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Inspired by the recent works of Foster al. [Phys. Rev. Lett.102, 120401 (2009)] and Brunnest al.
[Phys. Rev. Lett102, 160403 (2009)], we present a nonlocality distillationtpoml for two three-level (quitrit)
systems in the framework of generalized nonsignaling fBeorOur protocol is based on a three-setting Bell
inequality. It works éiciently for a specific class of 3-input-3-output nonlocakés. In the asymptotic limit, all
these nonlocal boxes can be distilled to the maximally nzadlbox defined by the inequality and nonsignaling
constraints. Then we introduce a new contracting protdet teduces these boxes to the so called “correlated
nonlocal boxes”. As a result, our 3-input-3-output nonldzaxes also make communication complexity trivial
and appear very unlikely to exist in nature.

PACS numbers: 03.65.Ud, 03.67.-a

I. INTRODUCTION

When diferent measurements are performed on two separated pariseoftangled quantum state, the corresponding out-
comes can show correlations that violate a Bell inequatitytherefore are unexplainable by any local hidden varitigery [1].
This kind of stronger correlations is now well knownrasnlocality.

Quantum nonlocality is a fascinating counterintuitive pbiaenon related to the foundation of quantum mechanics asd h
attracted much interest recently both in theoretical amegrmental works [2]. It has been identified as another nesgu
alternative to entanglement and indispensable for dewidependent quantum information processing protocolg]3,For
instance, in a device-independent quantum key distribyti@tocol, quantum nonlocality is used to generated sheeecet
keys between dierent parties in a device-independent way, i.e., in a walythi@ainternal workings of the quantum devices are
unknown or not trusted [4]. In Ref. [5], it is shown that notddity is also a necessary resource for nonlocal compuratio
Furthermore, nonlocality that to some extent is superguamhight make communication complexity trivial [6].

Although entanglement and nonlocality are closely relategly are two quite dierent things. There do exist quantum states
with large entanglement but have no nonlocality, in the e¢hat these quantum states admit local hidden variable ismadd
cannot violate any Bell inequality [7, 8]. Many protocols fjuantum entanglement distillation have been proposedirié]
experimentally tested [10]. Similarly, one may ask anothresting question: can nonlocality be distilled? Inastivords, can
we get stronger nonlocality from a number of weak nonlocsbueces? Forstest al. [11] made a breakthrough and provided
a positive answer to this question. In their paper, theyemesl the first nonlocality distillation protocol in the finawork of
nonsignaling theory [12]. Then, Brunner and Skrzypczylspreéed another protocol for deterministically distillingnlocality,
which is optimal for two-copy distillation and workdheiently for a specific class of postquantum nonlocal boxes-sb
called correlated nonlocal boxes [13]. In the asymptotratlitheir protocols would distill all correlated nonlodabxes to the
maximally nonlocal box of Popescu and Rohrlich [14], thukimg communication complexity trivial [6].

In this work, we will focus on 3-input-3-output bipartite sfgms. We present a nonlocality distillation protocol focts
systems in the framework of generalized nonsignaling fleeorOur protocol is based on a three-setting Bell inequédit
bipartite three-level (qutrit) systems [16] and workBatently for a specific class of 3-input-3-output nonlocakés. In the
asymptotic limit, all these nonlocal boxes are distilledite maximally nonlocal box defined by the inequality. To shbat
these boxes are postquantum and unlikely to exist in nattgéytroduce a new contracting protocol to reduce them teldhes
of correlated nonlocal boxes.
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Il. THE FRAMEWORK AND DISTILLATION PROTOCOL

To begin with, let us consider the following Bell-type scaaadn terms of nonlocal boxes. Two distant parties, Alicelan
Bob, share a nonlocal box. Each party is allowed to input dhito the box and gets one output trit: Alice inputs {0, 1, 2}
and gets outcoma € {0, 1, 2}; Bob inputsy € {0, 1, 2} and gets outcombe € {0, 1, 2}. This device is atemporal: Alice gets her
output as soon as she feeds in her input, regardless of if &ed Bob feeds in his input, and vice versa. Every nonlocal box
is then characterized by a set of 81 joint probabilitRéabxy). A two-partite system, which is characterized by a coodiil
probability distributionP(abjxy), is said to be nonsignaling if one cannot signal from one sidthe other by the choice of the
input. This means that the marginal probabiliti%a|x) andP(bly) are independent gfandx, respectively, i.e.,

> P(abixy) = >’ P(abixy) = P(bly) ¥x X, b.y,

a a 1
2 P(abixy) = > P(abixy) = P@x) va xy,y. w
b

b

In the following, we will work on these nonsignaling boxeschcterized by their probability distributions, which fated in
the matrix form.

