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Inspired by the recent works of Fosteret al. [Phys. Rev. Lett.102, 120401 (2009)] and Brunneret al.
[Phys. Rev. Lett.102, 160403 (2009)], we present a nonlocality distillation protocol for two three-level (qutrit)
systems in the framework of generalized nonsignaling theories. Our protocol is based on a three-setting Bell
inequality. It works efficiently for a specific class of 3-input-3-output nonlocal boxes. In the asymptotic limit, all
these nonlocal boxes can be distilled to the maximally nonlocal box defined by the inequality and nonsignaling
constraints. Then we introduce a new contracting protocol that reduces these boxes to the so called “correlated
nonlocal boxes”. As a result, our 3-input-3-output nonlocal boxes also make communication complexity trivial
and appear very unlikely to exist in nature.

PACS numbers: 03.65.Ud, 03.67.-a

I. INTRODUCTION

When different measurements are performed on two separated parts of an entangled quantum state, the corresponding out-
comes can show correlations that violate a Bell inequality and therefore are unexplainable by any local hidden variabletheory [1].
This kind of stronger correlations is now well known asnonlocality.

Quantum nonlocality is a fascinating counterintuitive phenomenon related to the foundation of quantum mechanics and has
attracted much interest recently both in theoretical and experimental works [2]. It has been identified as another resource,
alternative to entanglement and indispensable for device-independent quantum information processing protocols [3,4]. For
instance, in a device-independent quantum key distribution protocol, quantum nonlocality is used to generated sharedsecret
keys between different parties in a device-independent way, i.e., in a way that the internal workings of the quantum devices are
unknown or not trusted [4]. In Ref. [5], it is shown that nonlocality is also a necessary resource for nonlocal computation.
Furthermore, nonlocality that to some extent is superquantum might make communication complexity trivial [6].

Although entanglement and nonlocality are closely related, they are two quite different things. There do exist quantum states
with large entanglement but have no nonlocality, in the sense that these quantum states admit local hidden variable models and
cannot violate any Bell inequality [7, 8]. Many protocols for quantum entanglement distillation have been proposed [9]and
experimentally tested [10]. Similarly, one may ask anotherinteresting question: can nonlocality be distilled? In other words, can
we get stronger nonlocality from a number of weak nonlocal resources? Forsteret al. [11] made a breakthrough and provided
a positive answer to this question. In their paper, they presented the first nonlocality distillation protocol in the framework of
nonsignaling theory [12]. Then, Brunner and Skrzypczyk presented another protocol for deterministically distillingnonlocality,
which is optimal for two-copy distillation and works efficiently for a specific class of postquantum nonlocal boxes–the so
called correlated nonlocal boxes [13]. In the asymptotic limit, their protocols would distill all correlated nonlocalboxes to the
maximally nonlocal box of Popescu and Rohrlich [14], thus making communication complexity trivial [6].

In this work, we will focus on 3-input-3-output bipartite systems. We present a nonlocality distillation protocol for such
systems in the framework of generalized nonsignaling theories. Our protocol is based on a three-setting Bell inequality for
bipartite three-level (qutrit) systems [16] and works efficiently for a specific class of 3-input-3-output nonlocal boxes. In the
asymptotic limit, all these nonlocal boxes are distilled tothe maximally nonlocal box defined by the inequality. To showthat
these boxes are postquantum and unlikely to exist in nature,we introduce a new contracting protocol to reduce them to theclass
of correlated nonlocal boxes.
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II. THE FRAMEWORK AND DISTILLATION PROTOCOL

To begin with, let us consider the following Bell-type scenario in terms of nonlocal boxes. Two distant parties, Alice and
Bob, share a nonlocal box. Each party is allowed to input one trit into the box and gets one output trit: Alice inputsx ∈ {0, 1, 2}
and gets outcomea ∈ {0, 1, 2}; Bob inputsy ∈ {0, 1, 2} and gets outcomeb ∈ {0, 1, 2}. This device is atemporal: Alice gets her
output as soon as she feeds in her input, regardless of if and when Bob feeds in his input, and vice versa. Every nonlocal box
is then characterized by a set of 81 joint probabilitiesP(ab|xy). A two-partite system, which is characterized by a conditional
probability distributionP(ab|xy), is said to be nonsignaling if one cannot signal from one side to the other by the choice of the
input. This means that the marginal probabilitiesP(a|x) andP(b|y) are independent ofy andx, respectively, i.e.,































∑

a

P(ab|xy) =
∑

a

P(ab|x′y) = P(b|y) ∀x, x′, b, y,

∑

b

P(ab|xy) =
∑

b

P(ab|xy′) = P(a|x) ∀a, x, y, y′.
(1)

In the following, we will work on these nonsignaling boxes characterized by their probability distributions, which is stated in
the matrix form.

