , provided that a local search algorithm is em-
ployed and initial control fields are generated in a truly
random manner). Therefore, in order to make all trans-
formationsW (φm) reachable, the control timeT must
be not smaller than any of the critical timesT ∗(φm),
i.e.,T ≥ max{T ∗(φm)}.

In particular, due to the difference between the
T ∗(φm) values, an undesirable situation will arise ifT
is selected such thatT ∗(φm) < T < T ∗(φm′). Then
W (φm) will be reachable, whileW (φm′) will not, and
therefore local searches converging toW (φm) will at-
tain a desired objective value (e.g.,G ≤ 10−8), while
local searches moving towardsW (φm′) will be unable
to improve the objective value beyond the limit set by
the corresponding Pareto front. If such a situation is en-
countered in a numerical simulation, it may appear as
if a fraction of searches are “trapped,” which seems to
contradict the trap-free topology of the quantum con-
trol landscape. However, in reality, this behavior arises
due to the limitation on the control time (i.e., a con-
straint on a critical control resource) that makes one or
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more of the target transformations unreachable. Obvi-
ously, if the control time is increased to satisfy the con-
dition T ≥ max{T ∗(φm)}, this spurious “trapping”
will be completely eliminated.

We explored this effect by running 500 D-MORPH
searches (with random initial fields), aimed at mini-
mizing the phase-independent distanceG for QFT and
SWAP gates withT = 9 andT = 10, respectively.
These searches may approach solutions corresponding
to anyφm (0, π/2, π, 3π/2), with optimization trajec-
tories determined by initial fields. As expected based
on theT ∗ values in TableI, all searches that converged
to W (φ = 0) andW (φ = π) attained desired objec-
tive valuesG ≤ 10−8, while all searches that moved to-
wardsW (φ = π/2) andW (φ = 3π/2) halted well be-
fore reaching the target. TableII presents the percent-
age of searches approaching each target transformation
W (φm), along with the associated mean value ofG.
For the “trapped” cases (occurring forφ = π/2 and
φ = 3π/2), the standard deviation around the mean
objective valueG is less than 0.5%, which indicates
that all these runs failed to reach the target due to the
same cause. For these searches, we also computed and
averaged the corresponding̃D values, which are shown
as black stars on Fig.6. They lie exactly on the respec-
tive Pareto fronts, thus demonstrating that the attain-
able distance values are determined by the limitation
on the control time.

TABLE II. Optimization results for 500 D-MORPH runs
performed to minimize the phase-independent distanceG of
Eq. (12). The target gates areWQFT,2 andWSWAP with
control timesT = 9 andT = 10, respectively. The percent-
age of searches that approached each target transformation
W (φm) = eiφmW is recorded, along with the associated
mean value ofG. The difference of the reported percentages
from 25% (1/N probability) is mostly due to the fact that
initial control fields are not completely random, as they are
generated using the parameterized form (22).

Gate T φm % of searches G
QFT 9 0 28.5 9.87 × 10−9

π/2 8.6 4.77 × 10−3

π 15.6 9.91 × 10−9

3π/2 47.3 4.71 × 10−3

SWAP 10 0 43.3 9.95 × 10−9

π/2 26.4 2.14 × 10−2

π 22.9 9.91 × 10−9

3π/2 7.4 2.13 × 10−2

Further insight into the difference between searches
that approach transformations corresponding toφm =
{0, π} andφm = {π/2, 3π/2} can be gained by exam-
ining the path length differenceΛ(s⋆) − Λ(s). From
500 D-MORPH runs listed in TableII for the gate
WQFT,2 andT = 9, we selected 20 typical searches:
five for each value ofφm. In Fig. 7, Λ(s⋆) − Λ(s) is
plotted as a function ofG for these 20 searches. The op-
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FIG. 7. (Color online) Path length differenceΛ(s⋆) − Λ(s)
along optimization trajectories seekingWQFT,2 with T = 9,
as a function of the phase-independent distanceG. Black
(dashed line) trajectories: searches that attainedG ≤ 10−8

as they converged toW (φm) with φm = {0, π}. Red
(solid line) trajectories: searches that were “trapped” at
G ≈ 0.0047 as they approachedW (φm) with φm =
{π/2, 3π/2}. Trajectories for the converged searches be-
have similarly to those withT > T ∗ in Fig. 2. On the
other hand, as the red trajectories approach the “trap” at
G ≈ 0.0047, they show a very large change in the field struc-
ture (Λ changes by∼ 4 orders of magnitude) with negligible
improvement in fidelity.