To present our main results, another problem we should &abwdth is: How to quantify non-locality in two-qutrit sysn?
In the two-qubit case, Forstet al. [11] and Brunneet al. [13] use the CHSH inequality [15] violation as the measwgptn
of two-qubit nonlocality. Similarly, here we use the viatat of a three-setting Bell inequality introduced in Ref.6]hs the
measure of nonlocality in three-qutrit system. To this dads briefly review the three-setting inequality. For t@wenience
of later utility, we rewrite the inequality in the followinigprm:

IE] —2[P(00xy) + P(12)xy) + P(21xy)] + P(01xy) + P(10/xy) + P(22/xy) + P(02)xy) + P(20/xy) + P(11|xy)
P(OOxy® 1) + P(12xy® 1) + P(21xys 1) — P(02xy® 1) — P(20)xys 1) — P(11xy® 1) + P(00)x & 1y)
P(12x & 1y) + P(21xa 1y) — P(02x & 1y) — P(20x & 1y) — P(11x® 1y) + P(01xy® 2) + P(10xye 2)
P(22xy® 2) — P(02xy® 2) — P(20xy® 2) — P(1lxy® 2) + P(01x @ 2y) + P(10x & 2y) + P(22x & 2y)

— P(02x® 2y) - P(20x® 2y) — P(11x® 2y) + P(0Lx o ly® 2) + P(10x® ly® 2) + P(22x® 1y ® 2)

- P(02xo ly® 2)- P(20x® 1ly® 2) - P(11lx® ly® 2) + P(0lx® 2y® 1) + P(L0x® 2y & 1)

+ P(22xo2ya 1)- P(02x® 2y 1) - P(20x® 2y 1) - P(11x® 2y ® 1) + P(00x & 2y & 2)

+ P(12x8 2y 2)+ PR1x® 2y 2) - P(0lxe 2y® 2) — P(LOx® 2y ® 2) — P(22x8 2y 8 2) < 4. (2)

+ + +

Here, the pairX, y) equals to any of the following nine pairg; |) (i, j = 0, 1, 2); The notatior® means addition modulo 3. It
is showed in Ref. [16] that the inequality (2) is tight andexaint to the well-known Collins-Gisin-Linden-Massar-Bspu
(CGLMP) inequality [17]. This inequality has four distinigh “roots’ [18] and its maximal quantum violation, which occurs at
a nonmaximally entangled state, i4803. Based on this multisetting inequality, our definitafrihe nonlocality of two-quitrit
systems is as follows:

NL[P] := max 121, (3)

Note that\ L[P] > 4 indicates that the correlatidhviolates the inequality (2) and is therefore called nonlloca
Now, let us introduce a class of one parameter nonlocal bpXés< € < 1).
Definition 1 We define the classical b@ as

1 jfa+b=1
PC =33 4
{O otherwise )

where= means equality modulo 3.
Definition 2 We define the maximal nonlocal b&¥'AX as

L ifa+b=z(x+y+2)7
pMAX.— 3 ! 5
{O otherwise ®)

Definition 3 The appropriate nonlocal b@ which we will use for distilling is defined as follows

P = P L (1-ePC (0<e<) (6)
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By directly calculations, it is easy to see ti&t, PMAX, andP€ are non-signaling with respect to the definition (1). Thernrat
form of P¢ is:

w00 01 02 10 11 12 20 21 22
0|0 £ o i 00001
01 s 5 0 55 0 5 0 5 L
02fo0 £ o f 00 o0 o0 1%
pe_| 108 B 0 B0 g 0 5 L
110 £ o $ 0 0 0 0 1
12fo0 £ o £ o 0 0 O %
2000 £ o £ 00 0O 1%
210 £ o {£ o o 0 0 %
225 % 0% 0 50§

According to the definition (3), the nonlocality Bf is N L[P€] = 4 + 4e. Whene = 1 boxP* turns toPMAX with nonlocality
NL[PMAX] = 8, which is the maximal nonlocality value of a 3-input 3-auttpi-partite box according to the Ineq. (2) [19]. In
addition, where = 0 boxP* turns toP®, which is classical and achievable by shared randomness.