To present our main results, another problem we should also deal with is: How to quantify non-locality in two-qutrit system?
In the two-qubit case, Forsteret al. [11] and Brunneret al. [13] use the CHSH inequality [15] violation as the measurement
of two-qubit nonlocality. Similarly, here we use the violation of a three-setting Bell inequality introduced in Ref. [16] as the
measure of nonlocality in three-qutrit system. To this end,let us briefly review the three-setting inequality. For the convenience
of later utility, we rewrite the inequality in the followingform:

I [3]
3 = −2[P(00|xy) + P(12|xy) + P(21|xy)] + P(01|xy) + P(10|xy) + P(22|xy) + P(02|xy) + P(20|xy) + P(11|xy)

+ P(00|xy⊕ 1)+ P(12|xy⊕ 1)+ P(21|xy⊕ 1)− P(02|xy⊕ 1)− P(20|xy⊕ 1)− P(11|xy⊕ 1)+ P(00|x⊕ 1y)

+ P(12|x⊕ 1y) + P(21|x⊕ 1y) − P(02|x⊕ 1y) − P(20|x⊕ 1y) − P(11|x⊕ 1y) + P(01|xy⊕ 2)+ P(10|xy⊕ 2)

+ P(22|xy⊕ 2)− P(02|xy⊕ 2)− P(20|xy⊕ 2)− P(11|xy⊕ 2)+ P(01|x⊕ 2y) + P(10|x⊕ 2y) + P(22|x⊕ 2y)

− P(02|x⊕ 2y) − P(20|x⊕ 2y) − P(11|x⊕ 2y) + P(01|x⊕ 1y⊕ 2)+ P(10|x⊕ 1y⊕ 2)+ P(22|x⊕ 1y⊕ 2)

− P(02|x⊕ 1y⊕ 2)− P(20|x⊕ 1y⊕ 2)− P(11|x⊕ 1y⊕ 2)+ P(01|x⊕ 2y⊕ 1)+ P(10|x⊕ 2y⊕ 1)

+ P(22|x⊕ 2y⊕ 1)− P(02|x⊕ 2y⊕ 1)− P(20|x⊕ 2y⊕ 1)− P(11|x⊕ 2y⊕ 1)+ P(00|x⊕ 2y⊕ 2)

+ P(12|x⊕ 2y⊕ 2)+ P(21|x⊕ 2y⊕ 2)− P(01|x⊕ 2y⊕ 2)− P(10|x⊕ 2y⊕ 2)− P(22|x⊕ 2y⊕ 2) ≤ 4. (2)

Here, the pair (x, y) equals to any of the following nine pairs: (i, j) (i, j = 0, 1, 2); The notation⊕ means addition modulo 3. It
is showed in Ref. [16] that the inequality (2) is tight and relevant to the well-known Collins-Gisin-Linden-Massar-Popescu
(CGLMP) inequality [17]. This inequality has four distinguish “roots” [18] and its maximal quantum violation, which occurs at
a nonmaximally entangled state, is 5.1803. Based on this multisetting inequality, our definitionof the nonlocality of two-qutrit
systems is as follows:

NL[P] := max
xy

I [3]
3 . (3)

Note thatNL[P] > 4 indicates that the correlationP violates the inequality (2) and is therefore called nonlocal.
Now, let us introduce a class of one parameter nonlocal boxesP

ǫ (0 < ǫ < 1).
Definition 1. We define the classical boxPC as

P
C :=















1
3 if a+ b ⊜ 1
0 otherwise

(4)

where⊜means equality modulo 3 .
Definition 2. We define the maximal nonlocal boxPMAX as

P
MAX :=















1
3 if a+ b ⊜ (x+ y+ 2)2

0 otherwise
(5)