timization trajectories corresponding toφm = {0, π}
(shown as black dashed lines) successfully converged
(G ≤ 10−8) to the respective transformations and ex-
hibit a behavior similar to that of the trajectories with
T > T ∗ in Fig. 2. Specifically,Λ(s⋆) − Λ(s) changes
with G according to a power law (which appears as
a linear change on the log–log plot) over the range
10−7 . G . 10−3. In contrast, the optimization tra-
jectories corresponding toφm = {π/2, 3π/2} (shown
as red solid lines) halted at a suboptimal objective
valueG ≈ 0.0047, near which the “trapping” of these
searches is manifested by a very large change inΛ(s)
(over∼ 4 orders of magnitude) that produces negli-
gible improvement in fidelity. These trajectories also
exhibit a significant “flattening” atG ∼ 0.1. The qual-
itative difference between the trajectories correspond-
ing to the converged searches and those destined to be
“trapped” due to unreachability of their target trans-
formations can be utilized to identify the latter ones at
an early stage of the D-MORPH optimization. We did
not observe any search whose trajectory would indicate
that it was attracted to an unreachable transformation
(corresponding toφm = π/2 or 3π/2) en routeto fi-
nally converging to a reachable one (corresponding to
φm = 0 or π).

We also verified that for sufficiently largeT values
(i.e.,T ≥ 9.86 for the QFT gate andT ≥ 11.84 for the
SWAP gate),all searches attainedG ≤ 10−8. These re-
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sults demonstrate that the critical times corresponding
to all values of the target gate’s global phase have to
be accounted for in order to ensure that all relevant tar-
get transformations are reachable at the selected con-
trol time. From a practical point of view, due to the
extremely high search effort in the vicinity of the crit-
ical time, it is preferable to use aT value that safely
exceeds allT ∗(φm).

C. Dependence of critical time on inter-qubit coupling
strength

For two- and multi-qubit gates, the implementa-
tion speed is limited, in most practical situations, by
strengths of inter-qubit interactions. To explore the re-
lationship between the critical timeT ∗ and the cou-
pling strengthJ ≡ J (1,2) for a given target gateW ,
the PFT procedure was performed with various values
of J for an otherwise fixed two-qubit Hamiltonian. The
resulting distance-time Pareto fronts for systems with
0.2 ≤ J ≤ 3.2 andW = WQFT,2 are shown in Fig.8.
As J varies, the front’s shape remains approximately
the same (on the log–log plot), but the entire curve
is shifted on theT axis. In Fig.8, the coupling con-
stant is doubled for each successive Pareto front from
J = 0.2 (the rightmost curve) toJ = 3.2 (the left-
most curve), and the equal spacing between the fronts
on the logarithmic-scale abscissa suggests thatT ∗ has a
power law dependence onJ with a negative exponent.
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FIG. 8. (Color online) Distance-time Pareto fronts for se-
lected values of the inter-qubit coupling strengthJ . The tar-
get gate isWQFT,2. Each Pareto front is shown by a differ-
ent symbol shape and color, with theJ value indicated to the
right of the corresponding curve. The equal spacing between
the fronts on the logarithmic-scale abscissa indicates a power
law dependence ofT ∗ onJ .

Figure9 confirms thatT ∗ scales as1/J for a sig-
nificant range of coupling strength values and various
target gates. Specifically, we considered QFT, QFT′,
CNOT, SWAP, the identity transformation114, and a
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FIG. 9. (Color online) Critical timesT ∗ identified using
the PFT method are plotted versus the inter-qubit coupling
strengthJ . Points corresponding to different two-qubit target
gates are denoted by distinct symbol shapes and colors. Re-
gression lines obtained from the least squares fit have slopes
in the range from−0.980 to −1.015 and are shown over the
ranges ofJ values for which the power-law relation holds.
The scalingT ∗ ∝ 1/J breaks down whenJ & 0.2 for
the identity transformation,J & 10 for the CNOT gate, and
J & 20 for the other gates.

random transformationWrnd ∈ SU(N) produced by
Wrnd = eiA, whereA is a random, traceless Hermi-
tian matrix. For each of these target gates, the power-
law exponent was evaluated as the slope of the corre-
sponding regression line on the log–log plot of Fig.9.
These slopes range from−0.980 to −1.015, in excel-
lent agreement with the scalingT ∗ ∝ 1/J . As the re-
gression lines for various choices ofW have different
intercepts on the ordinate, the prefactor in the relation-
ship T = c/J is a function of the gate:c = c(W ).
The value of the prefactorc for the identity transfor-
mation is much smaller than for any other gate, while
the largest value ofc (among the gates considered here)
is found for the random transformation.

