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Axiomatic geometrical optics, Abraham-Minkowski controversy,

and photon properties derived classically

I. Y. Dodin and N. J. Fisch
Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA

By restating geometrical optics within the field-theoretical approach, the classical concept of a
photon (and, more generally, any elementary excitation) in arbitrary dispersive medium is intro-
duced, and photon properties are calculated unambiguously. In particular, the canonical and kinetic
momenta carried by a photon, as well as the two corresponding energy-momentum tensors of a wave,
are derived from first principles of Lagrangian mechanics. As an example application of this formal-
ism, the Abraham-Minkowski controversy pertaining to the definitions of these quantities is resolved
for linear waves of arbitrary nature, and corrections to the traditional formulas for the photon ki-
netic energy-momentum are found. Several other applications of axiomatic geometrical optics to
electromagnetic waves are also presented.

PACS numbers: 03.50.De, 42.50.Wk, 42.15.-i, 03.50.-z

I. INTRODUCTION

A. Motivation

The discussion about how to define the momentum and
the angular momentum of a photon in dispersive medium
(PDM), and even simply of a classical wave, recurs in lit-
erature periodically during the last hundred years. The
recent burst of theoretical [1–53] and experimental [54–
56] publications indicates both an abiding interest in the
problem and, apparently, a lack of consensus or certainty
about what the correct answer is. The traditional argu-
ments can be found in reviews like Refs. [57–63] and ref-
erences therein, too numerous to be listed in this paper.
Let us mention only briefly that two alternative forms of
the PDM momentum are adopted most commonly:

pM = ~ωnp/c, pA = ~ω/(ngc), (1)

which are known, respectively, as the Minkowski inter-
pretation and the Abraham interpretation [64]. (Here ω
is the frequency, c is the speed of light, and np = c/vp
and ng = c/vg are the refraction indexes associated with,
correspondingly, the phase velocity vp and the group ve-
locity vg; for the two associated angular momenta see
Ref. [46].) Since both have supporting theoretical and
experimental evidence [1], the question about which of
the two interpretations is “more correct” has been con-
troversial.
A resolution to this Abraham-Minkowski controversy

(AMC) was proposed recently in Ref. [1]. It was argued
there that both interpretations are correct; namely, pM
can be attributed as the canonical momentum, and pA
can be attributed as the kinetic momentum of a pho-
ton. Yet, strictly speaking, the argument of Ref. [1] ap-
plies only to the case of a nonrelativistic solid dielec-
tric. The subsequent generalization in Ref. [6] is not
quite complete either; for example, the latter neglects
electrostriction and magnetostriction, kinetic effects, and
spatial dispersion, and also attributes vg entirely to the
Poynting flux, in disagreement with a textbook theorem

[Eq. (136)]. Thus, a quantitative relativistic theory is
still lacking that would correct the existing understand-
ing of PDM, and Eqs. (1) in particular. The purpose
of this paper is to resolve these issues in a consistent
manner and, through that, formulate a comprehensive
asymptotic theory of linear waves of arbitrary nature.

B. Field-theoretical approach

Before photon properties can be calculated, the PDM
itself must be defined unambiguously. (In particular this
means that, contrary to the common presumption, the
PDM properties cannot simply be inferred from experi-
ment without a theory of what is being inferred.) Second
of all, the definition should not be expected to originate
from electromagnetism, because the concept of a pho-
ton, and even of vp and vg that enter Eqs. (1), is not
embedded in Maxwell’s equations per se. On the other
hand, the photon concept is neither entirely of quantum
nature [65], and mechanical properties of quantum radi-
ation (dipole force, radiation pressure, cooling effects on
atoms, etc) are consistently shown to have direct classical
analogs [66–70]. It then stands to reason that an abstract
classical calculation could resolve the AMC, generalizing
Eqs. (1), without assuming a specific underlying physical
system whatsoever.

To understand what the right framework is for such
a calculation, notice that introducing a photon implies
that the frequency ω and the wave vector k are well de-
fined. These are exactly the validity conditions of the
asymptotic theory commonly known as geometrical op-
tics (GO). (The term “optics” here means only that the
theory deals with sufficiently large ω and k; i.e., waves
need not be electromagnetic.) Although usually defined
through rays and wave equations [71–79], the most fun-
damental, axiomatic GO is an abstract field theory that
applies to any field having a Lagrangian density of a spe-
cific form [Eq. (11); dissipative effects can also be added,
Sec. IVD]. Just like Newton’s laws of particle motion
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hold, with obvious exceptions, independently of specific
forces acting on particles, the basic GO equations are
then invariant to the wave nature [80], and the wave prop-
erties can be derived in general. Hence, axiomatic GO
should resolve the AMC automatically and transparently.

C. Outline

Here we aim to apply the GO formalism toward de-
riving PDM general properties deductively using noth-
ing more that first principles of classical mechanics. In
doing so, we draw on the Lagrangian field theory as elab-
orated in plasma physics and hydrodynamics during the
last fifty years [81–109]. Since this literature, sadly, re-
mains unknown within the mainstream approach to the
AMC (with few exceptions), the general formalism of ax-
iomatic GO will also be restated.
Specifically, below we do the following:

(a) formulate from first principles a comprehensive the-
ory of axiomatic GO, extending and expanding on
existing results in applications to waves of arbitrary
nature (not just electromagnetic waves);

(b) explain how the wave canonical energy-momentum
tensor (EMT) is related to the photon properties
in the Minkowski interpretation (here and further
photons are understood as any elementary excita-
tions, not just light quanta; Secs. III A and VIF);

(c) introduce the wave angular momentum and pho-
ton (plasmon, phonon, polariton, etc.) spin within
axiomatic GO and calculate it explicitly for cylin-
drical beams, also of arbitrary nature;

(d) derive the effect of local linear dissipation;

(e) unambiguously define the wave kinetic EMT and
calculate it explicitly for isotropic relativistic fluids
(with striction effects included);

(f) calculate the associated energy, momentum, and
angular momentum per photon (plasmon, phonon,
polariton, etc.); show that the traditional, Abra-
ham’s formulas are reproduced as a limiting case;

(g) illustrate how the properties of electromagnetic
waves, considered as a special case, can be inferred
deductively within axiomatic GO, nearly without
appealing to Maxwell’s equations;

(h) finally, responding the questions posed in Ref. [35],
we clarify the applicability of Minkowski’s and
Abraham’s formulas for electromagnetic waves in
various media (including cold, warm, and relativis-
tic) and present examples.

Note that, in parts (a) and (b), which correspond to
Secs. III-IVB, we mostly repeat known arguments, pub-
lished previously, e.g., in Refs. [84–88]. Also keep in mind

that, in application to specific media, the problem of find-
ing both canonical and kinetic EMT of a classical electro-
magnetic wave was solved comprehensively in Ref. [88],
which, while known within the plasma physics commu-
nity, seems to remain unknown to the general readership.
The difference between Ref. [88] and our paper is that
we use different machinery to arrive at results that are,
in certain aspects, more general and, as a consequence,
more concise and transparent. In particular, our paper is
not about electromagnetism but rather about basic physics
of waves, so we need not specify the wave nature; also we
derive photon properties, and allow for dissipation, com-
plementing Ref. [88] on these issues.
The paper is organized as follows. In Sec. II we intro-

duce the notation used throughout the text. In Sec. III
we describe general GO waves, including nonlinear waves,
in arbitrarily curved spacetime and also in the Minkowski
spacetime as a particular case. In Sec. IV we reduce
the theory further to describing linear waves and explain
how the Minkowski representation is recovered; in par-
ticular, the wave angular momentum and dissipative ef-
fects are discussed. In Sec. V we introduce the wave
kinetic EMT and reproduce the traditional formulas for
the corresponding photon quantities as a limiting case. In
Sec. VI we consider, as an example, how the specific prop-
erties of electromagnetic waves flow deductively from the
general theory. Sec. VII explores ramifications of our
findings and summarizes our main results. Auxiliary cal-
culations are presented in Appendix.

II. NOTATION

The following notation will be assumed below. We
use the symbol

.
= for definitions. Greek indexes span

from 0 to 3 and refer to coordinates in spacetime, xα. In
particular, for the Minkowski spacetime we adopt x0

.
=

ct, where t is time. Hence the Lorentz transformation
matrix, Λα

β
.
= ∂xα/∂x′β, is given by

Λ0
0 = γ, Λ0

i = γvi/c, Λi
0 = γvi/c,

Λi
j = δij + (γ − 1)vivj/v

2, (2)

where vi is the velocity of the “primed” reference frame
with respect to the laboratory frame, and γ

.
= (1 −

v2/c2)−1/2. Latin indexes i, j, and l span from 1 to 3
and refer to spatial coordinates, xi. Spatial vectors are
denoted with bold, X; spatial tensors are also marked
with hat, T̂; symbols like XY

.
= Ẑ stand for spatial

dyadics, Zij = X iY j ; the symbol 1̂ denotes the unit spa-
tial tensor; besides, the three-tensor

Λ̂
.
= 1̂+

γ − 1

v2
vv (3)

is the spatial part of Λα
β. Summation over repeating

indexes will also be implied; e.g., X iYi ≡
∑3

i=1X
iYi.