Definition 3. The appropriate nonlocal boxPǫ which we will use for distilling is defined as follows

P
ǫ := ǫPMAX

+ (1− ǫ)PC (0 < ǫ < 1). (6)
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By directly calculations, it is easy to see thatPC, PMAX, andPǫ are non-signaling with respect to the definition (1). The matrix
form of Pǫ is:

P
ǫ
=













































































































xy
ab 00 01 02 10 11 12 20 21 22

00 0 1
3 0 1

3 0 0 0 0 1
3

01 ǫ

3
1−ǫ
3 0 1−ǫ

3 0 ǫ

3 0 ǫ

3
1−ǫ
3

02 0 1
3 0 1

3 0 0 0 0 1
3

10 ǫ

3
1−ǫ
3 0 1−ǫ

3 0 ǫ

3 0 ǫ

3
1−ǫ
3

11 0 1
3 0 1

3 0 0 0 0 1
3

12 0 1
3 0 1

3 0 0 0 0 1
3

20 0 1
3 0 1

3 0 0 0 0 1
3

21 0 1
3 0 1

3 0 0 0 0 1
3

22 ǫ

3
1−ǫ
3 0 1−ǫ

3 0 ǫ

3 0 ǫ

3
1−ǫ
3













































































































.

According to the definition (3) , the nonlocality ofPǫ isNL[Pǫ ] = 4+ 4ǫ. Whenǫ = 1 boxPǫ turns toPMAX with nonlocality
NL[PMAX] = 8, which is the maximal nonlocality value of a 3-input 3-output bi-partite box according to the Ineq. (2) [19]. In
addition, whenǫ = 0 boxPǫ turns toPC, which is classical and achievable by shared randomness.

Distillation protocol.—Now we present a distillation protocol for the nonlocal boxesPǫ . Our protocol takes four copies of
any boxPǫ with 0 < ǫ < 1 to a new nonlocal boxPǫ

′

with ǫ′ > ǫ, thus distilling nonlocality. In the asymptotic limit, anyǫ with
0 < ǫ < 1 is distilled arbitrarily close to 1 by iteration. The protocol is illustrated in Fig.1.

FIG. 1: Protocol for four-copy deterministic nonlocality distillation. Alice and Bob use fourPǫ boxes sequentially. They input the valuexi and
yi into theith box and get the corresponding outputsai andbi , respectively. At last, they calculatea ⊜ a1+a2+a3+a4 andb ⊜ b1+b2+b3+b4

as the final outputs of the new box.

Alice and Bob share four copies of boxesPǫ , those boxes are arranged sequentially. Let us denotexi andyi the value Alice
and Bob input into boxi, respectively. The output of thekth box is denoted byak andbk. The input and output of Alice and Bob
at each step are denoted as follows:

This table explicitly shows that at the side of Alice there are only symbolsx anda ( ignoring the subscript ), so she needn’t
any information from Bob when she proceeds the protocol, similar is the case of Bob. This protocol is feasible, for the input
of Alice ( Bob ) at ith step only depends on the initial inputx ( y ) and the output atjth step with j < i . Notably, though the
boxes are arranged sequentially and Alice and Bob have to input values step by step because the later input are depending on the
former output, the two parties are independent of each other, which means Alice may have accomplished all of her operations
and got the final outputa while Bob did nothing—–boxes are atemporal.

By straightforward calculations, one obtain that the final box, after the above distillation protocol has been applied,is Pǫ
′

with

ǫ
′
= ǫ · (2− ǫ) · (ǫ2 − 2ǫ + 2) (0< ǫ < 1) . (7)
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Alice Bob

input of each step x1 = x y1 = y

x2 ⊜ 2x+ a1 + 2 y2 ⊜ 2y+ b1 + 2
x3 ⊜ 2x+ a1 + a2 y3 ⊜ 2y+ b1 + b2

x4⊜2x+a1+a2+a3+1 y4⊜2y+b1+b2+b3+1

output of each step ak (k = 1,2, 3,4) bk (k = 1,2, 3,4)

final output ofPǫ
′

a ⊜ a1 + a2 + a3 + a4 b ⊜ b1 + b2 + b3 + b4

.