Distillation protocol—Now we present a distillation protocol for the nonlocakesP<. Our protocol takes four copies of
any boxP¢ with 0 < € < 1 to a new nonlocal bok¢ with € > ¢, thus distilling nonlocality. In the asymptotic limit, amywith
0 < € < 1 is distilled arbitrarily close to 1 by iteration. The proabis illustrated in Fig.1.

x_\ f—y
ai by
Xp=2X+a+2 y2é2y+b1+2
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a by

X3=2X+a1+ay y3é2y+b1+b2

l
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Xp=2X+a1+ay+dz+1 y::zy +b1+by+b3+1

[

an b4

 § Y
a=a1+aytaz+ta, b=b1+by+b3+b,

FIG. 1: Protocol for four-copy deterministic nonlocalitistillation. Alice and Bob use foup< boxes sequentially. They input the valyeand
y; into theith box and get the corresponding outpaitandby;, respectively. At last, they calculagez a; + a, + ag+ag andb = by + by, + b+ by
as the final outputs of the new box.

Alice and Bob share four copies of boxXgs those boxes are arranged sequentially. Let us deqabedy; the value Alice
and Bob input into box, respectively. The output of tHeh box is denoted by andby. The input and output of Alice and Bob
at each step are denoted as follows:

This table explicitly shows that at the side of Alice there anly symbolsx anda ( ignoring the subscript ), so she needn’t
any information from Bob when she proceeds the protocolilains the case of Bob. This protocol is feasible, for theunp
of Alice ( Bob ) atith step only depends on the initial inpx{ y ) and the output ajth step withj < i . Notably, though the
boxes are arranged sequentially and Alice and Bob have td irghues step by step because the later input are depernuihg o
former output, the two parties are independent of each ptftéch means Alice may have accomplished all of her opematio
and got the final output while Bob did nothing——boxes are atemporal.

By straightforward calculations, one obtain that the firat kafter the above distillation protocol has been appigs; with

€= (2-€-(€6-2e+2) O<e<1). @)



Alice Bob

input of each step X1 =X yi=Yy
Xo = 2X+a; + 2 y2£2y+b1+2
X3 = 2X+a; + ap VaZ=2y+b+by

X Z2X+a +@+az+1  ya=2y+b+by+bs+1
outputof eachstgp a (k=1,2,34) be (k=1,234)
final output ofP¢ aZa+ay+az+ay b=bi+by+bg+hy

There are two fixed points in function (%),= 0 ande = 1. The stability can be checked by finding the eigenvalueb®f t
Jacobian at the fixed points. We get.—o= ‘é—i lezo= 4 > 1, A |e=1= ‘é—i le=1= 0 < 1, soe = 1 is an attractive fixed point and
e = 0 is repulsive, which means, by iteration, we could distlih@nlocal boxPe arbitrary close t®AX despite that the initial
box may very close to classical b&%. More intuitional express of relation betweeande’ is show in Fig.2.
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FIG. 2: (color online) The relation betweerande’, which are the characteristic parameters of the initial famal boxes, respectively. The
graph shows’ as a function ok, i.e.,e’ = €- (2 - €) - (€2 — 2¢ + 2) (the red solid line). The blue dashed straight ligies ¢, is given as a
reference. The black thin line (steps) shows the distitatf an initial box under successive iterations of the oko

Proof—Now we prove those results. First let us show how this maitavorks in an intuitive way. We express the three-
setting Bell inequality and the nonlocal b&x in one graph (see Fig.3), in which color denote the paranietéont of the
corresponding terms in the three-setting Bell inequalitijle the numbers denote the b&k. To find a suitable nonlocal
protocol is just to find a map with two properties:

1. Itis closure irP¢, so we could iterate them without change the protocol.
2. The nonlocality of the final box is bigger than the nonlagaif the initially boxes.

Comparing Fig.3 we could find that two element®inare the same if they have the same values®fy anda® b. For the
sake of convenience, we will chose one element to expresteatients with same value under operation of modulo 3. Then ou
purpose is to fix the rows witk@ y = 0 andx® y = 2 unchanged and increase the values in blue blocks at roluscaity = 1.
Now we show that the protocol achieve those requirementgraightforward calculations.