Latin indexes (excluding i, j, l, and non-bold roman,
as in np) denote partial derivatives with respect to the
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corresponding variables; e.g., for f
.
= f(a, ω,k; t,x), the

symbol fx denotes the derivative (gradient) with respect
to the last argument, x. In addition to those, we also
introduce “full” temporal and spatial derivatives, ∂tX ≡
∂X/∂t and ∂iX ≡ ∂X/∂xi, which treat all arguments of
(any) X as functions of, correspondingly, t and xi. For
instance, for the above f , one has

∂tf = fa ∂ta+ fω ∂tω + fki
∂tki + ft, (4)

∂if = fa ∂ia+ fω ∂iω + fkj
∂ikj + fxi

, (5)

while ∂ta(t,x) = at(t,x), etc. The symbol ∇ denotes
the associated full covariant derivative; e.g., ∇if = ∂if
is the full gradient of the scalar f , and ∇ · F is the full
divergence of the vector F,

∇ · F =
1√
η

∂

∂xi
(√
η F i

)

, (6)

where η
.
= det ηij , and ηij = ηji is the spatial metric. [In

Cartesian coordinates, Euclidean space has ηij = ηij =
diag (1, 1, 1), so η = 1.] The symbol ,α denotes the analo-
gous (to ∂i) full derivative with respect to xα, and ;α de-
notes the analogous full covariant derivative. For exam-
ple, the four-divergence is

Fα
;α =

1√
g

∂

∂xα
(√
g Fα

)

, (7)

where g
.
= −det gµν , and gµν = gνµ is the spacetime

metric. For introduction to the tensor notation and index
manipulation rules in particular, see Refs. [71, 110, 111].
Some specific symbols are also summarized in Table I,

and the abbreviations used in the text are as follows:

ACT – action conservation theorem,
AMC – Abraham-Minkowski controversy,
EMT – energy-momentum tensor,
GO – geometrical optics,

PDM – photon in dispersive medium,
SAM – spin angular momentum,
WMS – “wave + medium” system.

III. GENERAL WAVES

A. Covariant formulation

First, let us consider a general nondissipative wave de-
scribed by some action integral S =

∫

L
√
g d4x, where

√
g d4x ≡ √

g dx1dx2dx3dx4 (8)

is an invariant volume element in spacetime, and the four-
scalar L is the Lagrangian density. Since the action of
the underlying medium is not included here, no invari-
ance requirements on L are imposed. Instead, we assume
that the wave structure remains fixed (albeit not neces-
sarily sinusoidal), so the wave is fully described by some

canonical phase θ, which will be understood as a scalar
field θ(xν ), and a = a(xν), which is an arbitrary measure
of the wave local amplitude [112]. We also assume that
the envelope evolves on spacetime scales large compared
to those of local oscillations. On such time scales, it is
only the average Lagrangian density that contributes to
S, so one can adopt that L does not depend on θ explic-
itly. Instead, L must depend on the phase four-gradient,

kµ
.
= θ,µ, (9)

which is the generalized “wave vector” (actually, a four-
covector here), obviously having zero four-curl,

kµ;ν − kν;µ = kµ,ν − kν,µ = θ,µν − θ,νµ = 0. (10)

[Equation (10) is known as the consistency relation.] Be-
sides that, L must depend on a; yet the dependence on
the amplitude gradients a,ν is negligible in the GO limit.
Thus, allowing also for slow parametric dependence on
the spacetime coordinates xν , we postulate

L = L(a, kµ;x
ν), (11)

which as well can be considered as the definition of the
GO approximation. Hence wave equations are inferred
using the least action principle, namely, as follows.
First, let us consider variation of S with respect to the

wave amplitude a. Since δaS =
∫

La δa
√
g d4x for any

δa, the requirement δaS = 0 leads to

La = 0. (12)

Equation (12) can be understood as the wave dispersion
relation, and it is generally nonlinear, i.e., may retain
essential dependence on a (see, e.g., Refs. [106, 108]).
Second, let us consider variation of S with respect to

the wave phase θ [113]. Due to Eq. (9) and the fact that
L does not depend on θ explicitly, for any δθ one has

δθS =
∫

Lkµ
δθ,µ

√
g d4x

=
∫ [

(
√
gLkµ

δθ),µ − (
√
g Lkµ

),µ δθ
]

d4x

= −
∫

(Lkµ
);µ δθ

√
g d4x,

where we used the fact that the wave field vanishes at
infinity, so

∫

(. . .),µ d
4x = 0. Thus, the requirement

δθS = 0 yields that the four-divergence of the action
flux density J µ .

= −Lkµ
is zero [114],

J µ
;µ = 0, (13)

which is called the action conservation theorem (ACT).
Since the ACT has the form of a continuity equation, one
can treat Gµ .

= J µ/~ as the flux density of some ficti-
tious quasiparticles, or “photons”. (In application to spe-
cific waves, one can as well think of plasmons, phonons,
polaritons, or any other elementary excitations instead.
See also Sec. VI F.) However, remember that, within our
classical description, it is only the product ~Gµ that has
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TABLE I: Summarized here is some notation adopted for wave variables (“ponder.” stands for ponderomotive; the integral
quantities are obtained by integrating the corresponding densities over the spatial volume, dV ≡ √

η d3x). The rest of the
notation is explained in Sec. II and throughout the text.

per unit spatial volume integral per photon

canonical kinetic ponder. - canonical kinetic

number of photons N - - N 1 -

action I - - I ~ -

energy E ε ∆ε - H h

momentum P ρ ∆ρ - P p

angular momentum M µ ∆µ - M m

photon flux G - - - - -

action flux J - - - - -

energy flux Q ϑ - - - -

momentum flux Π̂ π̂ - - - -

energy-momentum tensor T τ ∆τ - T -

wave Lagrangian L - - L - -

an explicit physical meaning, so the actual value of ~ will
be irrelevant for our purposes.

Finally, let us also introduce the wave EMT as follows.
Consider the (generally asymmetric) tensor

Tαβ .
= kαJ β + δβαL. (14)

The divergence of Tαβ equals

Tαβ
;β = kα;βJ β + kαJ β

;β + δβα(La a;β + Lkλ
kλ;β + Lxβ )

= kα;βJ β + δβα(Lkλ
kλ;β + Lxβ )

= kα;βJ β − kλ;αJ λ + Lxα

= kα;βJ β − kα;λJ λ + Lxα

= Lxα , (15)

where we used Eqs. (11)-(13). This tensor is then associ-

ated with the conservation law, Tαβ
;β = 0, yielded when

the system is translationally invariant in spacetime (i.e.,

when the four-force is zero, Lxα = 0). Hence, Tαβ is a
true canonical EMT [115], as one could also infer from the
standard definition that is based on Noether’s theorem
[116]. However, notice that, in contrast with the funda-
mental theorem of the vacuum field theory [71, Sec. 32],
T αβ does not permit the usual [88, 101, 117–120] sym-
metrization, since L is not restricted by any invariance
requirements [81]. (Yet see Ref. [121] for symmetrization
via adopting an effective, “optical” metric.) In particu-
lar the very fact that a scalar field such as θ(xν) yields
an asymmetric EMT already proves the lack of Lorentz
invariance [122, Sec. 5.6].

B. Application to the Minkowski spacetime

From now on, we will assume the Minkowski spacetime
with metric signature (−,+,+,+); hence,

g00 = g00 = −1, ηij
.
= gij , η = g. (16)

(Although the space is Euclidean, we will allow for curvi-
linear coordinates; thus, albeit flat, the spatial metric ηij
can otherwise be arbitrary.) In this case, kα = (−ω/c,k),
and kα = (ω/c,k), where

ω
.
= −∂tθ, k

.
= ∇θ. (17)

Then Eq. (10) turns into the following set of equations:

∂tk+∇ω = 0, ∇× k = 0. (18)

One may notice also that the latter equation here can
be considered as the initial condition for the former one,
taking curl of which readily yields ∂t(∇× k) = 0.
Accordingly, Eq. (11) becomes

L = L(a, ω,k; t,x). (19)

The dispersion relation hence holds in the form (12). The
ACT can be rederived from Eq. (19) or it can be deduced
from Eq. (13) by substituting J α = (cI,J ); either way,
one gets (cf. Refs. [85, 86])

∂tI +∇ ·J = 0, (20)

where I is the action density, and J is the action spatial
flux density, introduced as follows:

I .
= Lω , J

.
= −Lk. (21)



5

In particular, integration of Eq. (20) over the volume
dV ≡ √

η d3x yields conservation of the integral action,

I
.
=

∫

I dV = const. (22)

Introducing the photon density N .
= I/~ and the photon

spatial flux density G
.
= J /~, one can further rewrite

Eq. (20) as ∂tN + ∇ · G = 0, and Eq. (22) will yield
the photon conservation, N

.
=
∫

N dV = const. Also
notice that both I and N are Lorentz invariants, as well-
known to flow from the general (unlike, e.g., in Ref. [123])
properties of the continuity equation [111, Sec. 2.6].
The elements of the (contravariant) EMT are now

T 00 = ωI − L, T 0i = ωJ i/c,

T i0 = ckiI, T ij = kiJ j + ηij L. (23)

In particular, Eq. (15) yields

∂T 00

∂t
+

1√
η

∂

∂xi
(cT 0i√η) = w, (24)

which is a continuity equation for T 00 with the right-
hand side being w

.
= g00cLx0 = −Lt. Since the latter has

the meaning of the canonical power source, E .
= T 00 must

be the wave canonical energy density, and Qi .
= cT 0i

must be the canonical energy flux density. Similarly,

1

c

∂T i0

∂t
+

1√
η

∂

∂xj
(T ij√η) = f i, (25)

which is a continuity equation for the three-vector T i0/c
with the right-hand side being f

.
= Lx. Since the lat-

ter has the meaning of the canonical momentum source,
P i .= T i0/c must be the wave canonical momentum den-
sity, and the (generally asymmetric) three-tensor Πij .