There are two fixed points in function (7),ǫ = 0 andǫ = 1. The stability can be checked by finding the eigenvalues of the
Jacobian at the fixed points. We getλ |ǫ=0=

dǫ′

dǫ |ǫ=0= 4 > 1, λ |ǫ=1=
dǫ′

dǫ |ǫ=1= 0 < 1, soǫ = 1 is an attractive fixed point and
ǫ = 0 is repulsive, which means, by iteration, we could distill all nonlocal boxPǫ arbitrary close toPMAX despite that the initial
box may very close to classical boxPC. More intuitional express of relation betweenǫ andǫ′ is show in Fig.2.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ǫ

ǫ
′

FIG. 2: (color online) The relation betweenǫ andǫ′, which are the characteristic parameters of the initial andfinal boxes, respectively. The
graph showsǫ′ as a function ofǫ, i.e., ǫ′ = ǫ · (2 − ǫ) · (ǫ2 − 2ǫ + 2) (the red solid line). The blue dashed straight line,ǫ′ = ǫ, is given as a
reference. The black thin line (steps) shows the distillation of an initial box under successive iterations of the protocol.

Proof.—Now we prove those results. First let us show how this protocol works in an intuitive way. We express the three-
setting Bell inequality and the nonlocal boxPǫ in one graph (see Fig.3), in which color denote the parameterin front of the
corresponding terms in the three-setting Bell inequality,while the numbers denote the boxPǫ . To find a suitable nonlocal
protocol is just to find a map with two properties:

1. It is closure inPǫ , so we could iterate them without change the protocol.

2. The nonlocality of the final box is bigger than the nonlocality of the initially boxes.

Comparing Fig.3 we could find that two elements inPǫ are the same if they have the same values ofx⊕ y anda⊕ b. For the
sake of convenience, we will chose one element to express allelements with same value under operation of modulo 3. Then our
purpose is to fix the rows withx⊕ y = 0 andx⊕ y = 2 unchanged and increase the values in blue blocks at rows with x⊕ y = 1.
Now we show that the protocol achieve those requirements by straightforward calculations.

Calculate Pnew(ab|xy).—First we calculate the elementPnew(01|00) in new boxPǫ
′

. According to the protocol,Pnew(01|00)
equals to the summation of suitable conditional probability, which we have:

Pnew(01|00)=
∑

P1(a1b1|x1y1) ·P2(a2b2|x2y2)

· P3(a3b3|x3y3) ·P4(a4b4|x4y4)

=

∑

P1(a1b1|00) ·P2(a2b2|x2y2)

· P3(a3b3|x3y3) ·P4(a4b4|x4y4) (8)
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FIG. 3: (color online) An intuitional denotation of three-setting Bell inequality andPǫ . Different colors denote the different parameters in
front of the corresponding terms in the three-setting Bell inequality, which red (latticed shading) denote−2, green (slash shading) denote−1,
gray (backslash shading) denote 0 and blue (solid shading) denote+1. The numbers in those colored blocks denote elements ofP

ǫ , and the
probability of blocks without number is zero.

The summation calculates all the cases submitted toa1+a2+a3+a4 ⊜ 0 andb1+b2+b3+b4 ⊜ 1. Pi(aibi |xiyi) ( i = 1, 2, 3, 4 )
denote the elements inith box. Because whenai +bi ⊜ 2 (see Fig.3)Pi(aibi |xiyi) always equals to zero independent of the inputs,
then those terms can not show up in the summation. Thus, thereare only two kind of outputs we need to consider:ai + bi ⊜ 0
andai + bi ⊜ 1. Note thata+ b = 0+ 1 = 1 then (a1 + b1) + (a2+ b2)+ (a3 + b3) + (a4 + b4) ⊜ a+ b ⊜ 1. There are five possible
combination ofai + bi satisfy this, which expressed as a table:

















































ai+bi
Case 1 2 3 4 5

a1 + b1 ⊜ 0 0 0 1 1
a2 + b2 ⊜ 0 0 1 0 1
a3 + b3 ⊜ 0 1 0 0 1
a4 + b4 ⊜ 1 0 0 0 1

















































. (9)