In previous studies of TOC [2, 3, 9, 10, 33, 34], the
scalingT ∗ ∝ 1/J has been assumed to hold for var-
ious two- and multi-qubit gates. However, an explicit
numerical validation of this property has not been pre-
viously demonstrated over large ranges ofJ values.
Figure 9 shows that this scaling breaks down when
J & 0.01ω1 for the identity transformation,J & 0.5ω1

for the CNOT gate, andJ & ω1 for the other gates (re-
call thatω1 = 20 is the smaller transition frequency of
the two qubits). The breakdown of the1/J scaling for
non-identity gates happens when inter-qubit and intra-
qubit dynamics can occur on roughly the same time
scale, i.e., when the rate of the quantum information
exchange between qubits stops being the “bottleneck”
for the speed of the gate implementation.

Distance-time Pareto fronts for strong inter-qubit
couplings (J ≫ ω1) exhibit a distinct structure as
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FIG. 10. (Color online) Distance-time Pareto fronts for the
target gatesWCNOT, WQFT,2, andWSWAP (denoted by red
circles, blue diamonds, and green squares, respectively).The
normalized distancẽD is plotted versus the reduced time
T/T ∗. (a) The fronts forJ = 0.8, whereD̃ ≤ 10−8 is attain-
able for all values ofT ≥ T ∗. (b) The fronts forJ = 400,
where the QFT and SWAP transformations are unreachable
in a range of time values forT > T ∗.

compared to those for smallerJ values. In Fig.10,
we compare the Pareto fronts for (a) weak coupling:
J = 0.8 = 0.04ω1, and (b) strong coupling:J =
400 = 20ω1, obtained for three target gates (CNOT,
QFT, and SWAP). To facilitate the comparison, the
distanceD̃ is plotted versus the reduced timeT/T ∗.
When coupling is weak, the fronts for different target
gates have similar, but distinct shapes. When coupling
is strong, the fronts for the QFT and SWAP gates ex-
hibit non-monotonic behavior, as the target transforma-
tion is unreachable in a range of control times larger
than T ∗. Such behavior was also observed in other
multiobjective optimization studies [67, 68].

According to the data presented in Fig.9, in the
strong coupling limit (J ≫ ω1), the critical timesT ∗

saturate at values on the order ofπ/ω1 ≈ 0.157. A
possible explanation for this effect is that, in the con-
sidered model systems [c.f., Eqs. (18) and (20)], one-
qubit rotations around thez axis (or, in fact, any arbi-
trary axis) cannot be accomplished in arbitrarily short
time because the control fields are polarized only in the

x direction. The obtained values ofT ∗ suggest that a
target transformation would become unreachable when
the control time is too short to perform a phase flip
(a π rotation around thez axis) of the qubit with the
smaller transition frequency. A similar situation where
the critical time is set by the minimum transition fre-
quency was also encountered in state control [69]. That
work [69] also reported an analytical form of the Pareto
front, for a variety of controlled quantum systems. The
distinct Pareto front shapes shown on Fig.10 indicate
that such a universal analytical form likely does not ex-
ist for control of unitary transformations.

IV. CRITICAL TIMES FOR CONTROL OF THREE-
AND FOUR-QUBIT GATES

In this section, we explore TOC of unitary trans-
formations in three- and four-qubit systems, with the
primary goal of identifying critical time values as the
number of qubits increases. In particular, we investi-
gate whether the scalingT ∗ ∝ 1/J that was demon-
strated for a range ofJ values in the two-qubit case
also holds for multi-qubit gates. In all simulations
reported in this section, we consider the target gate
WQFT′,n [Eq. (30)]. In most simulations, the inter-
qubit coupling strengths in Eq. (18) are selected equal,
i.e., J (k,j) = J , ∀k, j. However, several cases of un-
equal couplings are considered as well for three-qubit
systems, with the focus on two physically realistic sce-
narios: (i)J (k,j) values are similar but not equal (e.g.,
spins on a lattice or in a polyatomic molecule) and (ii)
J (1,2) = J (2,3) ≫ J (1,3) (e.g., a linear spin chain).
The choices of unequalJ (k,j) values along with the av-
erage coupling strengthJ = [J (1,2)+J (1,3)+J (2,3)]/3
are displayed in TableIII .