=
T ij must be the canonical momentum flux density [124].
In summary, one then has

T αβ =

(

E Q/c

cP Π̂

)

, (26)

where the individual blocks are given by

E = ωI − L, Q = ωJ ,

P = kI, Π̂ = kJ + L 1̂, (27)

and Eqs. (24) and (25) can be written as follows:

∂tE +∇ ·Q = w, ∂tP +∇ · Π̂ = f . (28)

It is hence seen that the wave energy propagates at veloc-
ity Q/E that is generally different from the action flow
velocity J /I [cf. Eq. (20)], and similarly for the mo-
mentum flow velocity. Moreover, those three turn out
to be different from the velocities of information, or the
nonlinear group velocities, of which there can also be
more than one. For an expanded discussion on this see
Refs. [86, 109] and references therein.

IV. LINEAR WAVES: MINKOWSKI

REPRESENTATION

A. Basic equations

Now let us consider a linear wave, i.e., such that has
ω(k; t,x) independent of a. In this case, from Eq. (12)
it is seen that La must be separable as La = D(ω,k)Aa,
whereA(a, ω,k) is some function such that Aa is nonzero.
[Parametric dependence of functions like L, D, and A on
(t,x) is also implied but will be omitted for the sake of
brevity.] Then,

L = D(ω,k)A. (29)

It will hence be convenient to think of a as of a linear
measure of the oscillating field amplitude. Then, most
commonly, one will have A ∝ a2; yet for our purposes
the actual dependence need not be specified.
Equation (12) now yields

D(ω,k) = 0. (30)

Thus Eqs. (21) become

I = DωA, J = −DkA, (31)

and Eqs. (27) take the form

E = ωI, Q = ωJ , P = kI, Π̂ = kJ . (32)

Hence the photon canonical energy, H
.
= E/N , and the

photon canonical momentum, P
.
= P/N , equal [84]

H = ~ω, P = ~k, (33)

matching the Minkowski interpretation exactly and inde-
pendently of the wave nature. (In fact, P = ~k holds
even for nonlinear waves [cf. Eqs. (27)], albeit assuming
a fixed ratio of a and the amplitude of each nonnegligible
harmonic.) In particular, Pα .

= (H/c,P) = ~kα happens
to be a true four-vector, by definition of kα, so PαPα is a
Lorentz invariant. The latter can also be understood as
a measure of the photon canonical mass M, defined via

M2 .
= −PαPα/c

2 (34)

(cf., e.g., Refs. [103, 125, 126]).
Further, differentiating Eq. (30) with respect to k [with

ω = ω(k; t,x)] also gives Dωvg +Dk = 0, where we in-
troduced the linear group velocity vg

.
= ωk; therefore,

vg = −Dk/Dω = J /I. (35)

Hence, Eq. (26) yields T αβ = NTαβ , where

Tαβ =

(

~ω ~ωvg/c

c~k ~kvg

)

(36)
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is the canonical EMT per photon. Alternatively, one can
also exclude N and rewrite Eqs. (32) as

P = kE/ω, Q = Evg, Π̂ = Pvg. (37)

It is seen, from here and Eqs. (28), that the canonical
action, energy, and momentum are all transported at the
same velocity, vg. However, keep in mind that the full,
or “kinetic” energy and momentum densities carried by
the wave (Sec. V) generally do not have this property.
Finally, let us introduce photon trajectories, dtx = vg,

also known as GO rays. Along those trajectories,

dt = ∂t + vg · ∇. (38)

Then Eqs. (18) yield

dtx = vg, dtk = −ωx, dtω = ωt. (39)

[Remember that the derivatives ωx and ωt of ω(k; t,x)
are taken at fixed k.] In particular, the ACT can hence
be written as

dt ln I = −∇ · vg. (40)

Also notice that Eqs. (39) can be understood as canonical
equations for the photon motion governed by the Hamil-
tonian H(x,P; t). In this form, i.e.,

dtx = HP, dtP = −Hx, dtH = Ht, (41)

they are identical to the motion of a true classical particle
such as an electron, which supports the well-known anal-
ogy between GO and classical mechanics [127, Sec. 9.8].
Reverting to Eqs. (11) and (19), it is seen then that not
just waves, but classical particles too can be described in
terms of phases and amplitudes [128].

B. Noether’s integrals

Various transport equations can now be derived from

∂t(XI) +∇ · (XJ ) =

= (∂tX)I + X(∂tI) + (∇X)J + X(∇ ·J )

= (∂tX)I + (∇X)J

= I (∂tX+ vg · ∇X)

= I dtX, (42)

which holds for arbitrary X. Some of those are as follows.
Action. — Taking X equal to a constant, one recov-

ers Eq. (20), or the ACT. [Of course, this is not an in-
dependent derivation of the ACT, since the latter itself
was used in deriving Eq. (42).] As already emphasized,
Eq. (20) is due to the fact that L does not depend on θ ex-
plicitly. Since it also implies conservation of the integral
action I, the latter can be understood as the correspond-
ing Noether’s integral.

Energy. — Taking X = ω, one obtains

∂tE +∇ · (Evg) = I dtω. (43)

As seen from Eq. (39), in stationary medium dtω = 0, so
one recovers the result obtained in Sec. III, namely, that
the wave integral energy,

∫

E dV , is the Noether’s inte-
gral that is conserved when the system is translationally
invariant in time. Another corollary, which is obtained
by comparing Eq. (43) with Eq. (24), is that

−Lt = w = I dtω = I ωt, (44)

where we also used Eq. (39). Alternatively, one can
rewrite this as w = N dtH , where dtH is the work on
an individual photon per unit time.
Momentum. — Taking X = k, one obtains

∂tP +∇ · (Pvg) = I dtk. (45)

As seen from Eq. (39), in homogeneous medium dtk = 0,
so one recovers the result obtained in Sec. III, namely,
that the wave integral momentum,

∫

P dV , is the
Noether’s integral that is conserved when the system
is translationally invariant in space. Another corollary,
which is obtained by comparing Eq. (45) with Eq. (25),
is that

Lx = f = I dtk = −I ωx, (46)

where we also used Eq. (39). Alternatively, one can
rewrite this as f = N dtP, where dtP is the force on
an individual photon.
Angular momentum.— Taking X = x×k, one obtains

from Eq. (42) that

∂tM+∇ · (Mvg) = I dt(x× k), (47)

where we formally introduced M
.
= (x× k)I, or

M = x×P. (48)

Based on Eq. (48), one could anticipate that M is the
wave angular momentum density, and indeed Eq. (47)
yields that this is the case, as we will now prove.

C. Angular momentum

Conservation theorem.— Consider system rotation by
an arbitrary infinitesimal angle δϕ. Associated with this
rotation will be a variation of the Lagrangian density

δL = Lk · δk+ Lx · δx, (49)

where we substituted Eq. (11) for La; also,

δk = δϕ× k, δx = δϕ× x, (50)
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Lk = −J = −vgI, and Lx = I dtk, where the latter is
taken from Eq. (46). Hence,

I−1δL = −vg · (δϕ× k) + dtk · (δϕ× x)

= δϕ · (vg × k) + δϕ · (x× dtk)

= δϕ · dt(x× k). (51)

Having δL = 0 yields that dt(x×k) = 0. From Eq. (47),
one then obtains that

∂tM+∇ · (Mvg) = 0, (52)

which means, in particular, that
∫

M dV is conserved.
Since this is the invariant associated with the medium
isotropy, it by definition [129, Sec. 9] represents the wave
angular momentum. Correspondingly, M is the wave
angular momentum density [130]. Also, M

.
= M/N , or

M = x×P, (53)

is the angular momentum of a photon, ~ dt(x× k) ≡ dtM
is the torque on a photon (cf. Ref. [96]), and the corre-
sponding dynamic equation is spelled out as

dtM = vg ×P− x×Hx. (54)