Calculate P®"(abjxy).—First we calculate the elemeRt®(01/00) in new boxP€. According to the protocolP""(01]00)
equals to the summation of suitable conditional probabiltich we have:

P™(0100)= > PXasbylxayr) -P*(aghalxzy2)
- P3(agbslxays) -P*(asbalxaya)
= > PYahs00) -P*(aghalxzy2)

- P3(agbslxays) -P*(asbalxaya) (8)
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FIG. 3: (color online) An intuitional denotation of threetSng Bell inequality andP<. Different colors denote theftirent parameters in
front of the corresponding terms in the three-setting Behuality, which red (latticed shading) denet2, green (slash shading) deneté,
gray (backslash shading) denote 0 and blue (solid shadem)td+1. The numbers in those colored blocks denote elemeris, aind the
probability of blocks without number is zero.

The summation calculates all the cases submitted toa, + as+ a4 = 0 andby + by + b+ by = 1. Pi(ajbi|xy;) (i = 1,2,3,4)
denote the elementsith box. Because whem +b; = 2 (see Fig.3P' (a;bi|xy;) always equals to zero independent of the inputs,
then those terms can not show up in the summation. Thus, énerenly two kind of outputs we need to considar:+ b; = 0
anda + b; = 1. Note thab+ b =0+ 1 = 1then @ + by) + (a2 + b)) + (ag + bs3) + (a4 + bs) = a+ b = 1. There are five possible
combination ofg; + by satisfy this, which expressed as a table:

vats= [1]2]3[a]5
a1+b1% 0|0|0[1(1
a2+b2%00101 . (9)
az+bs=|0/1/0|0|1
as+bg=|1/0/0|0|2

According to the protocoR!(asby|x1y1) = P*(aibi|xy) = P(a;b;|00), then the cases numbe213 which witha; + by = 0 are
ill-fitting, for PX(0000) = 0. In the 4th case (see Fig.3+Y> = 2(X+Y) + (a1 + b1) + 1 = 2, thusP?(axby|xoy,) = P?(0002) = 0,
also ill-fitting. Only the fifth case fit the requirement. Byrslar analyze, in case number 5, we ggty, = 2(x+y)+(a;+by)+4 =
0+1+4=2,%3+Yy3 =2(X+Y)+(ag+b1)+(az+bp) =2 0+1+1=2, andxs+Vys = 2(X+Yy)+(a1+b1) +(az+by) +(az+bz) +2 =
O+1+1+1+2=2.

Finally we get:

P"®%01/00) = Z P1(01/00)- P?(01/02)

-P3(01102)- P4(01/02)
1111 1
= 3. ... —_ = =
=3 3333 3 (10)
Here is the 3 come from: leta; (i = 1,2,3) freely chose, theay; = 0—a; — a, —az andb;, = 1-a (i = 1,2 3,4) are
determined. Each; has three possible outpat = 0, 1, 2 thus totaly have 3terms contribute to the summation. Note that
P"€Y(01/00)+ P"Y1000)+ P"*¥2200) = 3- % = 1, so the rest probability in those rowsdiy = 0) are zero. Similarly we get:

PeY(01/02) = Z P1(01/02)- P?(01/00)
-P3(02/00)- P*(01/00)
1111 1

=®.33-53°5 (11)

Then comparing to the initial box we see this protocol do mainge the rows withkdy = 0 andxe y = 2.



Now we calculate the elemeRt*(00/01) andP"**(01/01) to finish the proof. Becausasf+bi)+(az+by) +(ag+bs)+(as+hs) =
a+ b= 0, the possible combination table B¥**(0001) is:

an e [1]2]3]4]5
a1+b1£ 0|0|1(1(1
a+hb,=(0[1]/0[1]1 | (12)
613+b3£ 0/1{1({0(1
as+by=|0[1]1]1]|0

The probability in each case ( denotelaswherei =1234,5)is Pl =0,P,=35,P3=5-(1-¢),Ps= g (1= €2

Ps=5-(1-€)® SoP™(0001)= 32, P = §-(2—€) - (2 — 2¢ + 2) = £. similarly, we getP"®(0101) = 42" = L¢
Combmmg the calculations above we proved that this padteorks. It turns four copies of nonlocal b&x to anew nonlocal
boxP< withe =e-(2-€)-(€2-2c+2) (O<e<1).

1. THE CONTRACTING PROTOCOL AND TRIVIAL COMMUNICATION COMPLEXITY

One question left behind the above distillation protocohether the correlations in Eq. (6) have a quantum realiz@tio
The answer is negative. Although some correlations in Ef.a(é arbitrarily close to the set of classical correlatjaaikof
these correlations are postquantum and make communicaiioplexity trivial after distillation. We demonstrate #eeresult
by giving a contracting protocol which recast these norlboaes to correlated nonlocal boxes, since correlatedatahboxes
make communication complexity trivial so are these boxes.