TABLE III. Values of inter-qubit coupling strengthsJ(k,j)

employed in simulations with three-qubit systems. The av-
erage coupling strengthJ is also shown. The corresponding
T ∗ values are plotted versusJ in Fig. 11.

J(1,2) J(1,3) J(2,3) J
2.0 1.2 1.6 1.600
1.2 0.4 0.8 0.800
2.0 0.4 2.0 1.467
2.0 0.0 2.0 1.333
4.0 0.4 4.0 2.800
4.0 0.0 4.0 2.667
8.0 0.0 8.0 5.333

20.0 0.0 20.0 13.333
40.0 0.0 40.0 26.667
80.0 0.0 80.0 53.333

Critical times T ∗ obtained from PFT trajectories
are plotted in Fig.11 versus the coupling strengthJ
(for equal couplings) or versus the average coupling
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FIG. 11. Critical timesT ∗ plotted versus the inter-qubit cou-
pling strengthJ , for n-qubits systems (n = 2, 3, 4). Dif-
ferent system sizes are denoted by distinct symbol shapes
and colors. The target gate isWQFT′,n. Regression lines
obtained from the least squares fit are shown for systems
with equal couplings, and their slopes range from−0.99 to
−1.015. The scalingT ∗ ∝ 1/J breaks down whenJ & 20.
For three-qubit systems with unequal couplings,T ∗ values
are plotted versus the average coupling strengthJ (magenta
diamonds), and these points fit very well with those obtained
for equal couplings (blue circles).

strengthJ (for unequal couplings). For two-, three-,
and four-qubit systems, the dependence oflog T ∗ on
log J , in the range of coupling strengthsJ < ω1, is
evaluated using the least squares fit. The slopes of the
resulting regression lines on the log–log plot of Fig.11
are−1.015±0.002 for n = 2,−1.00±0.02 for n = 3,
and−0.99 ± 0.07 for n = 4. Thus, in the range of
validity, these numerical data agree with the scaling
T ∗ ∝ 1/J very well for eachn. Also, theT ∗ values
for three-qubit systems with unequal couplings follow
(for J < ω1) the same scaling with respect toJ (i.e.,
T ∗ ∝ 1/J), and, overall, these points fit very well with
those obtained for equal couplings. Thus, critical times
for systems with arbitraryJ (k,j) values may be reason-
ably well estimated from equal-coupling results with
J = J .

The data obtained for both two- and three-qubit sys-
tems demonstrate that the scalingT ∗ ∝ 1/J breaks
down forJ & ω1 = 20. As J increases beyondω1,
theT ∗ values for two- and three-qubit systems grad-
ually converge and trend towardsπ/ω1 ≈ 0.157. As
noted in Sec.III C above, this value coincides with
the minimum time required to perform a phase flip of
the qubit with transition frequencyω1. At J = 400
(the strongest coupling that we considered), this critical
time value is already reached forn = 2 (T ∗ ≈ 0.157)
and is very closely approached forn = 3 (T ∗ ≈
0.162). The saturation ofT ∗ at nearly the same value
for both two- and three-qubit systems further suggests
that, in the strong coupling limit, the critical time is de-

termined by the minimum time required to accomplish
one-qubit rotations.