Spin angular momentum (SAM). — Consider a sta-
tionary wave beam symmetric with respect to z axis; i.e.,
in cylindrical coordinates (r, φ, z), the amplitude a and
the wave vector components kr, kφ, kz are independent
of φ. The consistency relation (18) requires then that
∂r(rkφ) = 0, so kφ = m/r, where m is a constant. This
gives Mz = rkφI = mI, or that the carried angular
momentum per photon is Mz = m~. To find m, notice
that, due to kφ = r−1∂φθ, the wave canonical phase has
the form θ = mφ − ωt + Ξ(r, z), where Ξ is some func-
tion of r and z only. Thus, after any time δt, the wave
must repeat itself, at the same r and z, in the coordinate
frame rotated by δφ = (ω/m) δt. Satisfying this condi-
tion are, in fact, only circularly polarized waves (at least,
in free space), corresponding to m = ±1. Other types
of wave beams therefore cannot be considered symmet-
ric within GO and thus can be assigned only average m.
Specifically, decomposing a wave with a given elliptic po-
larization into the two independent circularly-polarized
components with corresponding weights C+ and C−, one
gets 〈m〉 = C+ − C−. In particular, linear polarization
corresponds to C+ = C−, in which case 〈m〉 = 0.
These results match the known quantum theorem,

which says that states with circular polarization are
the only polarization states of a free photon that are
eigenstates of the corresponding SAM projection, Mz =
±~ [131, Sec. 8]. Thus, for an axially symmetric beam,
Mz that originates entirely from the beam polarization
can be called the SAM density. Interestingly, it can also
be interpreted as follows. For those (circularly polarized)
waves that do allow precise definition of the SAM, the
latter appears due to the singularity of kφ at r = 0, i.e.,
due to θ(r = 0) being undefined [132]. In this sense, the

canonical phase increment ∆θ = 2πm along a closed con-
tour encircling the symmetry axis is the corresponding
Berry phase [133, 134], so the photon SAM (in units ~)
is nothing but the Berry index of the classical phase field.
Finally, note that a wave beam that is not axially

symmetric will also carry additional, “orbital” momen-
tum [135, 136]. The latter is included in Eq. (48), and
separating it from the SAM unambiguously may not
be possible except in special cases, as usual; see, e.g.,
Ref. [135–137] or Ref. [131, Sec. 6].

D. Dissipation

Suppose now that a linear wave experiences weak dis-
sipation. Then, comprising the wave locally are Fourier
harmonics with complex frequencies and wave vectors,

Ω = Ω′ + iΩ′′, K = K′ + iK′′. (55)

Assuming the local dispersion relation in the form

D(Ω,K) = 0, (56)

let us keep only the terms of the zeroth and first order in
Ω′′ and K′′. Then one gets

D+ iDΩΩ
′′ + iDK ·K′′ = 0, (57)

where D and its derivatives are henceforth evaluated at
(Ω′,K′). Now suppose D = D′ + iD′′, where D′′

.
= ImD

is much smaller than D′
.
= ReD. One hereby obtains

D′ + iD′′ + iD′

ΩΩ
′′ + iD′

K ·K′′ = 0 (58)

(where higher-order terms were neglected), the real part
and the imaginary part of which are, correspondingly,

D′ = 0, (59)

D′′ +D′

ΩΩ
′′ +D′

K
·K′′ = 0. (60)

From here, the envelope dynamics is inferred as follows.
At any given time, the field distribution of the real

system can be mapped into the auxiliary nondissipative
system, where the wave phase θ is well defined, and

L
.
= D′(ω,k)A. (61)

This defines the instantaneous a and also the instanta-
neous real canonical frequency and wave vector, (ω,k);
hence all other local quantities can be introduced through
L(a, ω,k) too. However, the dynamics in the auxiliary
system and in the real system are different; thus, for the
latter, an extra term Γ must be added in Eq. (40),

dt ln I = −∇ · vg − Γ. (62)

Assume that dissipation is determined by the local
(a, ω,k) and by the local parameters of the medium,
rather than their gradients. Then one can find Γ by
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calculating it for homogeneous stationary medium and
a wave whose field is locally “monochromatic”, i.e., can
be assigned particular complex (Ω,K) [which map to the
given canonical (ω,k)]. Then,

Γ = −dt ln I = −κ(Ω′′ − vg ·K′′), (63)

where κ
.
= d lnA/d ln a (which commonly equals 2; see

Sec. IVA), and the left-hand side is evaluated at (Ω′,K′).
On the other hand, Eq. (60) yields

Ω′′ − vg ·K′′ = −D′′/D′

Ω. (64)

Hence Γ is connected with the dispersion function as

Γ(ω,k) = κD′′(ω,k)/D′

ω(ω,k), (65)

where we used that, to the leading order, it is sufficient
to take (Ω′,K′) ≈ (ω,k) on the right-hand side.
Now let us present the corresponding transport equa-

tions. Similarly to Eq. (42), one has, for any X, that

∂t(XI) +∇ · (XJ ) = I dtX− ΓXI. (66)

Since X is arbitrary, the number of equations that can
be produced from here is infinite, like in Sec. IVB. In
particular, those for the action, the energy, the momen-
tum, and the angular momentum are obtained by taking
X = 1, X = ω, X = k, and X = x × k, correspondingly,
and are as follows:

∂tI +∇ · (Ivg) = −ΓI, (67)

∂tE +∇ · (Evg) = I dtω − ΓE , (68)

∂tP +∇ · (Pvg) = I dtk− ΓP, (69)

∂tM+∇ · (Mvg) = I dt(x× k)− ΓM. (70)

The physical statement contained in these is twofold.
First of all, one can see that the decay rate is the same
in all the equations, regardless of the specific X. [This, of
course, is seen already from Eq. (66).] Second of all, this
rate is actually known from Eq. (65), which connects Γ
with the dispersion function D. In particular, the action
loss per unit volume per unit time can be written as

ıloss
.
= ΓI = κD′′A, (71)

and the corresponding losses of the wave energy, momen-
tum, and angular momentum are given by

wloss = ωıloss, f loss = kıloss, κloss = (x× k)ıloss.

Also notice that dtω and dtk entering Eqs. (67)-(70) can
be taken from the GO ray equations. Since based en-
tirely on Eqs. (17) and (18) (Sec. IVA), those happen to
be unaffected by dissipation; i.e., they are still given by
Eqs. (39). Hence, the above results can be interpreted as
follows: local dissipation does not affect individual pho-
tons but rather changes the photon density.
For an explanation of how the results reported here

apply to electromagnetic waves, see Sec. VI. The same
results are also applicable to dissipation-driven instabil-
ities (Γ < 0). Nondissipative instabilities can be accom-
modated within GO too, namely, by allowing for complex
rays; for details see Ref. [138] and references therein.

V. LINEAR WAVES: ABRAHAM

REPRESENTATION

A. Basic definitions

In addition to the wave canonical, or Minkowski EMT
that we discussed so far, one can also introduce the cor-
responding so-called kinetic, or Abraham EMT,

ταβ =

(

ε ϑ/c

cρ π̂

)

. (72)

It is defined such that, being a part of the complete EMT
that describes the “wave + medium” system (WMS), ταβ

comprises all the wave-related (i.e., a-dependent) dynam-
ics of the medium and fields. We hence express it as
ταβ = T αβ +∆ταβ , where ∆ταβ is the “ponderomotive”
part that is stored in the medium, and, similarly,

ε = E +∆ε, ρ = P +∆ρ, µ = M+∆µ. (73)

In particular, notice the following. Since the WMS is
closed and thus Lorentz-invariant, its complete EMT is
symmetrizable [88, 117, 118]. Yet its unperturbed part
is symmetrizable by itself (because it describes a closed
system too, namely, the medium absent a wave), so ταβ is
also symmetrizable separately. On the other hand, since
ταβ is proportional to the wave intensity, it is defined
uniquely and, therefore, must be symmetric. This yields
ρ = ϑ/c2, and

µ = x× ρ (74)

holds automatically [71, Sec. 32]. Also, since the integral
energy-momentum of the whole WMS is defined uniquely
[71, Sec. 32], and its a-dependent part is defined uniquely
too, one can find (ε/c,ρ) as the a-dependent part of the
WMS canonical energy-momentum density. Given the
WMS Lagrangian density, the latter can, in principle,
be found straightforwardly in any specific problem [116].
However, the general answer is not informative (mean-
ing that ταβ is by itself a somewhat artificial construct;
see also Ref. [121]). Thus, below, we consider only the
particular model of an isotropic medium, most popular
in the AMC context, yet still refrain from specifying the
wave nature.