According to the protocol,P1(a1b1|x1y1) = P1(a1b1|xy) = P1(a1b1|00), then the cases number 1, 2, 3 which witha1 + b1 ⊜ 0 are
ill-fitting, for P1(00|00)= 0. In the 4th case (see Fig.3),x2+y2 = 2(x+y)+ (a1+b1)+1 ⊜ 2, thusP2(a2b2|x2y2) = P2(00|02)= 0,
also ill-fitting. Only the fifth case fit the requirement. By similar analyze, in case number 5, we getx2+y2 ⊜ 2(x+y)+(a1+b1)+4 ⊜
0+1+4⊜ 2, x3+y3 ⊜ 2(x+y)+ (a1+b1)+ (a2+b2) ⊜ 0+1+1⊜ 2, andx4+y4 ⊜ 2(x+y)+ (a1+b1)+ (a2+b2)+ (a3+b3)+2 ⊜
0+ 1+ 1+ 1+ 2 ⊜ 2.

Finally we get:

Pnew(01|00) =
∑

P1(01|00)· P2(01|02)

·P3(01|02) · P4(01|02)

= 33 ·
1
3
·

1
3
·

1
3
·

1
3
=

1
3
. (10)

Here is the 33 come from: letai (i = 1, 2, 3) freely chose, thena4 ⊜ 0 − a1 − a2 − a3 andbi ⊜ 1 − ai (i = 1, 2, 3, 4) are
determined. Eachai has three possible outputai = 0, 1, 2 thus totaly have 33 terms contribute to the summation. Note that
Pnew(01|00)+ Pnew(10|00)+ Pnew(22|00)= 3 · 1

3 = 1, so the rest probability in those rows (x⊕ y = 0) are zero. Similarly we get:

Pnew(01|02) =
∑

P1(01|02)· P2(01|00)

·P3(01|00) · P4(01|00)

= 33 ·
1
3
·

1
3
·

1
3
·

1
3
=

1
3
. (11)

Then comparing to the initial box we see this protocol do not change the rows withx⊕ y = 0 andx⊕ y = 2.
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Now we calculate the elementPnew(00|01) andPnew(01|01) to finish the proof. Because (a1+b1)+(a2+b2)+(a3+b3)+(a4+b4) ⊜
a+ b ⊜ 0, the possible combination table ofPnew(00|01) is:

















































ai+bi
Case 1 2 3 4 5

a1 + b1 ⊜ 0 0 1 1 1
a2 + b2 ⊜ 0 1 0 1 1
a3 + b3 ⊜ 0 1 1 0 1
a4 + b4 ⊜ 0 1 1 1 0

















































. (12)

The probability in each case ( denote asPi , wherei = 1, 2, 3, 4, 5 ) is P1 = 0, P2 =
ǫ

3, P3 =
ǫ

3 · (1 − ǫ), P4 =
ǫ

3 · (1 − ǫ)
2,

P5 =
ǫ

3 · (1− ǫ)
3. SoPnew(00|01)=

∑5
i=1 Pi =

ǫ

3 · (2− ǫ) · (ǫ
2 − 2ǫ + 2) = ǫ

′

3 . similarly, we getPnew(01|01)= (1−ǫ)4

3 =
1−ǫ′

3 .
Combining the calculations above we proved that this protocol works. It turns four copies of nonlocal boxPǫ to a new nonlocal

boxPǫ
′

with ǫ′ = ǫ · (2− ǫ) · (ǫ2 − 2ǫ + 2) (0< ǫ < 1) .

III. THE CONTRACTING PROTOCOL AND TRIVIAL COMMUNICATION COMPLEXITY

One question left behind the above distillation protocol: whether the correlations in Eq. (6) have a quantum realization?
The answer is negative. Although some correlations in Eq. (6) are arbitrarily close to the set of classical correlations, all of
these correlations are postquantum and make communicationcomplexity trivial after distillation. We demonstrate these result
by giving a contracting protocol which recast these nonlocal boxes to correlated nonlocal boxes, since correlated nonlocal boxes
make communication complexity trivial so are these boxes.

Contracting protocol.—–Now we present the contracting protocol. Our protocol takestwo copies of nonlocal boxPǫ defined
in Eq. (6) and a shared uniform randomnessr ∈ {0, 1} to a correlated nonlocal boxes

Pcnb
ǫ′
=



















































xy
ab 00 01 10 11

00 1
2 0 0 1

2

01 1
2 0 0 1

2

10 1
2 0 0 1

2

11 1−ǫ′

2
ǫ′

2
ǫ′

2
1−ǫ′

2



















































, (13)

whereǫ′ = 2
3ǫ. The protocol is illustrated in Fig.4.