When the system size increases, the difference be-
tween nearby allowed values of the global phase de-
creases as|φm − φm±1| = 2π/N , and the normalized
distance between the corresponding transformations
decreases as̃D[W (φm),W (φm±1)] = sin2(π/N).
Therefore, when the phase-dependent distanceD̃ is
employed as the control objective for three- and four-
qubit systems, a small fraction of randomly initialized
searches may converge to transformations that differ
from the target one by a global phase. Indeed, we en-
countered such a situation in our simulations, when a
small number of D-MORPH searches aimed at reach-
ing the target gateWQFT′,3 or WQFT′,4 converged in-
stead to gatese±iπ/4WQFT′,3 or e±iπ/8WQFT′,4, re-
spectively. As discussed in Sec.III B , when such con-
vergences to gates with nearby values ofφ happen, a
sufficiently large control timeT ≥ max{T ∗(φm)} is
required to ensure that all transformationsW (φm) are
reachable. If this condition onT is not satisfied, at least
some local searches will be unable to attain a desired
objective value due to the character of the distance-time
Pareto front below the critical time. Such a situation
where a small fraction of optimization runs employ-
ing the BFGS method were seemingly “trapped” was
reported in Ref. [58] for a three-qubit spin-chain sys-
tem and the QFT target gate. This effect is fully ex-
plained by the fact that the optimizations in [58] used
theT value such thatT ∗(φm) < T < T ∗(φm′ ) [70],
thus making transformations corresponding to some
phase values unreachable. We reproduced the results
of Ref. [58] and verified that this spurious “trapping”
is completely eliminated when the control timeT is
made sufficiently large.

V. CONCLUSIONS

This work examined TOC of quantum unitary trans-
formations through the exploration of the Pareto front
that quantifies the trade-off between the goals of min-
imizing the distance to the target gate and the control
time. The PFT algorithm was introduced to (1) identify
the critical timeT ∗ below which the target transfor-
mation is not reachable and (2) move along the Pareto
front to find families of optimal control fields that min-
imize the distance (or, equivalently, maximize the fi-
delity) at various values ofT . Our results suggest that a
distinct Pareto front exists for each selection of the con-
trol system and the target gate. A practically relevant
feature observed for many gates is the strong depen-
dence of the critical time on the global phase of the tar-
get transformation. We also examined the dependence
of T ∗ on the inter-qubit coupling strengthJ and con-
firmed the universal scalingT ∗ ∝ 1/J (or, T ∗ ∝ 1/J
for unequal couplings), consistent with expectations in
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the literature [2, 3, 9, 10, 33, 34]. However, we found
that, while this scaling holds for a wide range ofJ val-
ues, it breaks down whenJ & ω1, whereω1 is the
smallest of the qubit transition frequencies in the sys-
tem. Thus the critical time cannot be made arbitrarily
small by increasing the coupling strength, and the ulti-
mate limit on theT ∗ value is set by the smallest tran-
sition frequencyω1 which, for the considered model
systems, is the minimum speed of one-qubit rotations.

One of the goals of this work was to relate the ob-
tained TOC results to properties of the optimal quan-
tum control landscape. In particular, we observed
that, for a given quantum system and a target transfor-
mation, different randomly initialized PFT trajectories
produce essentially the same Pareto front. This result
suggests that (1) as long asT ≥ T ∗, the favorable land-
scape topology characteristic for unconstrained control
fields remains intact, and (2) forT < T ∗, the limitation
on the control time significantly affects the value of the
landscape’s global optimum (so that unit fidelity/zero
distance is no longer attainable), but does not lead to
landscape fragmentation and formation of local traps
(provided that we distinguish between landscapes for
target transformations that differ by the global phase).
We also found that the optimization search effort rises
superexponentially asT decreases and approachesT ∗,
with corresponding changes observed in metrics quan-
tifying the local structure of the control landscape. In
particular, “flattening” of the landscape near the opti-
mum correlates remarkably well with the search effort
growth as the control time decreases.

The structure of the distance-time Pareto fronts iden-

tified in this work has important implications for exper-
imental implementation of high-fidelity quantum gates
in short times. Taking into account the very steep slope
of the Pareto front atT . T ∗ and realistic experimental
uncertainties in the gate control time, operating at aT
value that safely exceeds the critical times correspond-
ing to all allowed values of the target gate’s global
phase is desirable to avoid a significant loss of fidelity.
Furthermore, values ofT very close toT ∗ should be
avoided in order to keep the optimization search effort
at a reasonable level.

In summary, this work extensively investigated the
effects of limiting the time as a resource for optimal
control of quantum unitary transformations. While our
study employed a particular physical model, the above
results are expected to be qualitatively applicable to
other coupled-spin systems. In addition to the goal
of generating target unitary transformations, the meth-
ods presented here can be applied to other objectives in
quantum control, including state preparation and opti-
mization of observable expectation values.
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