B. Wave energy-momentum in isotropic medium

General case. — Consider an isotropic medium (such
as gas, fluid, or plasma) comprised of elementary [139]
particles or fluid elements whose dynamics absent a wave
is described by some aggregate Lagrangian L. In the
presence of a wave, the WMS Lagrangian is hence L+ L,
where L =

∫

L dV is the wave Lagrangian. Assuming
that particles contribute to L additively, the latter can be
written as L = L

(0) −∑ℓ Φ
(ℓ), where L

(0) is independent
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of all particle velocities u(ℓ), and each of the so-called
ponderomotive potentials Φ(ℓ) [106, 107], or dipole po-
tentials [67, 68], depends on the specific u(ℓ) but not on
other velocities. Omitting the index ℓ, we can write the
canonical momentum of each particle as the sum of the
mechanical part ∂uL and the ponderomotive part −∂uΦ,
also yielding the ponderomotive contribution to the par-
ticle canonical energy, −u ·∂uΦ. (This energy should not
be confused with the ponderomotive potential Φ itself,
which a part of the wave canonical energy [140].) Thus,
the densities of the ponderomotive momentum and en-
ergy stored in particles can be written as follows:

∆ρ = −
∑

s

n(s)〈∂uΦ〉(s), (75)

∆ε = −
∑

s

n(s)〈u · ∂uΦ〉(s), (76)

where the summation is taken over different species, n(s)

are the (locally averaged) densities of those species, and
angular brackets denote averaging over velocities within
the corresponding ensembles.
Fluid model. — If a medium can be modeled as a sin-

gle fluid (in particular meaning that kinetic effects are
inessential, unlike, e.g., in warm plasma), one can sim-
plify Eqs. (76) and (75) further, namely, as follows. First
of all, notice that the velocities u of fluid elements are all
equal to a single velocity v, so Eqs. (75) and (76) become

∆ρ = −n ∂vΦ, ∆ε = v ·∆ρ. (77)

It is hence convenient to rewrite Eqs. (77) in terms of
Lorentz-invariant proper parameters of the medium [141].
Since Φ that enters here depends on the wave intensity,
it must be gauge-invariant; thus, being (minus) the in-
teraction Lagrangian of a single element, it transforms as
Φ = Φ′/γ [142], with primes in this section (Sec. V) de-
noting the medium rest frame, and γ = (1− v2/c2)−1/2.
Also, n = γn′, where n′ is the proper density, correspond-
ingly. Since the latter does not depend on v, we then get
∆ρ = −∂v(n′Φ′) + γ2vn′Φ′/c2. Further, let us denote

n′Φ′ = L′ − L′(0) .
= U ′, (78)

where L′(0) is L′(0) per unit volume, and introduce

R
.
=
γ2v

c2
U ′, (79)

understood as the striction contribution (Sec. VIB).
Since L′(0) is also independent of v, one then can write

∆ρ = ∂vL
′ +R. (80)

Due to the fact that a Lagrangian density is a four-
scalar, L′ that enters Eq. (80) can also be replaced with
L [143]. However, using L′(a′, k′µ) is preferable, because
it cannot depend on v explicitly, but rather depends on
it solely through a′ and k′µ. [Remember that the velocity

derivative in Eq. (80) must be taken at fixed a and kµ.]
Due L′

a′ = 0 [cf. Eq. (30)], we then get

∂vL
′ = −(∂vΛ

ν
µ) kνJ ′µ, (81)

where we substituted the (covector) Lorentz transfor-
mation (2), i.e., k′µ = Λν

µkν . On the other hand,

kν = (Λ−1)λνk
′

λ, so Eq. (81) can also be written as

∂vL
′ = −γGλ

µT ′

λ
µ
/c, (82)

where we introduced a dimensionless matrix function

Gλ
µ(v)

.
= (c/γ)(Λ−1)λν (∂vΛ

ν
µ). (83)

As shown in Appendix, Eq. (82) is also equivalent to

∂vL
′ = γTr(GT ′)/c = P+B, (84)

where the terms on the right-hand side are defined as

P = γΛ̂ ·
(E ′v′

g

c2
−P

′

)

, (85)

B =
γ2

γ + 1

[

v

c
×
(

v′

g

c
×P

′

)]

. (86)

Yet, v′

g is parallel to k′ in isotropic medium, so B van-
ishes, and we finally get

∆ρ = P+R, ∆ε = v · (P+R). (87)

C. Wave EMT in the isotropic-fluid model

Within the isotropic-fluid model, one can hence explic-
itly construct the complete kinetic EMT of a wave,

ταβ = Λα
µΛ

β
ντ

′µν , (88)

which is done as follows.
Energy and momentum. — First of all, let us combine

Eqs. (73) and (87) with Eq. (85) for P, Eq. (79) for R,
and E = ωI and P = kI, as well as with

I = γI ′(1 + v · v′

g/c
2), (89)

where we employed the four-vector transformation prop-
erties of J α. This yields

ε = γ2E ′ +
γE ′v

c2
·
(

Λ̂ · v′

g +
ω

ω′
v′

g

)

+
γ2v2

c2
U ′, (90)

ρ =
γE ′

c2

[

Λ̂ · v′

g + γv +
k

ω′
(v · v′

g)

]

+
γ2v

c2
U ′. (91)

[Entering the numerator in Eq. (91) is actually k, not k′.]
By taking v = 0 here, we then get, in particular,

ε′ = E ′, cρ′ = ϑ′/c = E ′v′

g/c, (92)

also using that ταβ is symmetric in all reference frames.
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Momentum flux density. — Since k′ is the only desig-
nated direction in the medium rest frame, the (symmet-
ric) momentum flux density π̂′ must be a linear superpo-

sition of k′k′ and 1̂
′

, or, equivalently, π̂′ = ψ k′v′

g + ζ 1̂
′

,
where ψ and ζ are some coefficients. Combining this
with Eqs. (88) and (92) and plus with, e.g., Eq. (90) for
ε ≡ τ00, one readily obtains ψ = I ′ and ζ = U ′; i.e.,

π̂′ = E ′ k′v′

g/ω
′ + U ′ 1̂

′

. (93)

(In particular, if v′

g = 0, the term U ′ acts as the pondero-
motive pressure; cf. Ref. [144].) Equation (91) then flows
from Eq. (88) automatically; yet, Eq. (88) also gives

π̂ =
ω′(k′ · v′

gE ′)

c2|k′|2
(

c2kk

ω′2
− γ2vv

c2

)

+
γvv

c2
E ′ +

(

1̂+
γ2vv

c2

)

U ′. (94)

EMT and ponderomotive forces. — The wave kinetic
EMT in isotropic fluid is hereby summarized as

τ ′αβ =

(

E Evg/c

Evg/c E kvg/ω + U 1̂

)′

(95)

in the medium rest frame and is transformed to other
frames via Eq. (88), as also spelled out in Eqs. (90), (91),
and (94). In particular, if the flow velocity is negligible
in a given frame, one can take Λα

β ≈ δαβ , so

ε ≈ E , ρ ≈ Evg/c
2, µ ≈ (x× vg)E/c2. (96)

Finally, the ponderomotive four-force density f̄α that a
wave imparts to a medium also can be calculated [115],

f̄α = −ταβ ;β, (97)

whence, substituting f̄α = (w̄/c, f̄), one obtains

w̄ = −∂tε− c2∇ · ρ, f̄ = −∂tρ−∇ · π̂. (98)

(Here w̄ has the meaning of the power density input into
the medium, and f̄ is the usual three-force density.) In
particular, note that since ταβ is expressed through quan-
tities derived from L′ and L′(0), which are the fundamen-
tal invariants of the wave, the usual ambiguity in calcu-
lating the forces on the medium is hence avoided.
The above results, which rely essentially only on

Eq. (11) and the isotropic-fluid approximation (without
any reference to electromagnetism), represent a more
concise and transparent version of those reported in
Ref. [88] and generalize the latter to the case of waves
of arbitrary nature; see also Sec. VIB.

D. Photon kinetic properties

The following energy, momentum, and angular mo-
mentum can now be assigned to a single photon:

h
.
= ε/N , p

.
= ρ/N , m

.
= µ/N . (99)

Keep in mind, however, that these are merely quanti-
ties per photon rather than the momenta of a photon,
in contrast with (H,P,M) that actually enter the pho-
ton motion equations [Eqs. (41) and (54)]. As a result,
(h,p,m) do not enjoy the simple transformation prop-
erties of their canonical counterparts. In particular, the
kinetic four-momentum pα

.
= (h/c,p) is generally not

a four-vector. One can easily check this, e.g., by using
pα = (cN)−1

∫

τα0 dV with ταβ taken from Sec. VC and

N = γN ′(1 + v · v′

g/c
2), (100)

E ′ = ~ω′N ′, P
′ = ~k′N ′. (101)

Still, simple expressions are obtained from Eqs. (96)
for isotropic fluid medium at rest; namely,

h ≈ ~ω, p ≈ ~ωvg/c
2, m ≈ (x× vg)~ω/c

2. (102)

Since here vg is assumed to be parallel to k, one also gets
that p is parallel to P, m is parallel to M, and

p/P = m/M ≈ 1/(npng). (103)

These match the traditional Abraham’s formulas [1, 46],
hence seen to hold for waves of arbitrary (not necessar-
ily electromagnetic) nature. Yet it is clear now that the
traditional formulas are, in fact, approximate and gener-
ally invalid for moving and non-fluid media, in contrast
with Minkowski’s formulas for the canonical quantities
[Eqs. (33) and (48)], which are more universal.

VI. LINEAR ELECTROMAGNETIC WAVES

Finally, let us apply the above results to illustrate how
the properties of linear electromagnetic waves can be cal-
culated explicitly within our general approach, without
using Maxwell’s equations for the wave envelope. Note
also that similar calculations can be performed for non-
linear waves too, for which L can be constructed from
first principles as well [106–109].