Alice and Bob share two copies of boxesPǫ , we denote them Box 1 and Box 2. The input and output at each boxis as show
in the table:

Alice Bob

initial input of Pcnb
ǫ′ x y

input toPǫ of each box x∗ y∗

output fromPǫ of each boxak (k = 1, 2) bk (k = 1, 2)

final output ofPcnb
ǫ′ a b

Wherex∗, y∗ are the functions ofx andy, while ai
∗, bi

∗ are functions ofai andbi . Those functions denote as follow:

x 0 1

x∗ 1 2

y 0 1

y∗ 1 2

a1 0 1 2

a∗1 0 1 1

b1 0 1 2

b∗1 1 0 1

a2 0 1 2

a∗2 1 0 0

b2 0 1 2

b∗2 0 1 0

Notable that although we used two boxesPǫ in the protocol, at each time only one of their output is used in the final output,
and which one is picked is determined by the value of randomnessr. Different from the boxes in distillation protocol, in this
protocol two initial boxes are not necessarily sequential arranged, because the input of Box 2 are independent of the output of
Box 1.

Proof.—–Now we prove those results by direct calculations. First,it is easy to see that the inputs and outputs of new box are
no longer trits but bits,x, y, a, b ∈ {0, 1}, which means it could express as a 4× 4 matrix. Now we prove matrix (13) is the right
one.
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FIG. 4: Protocol to construct correlated nonlocal box. Alice and Bob use twoPǫ boxes and a sharing randomnessr. They inputx∗ andy∗

which is the function ofx andy, respectively.ai andbi is the output of theith box at each side, whileai
∗ andbi

∗ is the function ofai andbi ,
wherei = 1, 2. They finally outputa andb, which is function ofai

∗ andbi
∗.

Calculate Pnew(ab|xy).
Pnew(00|00)= 1

2 · P(01|11)+ 1
2 · [P(10|11)+ P(12|11)+ P(20|11)+ P(22|11)]= 1

2,
Pnew(11|00)= 1

2 · [P(10|11)+ P(12|11)+ P(20|11)+ P(22|11)]+ 1
2 · P(01|11)= 1

2.
BecausePnew(00|00)+ Pnew(11|00)= 1, the rest elements in the row (x, y) = (0, 0) are zero. Similarly, we getPnew(00|01)=

Pnew(11|01)= Pnew(00|10)= Pnew(11|10)= 1
2.

While,
Pnew(00|11)= 1

2 · P(01|22)+ 1
2 · [P(10|22)+ P(12|22)+ P(20|22)+ P(22|22)]= 3−2ǫ

6 =
1−ǫ′

2 , and
Pnew(01|11)= 1

2 · [P(00|22)+ P(02|22)]+ 1
2 · [P(11|22)+ P(21|22)]= ǫ3 =

ǫ′

2 .
Similarly, we getPnew(10|11)= ǫ

′

2 andPnew(11|11)= 1−ǫ′

2 , which ends the proof. An inference from this protocol is allboxes
in Eq. (6) will make communication complexity trivial. Because such boxes could construct a box in Eq. (13) with 0< ǫ′ < 2

3,
which have been proved to collapse the communication complexity after distillation [13].

IV. CONCLUSION

In summary, based on a three-setting Bell inequality, we have proposed a nonlocality distillation protocol that works efficiently
for a class of 3-input-3-output nonlocal boxesPǫ . In the asymptotic limit, all boxes in this class can be distilled to the maximally
nonlocal boxPMAX. We also introduced a contracting protocol which can reduceP

ǫ to correlated nonlocal boxPcnb
ǫ′ . Because

Pcnb
ǫ′ collapses the communication complexity after distillation, our contracting protocol has in fact proven thatPǫ can also

trivialize communication complexity and thus unlikely to exist in nature. Our work represents a primary step to exploremulti-
setting Bell inequalities in the task of distilling nonlocality. It might be interesting to explore further the contracting technique
in proving that certain nonlocal boxes are postquantum and unlikely to exist in nature.
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