Contracting protocol.—Now we present the contracting protocol. Our protocol takescopies of nonlocal boR defined
in Eq. (6) and a shared uniform randomness{0, 1} to a correlated nonlocal boxes

|| 00]01|10] 11

oo|| $|o|o]| 2
Penn” =| 01 % 0 % ’ (13)

1 1

Ol o2

L= lzlz 17

wheree’ = %e. The protocol is illustrated in Fig.4.
Alice and Bob share two copies of box&s we denote them Box 1 and Box 2. The input and output at eaclstasxshow
in the table:

Alice Bob
initial input of Penp X y
input toP¢ of each box Xt y*
output fromP< of each boxay (k=1,2)|bx (k=1,2)
final output ofPeny’ a b

Wherex*, y* are the functions ot andy, while &*, bj* are functions o andb;. Those functions denote as follow:

01 y|0]1 a1(|0(1]|2
X112 y 1|2 a|0]1)1

bifo[1]2] [a]o0]1]2] [b.]0[1]2
b:l[2[ol1] |=]1][o]o] |b;]o[1]0

Notable that although we used two box&sn the protocol, at each time only one of their output is usethée final output,
and which one is picked is determined by the value of randa@smeDifferent from the boxes in distillation protocol, in this
protocol two initial boxes are not necessarily sequenti@rayed, because the input of Box 2 are independent of thmubaf
Box 1.

Proof —Now we prove those results by direct calculations. Fit$s,easy to see that the inputs and outputs of new box are
no longer trits but bitsx, y, a, b € {0, 1}, which means it could express as & 4 matrix. Now we prove matrix (13) is the right
one.



x* f‘y
X=0,1 y*=o,1
x*=1,2 y=1,2
4=0,1,2 b1=0,1,2
ar=0,1,1 b'=1,0,1
xX=0,1 y*=0.1
x=1,2 y=1,2
a=0,1,2 by=0,1,2
ay=1,0,0 b,=0,1,0
Y . Y

ay ifr=0 by ifr=0

] -{;

az ifr=1 by ifr=1

FIG. 4: Protocol to construct correlated nonlocal box. Aland Bob use tw®¢ boxes and a sharing randomnessThey inputx* andy*
which is the function ofk andy, respectively.a; andb; is the output of théth box at each side, whilg* andb;* is the function ofg; andb;,
wherei = 1, 2. They finally outputa andb, which is function ofg;* andb;*.

Calculate F’e""(ablxy)

P"e%00/00) = 1 5 P(01|11)+ -[P(1011)+ P(1211)+ P(2011) + P(2211)] = %

P"€%(11/00) = 5 1.[P(1011)+ P(12|11)+ P(2011)+ P(2211)]+ 5 1. P(0111)= 3 1

BecauseP”eW(OQOO)+ P"€%(11/00) = 1, the rest elements in the row, §) = (O, O) are zero. Similarly, we g@"*(00/01) =
P"*Y(11/01) = P"*"(00|10) = P"**(11J10) = %

While,

P"eY0011) = % P(01|22)+ 5 [P(10|22)+ P(1222)+ P(2022) + P(22|22)] =

PreW0111) = % [P(0022) + P(02|22)]+ [P(11|22)+ P(2122)] =

Similarly, we getP"®(10/11) = 5 and P”e""(lull) = =, which ends the proof. An inference from this protocol istalkes
in Eq. (6) will make communication complexity trivial. Bagse such boxes could construct a box in Eq. (13) withd < %
which have been proved to collapse the communication codtylkefter distillation [13].

IV. CONCLUSION

In summary, based on a three-setting Bell inequality, welpawposed a nonlocality distillation protocol that worksogently
for a class of 3-input-3-output nonlocal box&s In the asymptotic limit, all boxes in this class can be dedito the maximally
nonlocal boxPMAX, We also introduced a contracting protocol which can redtide correlated nonlocal bok.., . Because
Py collapses the communication complexity after distillatiour contracting protocol has in fact proven tiRatcan also
trivialize communication complexity and thus unlikely t®igt in nature. Our work represents a primary step to explouéti-
setting Bell inequalities in the task of distilling nonldita It might be interesting to explore further the contiag technique
in proving that certain nonlocal boxes are postquantum afilely to exist in nature.
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