A. Wave Lagrangian

Basic equations. — First, let us consider a nondis-
sipative wave, as usual. The wave Lagrangian density
(derived independently, e.g., in Refs. [11, 88]) can be ex-
pected in the form L = L(0) − U , where

L(0) .=
1

16π
(Ẽ

∗ · Ẽ− B̃
∗ · B̃) (104)

is that in vacuum [106], Ẽ and B̃ are the electric and
magnetic field envelopes, and U is the potential energy
density of the wave-medium interaction [cf. Eq. (78)].
For linear, i.e., dipolar interaction, we can take [145,
Secs. 4.2, 4.8, 5.7, 6.2]

U = −1

4
Re
(

Ẽ
∗ · P̃+ B̃

∗ · M̃
)

. (105)
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Here P̃ is the electric dipole moment density (i.e., the po-

larization), and M̃ is the magnetic dipole moment den-
sity (i.e., the magnetization); also, one factor 1/2 comes
from the time-averaging, and the other 1/2 comes from

the fact that P̃ and M̃ are linear functions of Ẽ and B̃,
correspondingly. Now let us introduce D̃ and H̃ via

D̃
.
= Ẽ+ 4πP̃

.
= ǫ̂ · Ẽ, (106)

B̃
.
= H̃+ 4πM̃

.
= µ̂ · H̃, (107)

assuming that the permittivity tensor ǫ̂ and the perme-
ability tensor µ̂ (not to be confused with the kinetic angu-
lar momentum density µ) are Hermitian so the assump-
tion of zero dissipation be satisfied. One gets then [11, 88]

L =
1

16π

(

Ẽ
∗ · ǫ̂ · Ẽ− B̃

∗ · µ̂−1 · B̃
)

(108)

(here µ̂−1 is the tensor inverse to µ̂), also meaning that

U = − 1

16π

[

Ẽ
∗ · (ǫ̂− 1̂) · Ẽ− B̃

∗ · (µ̂−1 − 1̂) · B̃
]

.

(109)

In agreement with Refs. [106, 107], this implies assigning
the following ponderomotive potentials to particles (or
fluid elements) comprising the medium:

Φ = −Ẽ
∗ · α̂ · Ẽ/4− B̃

∗ · β̂ · B̃/4, (110)

where α̂ and β̂ are the particle electric and magnetic
polarizabilities [68], and

ǫ̂ = 1̂+
∑

s

4πn(s)〈α̂〉(s), (111)

µ̂−1 = 1̂−
∑

s

4πn(s)〈β̂〉(s). (112)

Parametrization and dispersion. — Remember that
there is a freedom in defining a, so there are various op-
tions for how to parameterize the wave Lagrangian den-

sity. First, let us consider Ẽ and Ẽ
∗

as independent vec-

tor fields; i.e., a = (Ẽ, Ẽ
∗

). In this case, it is convenient
to write

L(0) =
1

16π

(

Ẽ
∗ · Ẽ− c2

ω2
|k× Ẽ|2

)

(113)

(where we used that B̃ = ck× Ẽ/ω) and

L =
1

16π

[

Ẽ
∗ · ǫ̂ · Ẽ− c2

ω2
(k× Ẽ

∗

) · µ̂−1 · (k× Ẽ)

]

,

(114)

correspondingly. Using that

(k× Ẽ
∗

) · µ̂−1 · (k× Ẽ) =

− (Ẽ
∗ × k) · µ̂−1 · (k× Ẽ) =

− Ẽ
∗ · {k× [µ̂−1 · (k × Ẽ)]}, (115)

one can further rewrite Eq. (114) as follows:

L =
Ẽ

∗

16π
·
{

ǫ̂ · Ẽ+
c2

ω2
k×

[

µ̂−1 · (k× Ẽ)
]

}

. (116)

Then, varying L with respect to Ẽ
∗

yields the following
dispersion relation:

ǫ̂ · Ẽ+
c2

ω2
k×

[

µ̂−1 · (k× Ẽ)
]

= 0, (117)

in agreement with Maxwell’s equations [146, Sec. 3.4].

Similarly, varying L with respect to Ẽ yields the complex-
conjugate equation.
Alternatively, if the polarization vector e is prescribed

(or considered as an independent field), one can as well

introduce a scalar amplitude instead, say, a = |Ẽ|. This
yields L = D(ω,k)a2, with D(ω,k) given by

D =
1

16π

[

e∗ · ǫ̂ · e− c2

ω2
(k× e∗) · µ̂−1 · (k× e)

]

.

(118)

The dispersion relation that follows [Eq. (30)] is Eq. (117)
multiplied by e∗.

B. Wave action and EMT

Action. — The action density I is now obtained
straightforwardly by differentiating L [e.g., Eq. (114)]
with respect to ω:

I =
1

16π

[

Ẽ
∗ · ǫ̂ω · Ẽ+

2

ω
H̃

∗ · B̃− B̃
∗ · (µ̂−1)ω · B̃

]

,

where we used H̃
∗ ·B̃ = B̃

∗ ·H̃, due to µ̂ being Hermitian.
From L = 0 [Eq. (30)], one also has

Ẽ
∗ · D̃ = H̃

∗ · B̃. (119)

Thus, I = I(E) + I(B), where

I(E) =
1

16π

[

Ẽ
∗ · ǫ̂ω · Ẽ+

1

ω
Ẽ

∗ · ǫ̂ · Ẽ
]

, (120)

I(B) =
1

16π

[

1

ω
H̃

∗ · µ̂ · H̃− B̃
∗ · (µ̂−1)ω · B̃

]

. (121)

One can further substitute

B̃
∗ · (µ̂−1)ω · B̃ = B̃

∗ · (µ̂−1)ω · µ̂ · H̃ =

= −B̃
∗ · µ̂−1 · µ̂ω · H̃ = −H̃

∗ · µ̂ω · H̃, (122)

where we used (µ̂−1 · µ̂)ω ≡ 0. Therefore,

I =
1

16πω

[

Ẽ
∗ · (ωǫ̂)ω · Ẽ+ H̃

∗ · (ωµ̂)ω · H̃
]

. (123)
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Canonical EMT. — The elements of the wave canon-
ical EMT [Eq. (26)] are readily obtained from Eq. (123).
For completeness, we summarize them here once again:

E = ωI, Q = vgωI, P = kI, Π̂ = kvgI. (124)

Kinetic EMT. — Assuming that dissipation is negligi-
ble and the medium is isotropic, the wave kinetic EMT,
as well as the kinetic angular momentum, can also be
found, namely, using the results from Sec. V. In the gen-
eral case, one can employ Eqs. (75) and (76), substitut-
ing Eq. (110) for Φ. In the isotropic-fluid approximation,
Eqs. (90), (91), and (94) can be used in combination with
Eqs. (123) and (124) taken in the medium rest frame.
Due to Eq. (109), one can also take, in particular,

R = −γ
2v

c2

(

n
∂ǫ

∂n

|Ẽ|2
16π

− n
∂µ−1

∂n

˜|B|2
16π

)

, (125)

where the expression in parenthesis (equal to the
interaction-Lagrangian density −U) is Lorentz-invariant.
Hence R can be attributed to electrostriction and mag-
netostriction [88, 147]. Besides, one can show that
Eqs. (170) and (171) of Ref. [88], derived there from dif-
ferent considerations, are recovered from our Eqs. (90),
(91), and (94) as a special case. (The proof is straight-
forward and will not be presented here.) For practical
ramifications of our results in application to electromag-
netic waves also see Ref. [88] and Sec. VII.

C. Dissipative waves

In the presence of dissipation, the dispersion relation
flowing from Maxwell’s equations is similar to that in
Sec. VIA. Namely, it can be written as D(Ω,K) = 0,
where D has the same form as in Eq. (118), yet now with

ǫ̂ = ǫ̂
′ + iǫ̂′′, µ̂ = µ̂

′ + iµ̂′′. (126)

where ǫ̂′ and µ̂′ are Hermitian, and iǫ̂′′ and iµ̂′′ are anti-
Hermitian. Using that

(µ̂′ + iµ̂′′)−1 ≈ µ̂
′−1 − iµ̂′−1 · µ̂′′ · µ̂′−1, (127)

we can hence write, for D evaluated at real (ω,k), that
D = D′ + iD′′, where D′ and D′′ are real and given by

D′ =
1

16π

[

e∗ · ǫ̂′ · e− c2

ω2
(k× e∗) · µ̂′−1 · (k × e)

]

,

D′′ =
1

16π

[

e∗ · ǫ̂′′ · e

+
c2

ω2
(k× e∗) · µ̂′−1 · µ̂′′ · µ̂′−1 · (k× e)

]

.

According to Sec. IVD, we can infer I directly from
Eq. (123) by replacing D with D′, so

I =
1

16πω

[

Ẽ
∗ · (ωǫ̂′)ω · Ẽ+ H̃

∗ · (ωµ̂′)ω · H̃
]

. (128)

Then the known formula [72, Sec. 80] for the energy den-
sity is recovered from E = ωI. Other local properties of
the wave are found from Eqs. (32) and (48), the dissipa-
tion rate Γ is found from Eq. (65), and Eq. (71) yields

ıloss =
1

8π

(

Ẽ
∗ · ǫ̂′′ · Ẽ+ H̃

∗ · µ̂′′ · H̃
)

, (129)

where we substituted κ = 2, since A = a2. The ex-
pression for the dissipation power density, wloss = ωıloss,
hence also agrees with the known formula [72, Sec. 80].

D. Dielectric media

Since B̃ is proportional to Ẽ, one usually can define the
high-frequency medium-response tensors ǫ̂ and µ̂ such
that µ̂ = 1 (in a selected frame of reference). As this
is done often, e.g., in plasma physics [146], let us also
simplify some of the above expressions for this particular
case. First of all, Eq. (108) yields

L =
1

16π

[

Ẽ
∗ · ǫ̂′ · Ẽ− c2

ω2
|k× Ẽ|2

]

, (130)

or L = L(0) + Ẽ
∗ · χ̂′ · Ẽ/(16π), where L(0) is the vacuum

Lagrangian [Eq. (113)], and we introduced the electric
susceptibility χ̂

.
= ǫ̂− 1. Then the wave energy is

E =
1

16π

[

Ẽ
∗ · (ωǫ̂′)ω · Ẽ+ |B̃|2

]

, (131)

or, equivalently [due to Ẽ
∗ · ǫ̂′ · Ẽ = |B̃|2; cf. Eq. (119)],

E =
1

16πω
Ẽ

∗ · (ω2ǫ̂′)ω · Ẽ. (132)

Also, as usual, the canonical momentum density equals

P = kE/ω. (133)

One can show, using Eq. (117), that the latter is just
a more concise form of the corresponding expression in
Ref. [148]. Contrary to Ref. [149], calculated there is thus
not the total, but only the canonical momentum (and the
canonical energy) of the wave; see also Refs. [150, 151].
Following Ref. [146], let us also separate the energy

fluxQ into the electromagnetic part and the kinetic part.
Specifically, using Q = −ωLk, one can write it as Q =

S +K, where S = −ωL(0)
k

, and

K = − ω

16π
Ẽ

∗ · χ̂′

k
· Ẽ. (134)
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The latter is recognized as the energy flux density caused
by the presence of the medium [146, Chap. 4], whereas

S =
c2

16πω

{

(k× Ẽ
∗

) · (k× Ẽ) + (k× Ẽ
∗

) · (k× Ẽ)
}

k

=
c2

16πω

{

k ·
[

Ẽ
∗ × (k× Ẽ)

]

+ k ·
[

Ẽ× (k× Ẽ
∗

)
]

}

k

=
c2

16πω

{

Ẽ
∗ × (k× Ẽ) + Ẽ× (k× Ẽ

∗

)
}

=
c

8π
Re (Ẽ× B̃

∗

) (135)

is the time-averaged Poynting vector, i.e., the “vacuum
part” of Q. [Here we substituted Eq. (113) and used un-
derlining to specify where the differentiation applies.] Re-
calling that Q = Evg, one then also recovers the known
formula [146, Chap. 4]

vg = (S +K)/E . (136)

Below, several examples of specific dielectrics will be dis-
cussed to illustrate these and earlier formulas.

E. Examples

Waves in fluids at rest. — Let us first summarize,
using the results of Sec. VID, the densities of the kinetic
energy, momentum, and angular momentum for a wave
in a fluid dielectric at rest:

ε = E , ρ = (S +K)/c2, µ = [x× (S +K)]/c2.

Electromagnetic waves in vacuum can be considered as
a special case and have ω2 = c2k2, so vg = c2k/ω = ck,

where k
.
= k/k. Then E = |Ẽ|2/(8π); c2P and Q are

equal to each other (so the EMT is symmetric, and
canonical quantities coincide with kinetic quantities) and

S = kcE ; also, Π̂ = kk E equals minus the time-averaged
Maxwell stress tensor. Thus, in this case, the wave EMT
coincides with the electromagnetic stress-energy tensor
[71, Sec. 32]. Besides, M and µ are both equal to
x× S/c2, in agreement with the traditional definition
of the wave angular momentum density in vacuum [135].
Electrostatic waves in beams and plasmas. — To also

illustrate waves in moving dielectrics, consider further a
relativistic electron beam with electrostatic oscillations
seeded on it with k parallel to the beam velocity v. As-
suming that the beam is cold, it acts as a fluid medium
isotropic in its rest frame. (In fact, as long as the dy-
namics is one-dimensional, having isotropy is inessen-
tial.) Since there is no dissipation in a cold beam, we
revert here to using primes as a reference to that frame.
The proper ponderomotive potential, same for all elec-
trons, can then be written as Φ′ = e2|Ẽ|2/(4meω

′2) [107],
where e and me are the electron charge and mass; re-
member also that the longitudinal field satisfies Ẽ = Ẽ′.
Then ǫ′ = 1 − ω′2

p /ω
′2 (cf. Sec. VIA), where ω′

p
.
=

(4πn′

ee
2/me)

1/2, and n′

e is the beam proper density. This

yields the dispersion relation in the form ω′2 = ω′2
p , and

v′g = 0 in particular. From Eq. (132) we hence get

E ′ = |Ẽ|2/(8π), so U ′ = E ′/2 [cf. Eq. (78)]; then Eqs. (90)
and (91) lead to

ε = (3γ2 − 1)
|Ẽ|2
16π

, ρ =
3γ2v

c2
|Ẽ|2
16π

. (137)

Since ω′ = γ(ω − kv), the dispersion relation in the lab-
oratory frame is ω = ω′

p/γ + kv, and vg = v; therefore,

ρ = [1 − 1/(3γ2)]−1εvg/c
2, or ρ ≈ 3εvg/(2c

2) at γ ≈ 1.
This differs by a factor 3/2 from Abraham’s result (ex-
pected at nonrelativistic velocities), but the discrepancy
can be readily explained. Recall that Abraham’s limit
[Eq. (102)] is derived by neglecting v but retaining vg.
For the electrostatic waves in question, this is legitimate
only when v equals zero exactly; in that case, just like
Abraham’s formula, Eq. (137) yields ρ = 0. Note that
this result is also understood from the fact that, at v = 0,
each nonrelativistic electron has a zero average momen-
tum, while the instantaneous momentum of the electro-
static field (proportional to the instantaneous Poynting
vector [145, Sec. 6.9]) is zero identically.
Now consider thermal effects, which will render beam

oscillations identical to Langmuir waves in warm col-
lisionless plasma [146, Chap. 8]. We can take the
electron ponderomotive potential in the form Φ =
e2|Ẽ|2/[4me(ω − ku)2], where u is the average veloc-
ity of an individual particle; then the general Bohm-
Gross dispersion relation is recovered [107]. As usual,
we assume that the electron thermal velocity vT satisfies
ξ0

.
= ω/(kvT) ≫ 1, and the electron average velocity is

zero, so one gets ω2 ≈ ω2
p + 3k2v2T and vg ≈ 3kv2T/ω.

(See Ref. [152] for how to deal with the singularity at
u = ω/k.) The canonical energy and momentum den-

sities are then found to be E ≈ (ωp/ω)
2|Ẽ|2/(8π) and

P = kE/ω. This time we yet cannot apply Abraham’s
formula [Eqs. (102)] to further find ε and ρ, because, as
an ensemble of electrons with different velocities, warm
plasma is not a simple fluid. Thus we revert to Eqs. (75)
and (76), which give

∆ε ≈ −3k2v2T
ω2
p

|Ẽ|2
8π

, ∆ρ ≈ − k

ω

ω2
p

ω2

|Ẽ|2
8π

. (138)

Hence, Eqs. (73) finally yield ε = |Ẽ|2/(8π) and ρ = 0,
at least up to terms of the order of ξ−4

0 .
Since ρ is independent of the amplitude, the evolution

of Langmuir waves does not affect the electron average
momentum (zero in our example). This agrees with the
standard quasilinear theory [153]; however, an explana-
tion is due regarding the details. Notice that a Langmuir
envelope seems to transport canonical momentum due
to nonzero vg, but does not seem to transport any ki-
netic momentum, as ρ is zero; on the other hand, one
may expect that the total momentum in any volume en-
closing the pulse is defined unambiguously in quiescent
plasma, so one arrives to paradox, much like the AMC.
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To resolve this, recall that above we assumed zero aver-
age velocity inside the wave, so the outside plasma had
to be flowing, as the amplitude gradient at the inter-
face causes ponderomotive acceleration. Accordingly, to
keep the outside velocity zero, we must allow for a non-
vanishing flow of electrons inside the pulse, and that is
precisely where the total momentum is stored. In other
words, Langmuir waves do transport momentum through
ambient plasma, just like other waves. This, if anything,
may serve as a particularly vivid illustration for how the
abstract resolution of the AMC relates to experiment.
Kinetic waves. — The small but finite ∆ε/E ∼ ξ−2

0

that we found for Langmuir waves is a purely kinetic
effect, which does not fit into the resting-fluid model,
Eq. (92). For other waves in collisionless plasma, hav-
ing finite ξ0 generally renders the fluid model inappli-
cable too [146]. (Same applies to collisionless gas [154],
but collisional media are more forgiving.) Light waves in
particular are affected at relativistic temperatures, which
are possible in astrophysical settings and also in labora-
tory, say, in counterpropagating relativistic beams. But
even more easily the fluid approximation can be broken
for waves tuned in resonance with medium natural oscil-
lations. Replacing ξ0, the controlling parameters in this
case are each of ξℓ

.
= (ω − ℓΩ)/(kvT), where Ω is the

natural frequency, and ℓ is an arbitrary integer. This is
well-known for a cyclotron resonance [146], but interac-
tions at other, even quantum resonances are similar [67].
For example, one can show that ∆ε/E ∼ ξ−1

1 when a
medium, resting on average, consists of two counterprop-
agating low-density beams of nonrelativistic oscillators
with ω ≈ Ω. However, elaborating on this is beyond the
scope of our paper, and our intention here is only to re-
emphasize that Abraham’s formulas for ε and ρ may not
apply even when the medium average velocity is zero.

F. Quantum interpretation

Let us now recast our findings in the photon language.
To do so, however, we first need to recall what a photon
actually is, and we start with one in vacuum.
A vacuum photon is defined as an elementary excita-

tion of electromagnetic field, in a certain energy eigen-
state that determines both the spatial structure of the
mode and also its frequency. For example, the mode can
be a standing wave with a certain number of nodes in
a finite-size box. Yet if the box size is large enough or
infinite (as it would be for free field), the energy gap be-
tween neighboring modes is negligible, so we can loosen
the definition. Specifically, neighboring modes can then
be excited coherently such that their interference pro-
duces a propagating envelope with a size negligible for
our purposes. Precisely these envelopes we call photons,
much like it is often done for regular particles in quasi-
classical theories [155]. Hence the GO approximation is
also adopted automatically.
Now that we have introduced a photon in vacuum, let

us define one in a dispersive medium. It is natural to
continue thinking of a photon as a quasiparticle in this
case, i.e., an object that is conserved within the GO ap-
proximation. To understand what it means, consider a
vacuum photon entering a dispersive medium. We will
assume no scattering at the boundary, to ensure that GO
remains valid; i.e., (i) there is no reflection, and (ii) the
wave continues inside the medium as a quasimonochro-
matic field. In other words, only one of the internal
eigenwaves, or branches of the dispersion relation, is ex-
cited, while others are nonresonant to the incident pho-
ton and thus remain quiescent. In the general case, when
the medium is both inhomogeneous and time-dependent,
there is exactly one GO integral: the wave action. There-
fore, it is the action conservation that must be associated
with the photon conservation. And since all the action
belongs to a single branch, so must all photons.

As one moves away from the boundary, the initial
branch can adiabatically transform into something very
different from the original electromagnetic wave. In that
case it may be more natural to assign a different name
to its elementary excitations, i.e., call them not photons
but, say, plasmons or polaritons. Remember, however,
that a wave with given ω and k can be associated with
only one type of quasiparticles, whatever they are called,
and those must account for oscillations of both the field
and the medium. (In other words, GO photons cannot
be separated from GO polaritons in principle, as long
as a single branch of the dispersion curve is considered.)
Absent a better term [156], we thus adopt “photon” as
the generic term for all such elementary excitations.

Much like an electron interacting with a vector poten-
tial, a photon defined this way can hence be assigned
two different momenta. The first, canonical momentum
P is the one that enters Hamilton’s equations [Eqs. (41)]
and is due to the corresponding Noether symmetry of
the wave subsystem. It is given by P = ~k; surprisingly,
this expression holds in any dissipationless medium what-
soever and even for nonlinear waves. (Not so for the
canonical energy ~ω.) The second, kinetic momentum
p is defined as the amplitude-dependent part of the av-
erage momentum of the whole physical system divided
by the total number of photons. It is due to the WMS
Lorentz invariance, or, in other words, the corresponding
Noether symmetry of the whole system, which includes
the medium. In particular, for isotropic fluid medium
at rest we show that p = ~ωvg/c

2, in agreement with
Abraham [64]. Remember, however, that this result is
less general than Minkowski’s formula for P; for exam-
ple, it does not apply in moving media (such as beams)
and may not hold at relativistic temperatures.

Note, finally, that the per-photon average momenta of
fields and particles taken separately are not associated
with any conservation laws, in contrast with P and p.
Therefore they cannot be attributed to any conserved
quasiparticles and, in this sense, are less meaningful.
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VII. DISCUSSION

In this paper, we pose classical GO axiomatically
within the field-theoretical approach, while extending it
to account for dissipation. The concept of a photon in a
dielectric medium is introduced, and photon properties
are calculated unambiguously. In particular, the canon-
ical and kinetic momenta and angular momenta carried
by a photon, as well as the two corresponding EMTs,
are derived from first principles of Lagrangian mechanics.
Responding to the questions posed in Ref. [35], we thus
resolve the Abraham-Minkowski controversy pertaining
to the definition of the photon energy-momentum and
spin, clarify the applicability of Minkowski’s and Abra-
ham’s formulas, and find corrections to them for various
media (including cold, warm, and relativistic media).

Furthermore, the axiomatic formalism that we adopt
leads also to other new results, since it applies not just
to electromagnetic waves but to any linear waves in any
dispersive media, including ones yet to be discovered.
For example, the EMTs of acoustic waves follow, plus
the phonon spin — and these are only some of the
AMC-related issues that otherwise remain under debate
[157–159]. We show, in fact, that all wave mechanical
properties flow from little more than the wave defini-
tion, whereas the specific internal physics of a medium is
largely irrelevant. Since definitions are not really a mat-
ter of verification, experimental resolution of the AMC
is obviated; at least, one may call into question exactly
what aspect of the AMC an experiment might resolve. In
addition, derivations of the EMTs and angular momenta
for specific waves are obviated too, as they are subsumed
under our more general theory. For instance, (i) the
canonical EMT that we present is general (Sec. IV),
(ii) the force produced by a wave on a fluid-like medium
is independent of the precise constitution of the medium
(Sec. VC), and (iii) even understanding of kinetic waves
does not require solving any field equations (Sec. VIE).

Let us emphasize, finally, that these findings have been
made possible by our adopting the abstract Lagrangian
formulation, whose utility for understanding general lin-
ear waves should hence be obvious. We also suggest
Refs. [66, 144, 160, 163] as recent illustrations of how ad-
vantageous it is for analyzing the linear wave dynamics
in plasmas. In addition, the nonlinear Lagrangian the-
ory has been getting a new spin recently, namely, in the
context of plasma waves carrying autoresonantly trapped
particles [106–109, 161]. Those waves are unique in the
sense that the trapped-particle nonlinearity is, within a
certain range of parameters, independent of the wave am-
plitude or even gets strengthened when the amplitude
decreases. Hence the traditional intuition and standard
perturbative approaches often fail when applied to such
waves, whereas the axiomatic GO not only holds but also
offers the advantage of tractability [109]. In particular,
understanding how the wave momentum relates to the
plasma Lagrangian yields precise quantitative predictions
of (quite nontrivial) evolution of waves with trapped par-

ticles in nonstationary plasma [162]. Thus, with this pa-
per, we would like to attract attention to the axiomatic
GO itself as a remarkably convenient framework for ana-
lyzing the wave basic physics, not only in the AMC con-
text but also in the context of solving practical problems.
The work was supported by the NNSA SSAA Pro-

gram through DOE Research Grant No. DE274-FG52-
08NA28553 and by the U.S. DOE through Contract No.
DE-AC02-09CH11466.

Appendix A: Auxiliary function Gλ
µ

Here, we summarize the properties of a dimensionless
matrix function Gλ

µ introduced in Eq. (83). First of all,
notice an obvious equality

(Λ−1)λν(v) = Λλ
ν(−v), (A1)

which can also be checked by confirming that

Λµ
λ(−v)Λλ

ν(v) = δµν . (A2)

Then a direct calculation yields

G0
0l = 0, (A3)

Gi
0l = Λi

l, G0
il = ηijΛ

j
l, (A4)

Gi
jl = (δilvj − ηjlv

i)(γ/c)/(γ + 1), (A5)

where we introduced the notation

Gλ
µl ≡ (Gλ

µ)l
.
= (c/γ)(Λ−1)λν (∂Λ

ν
µ/∂v

l). (A6)

(In particular, notice that the three l-components, Gν
µl,

at v = 0 happen to be the well-known Lorentz boost
generators.) Let us now define the function

Gνµl
.
= gνλG

λ
µl. (A7)

Due to Eqs. (16), one finds the latter to be

G00l = 0, (A8)

G0il = −Gi0l = −ηijΛj
l, (A9)

Gijl = (ηilvj − ηjlvi)(γ/c)/(γ + 1), (A10)

so, in particular,

Gνµ = −Gµν , (Gµν)l ≡ Gµνl. (A11)

Hence Eq. (82) becomes

∂vL
′ = −γGλ

µgλνT ′νµ/c = −γgνλGλ
µT ′νµ/c

= −γGνµT ′νµ/c = γGµνT ′νµ/c, (A12)

which is exactly Eq. (84), where we substituted Eq. (A8)
and introduced

Pl
.
= (γ/c)(Gi0lT ′0i +G0ilT ′i0), Bl

.
= (γ/c)GijlT ′ji.
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Finally, due to Eqs. (A9)-(A10),

Pl = γ(ηijΛ
j
lE ′v′ig /c

2 − ηijΛ
j
lP ′i)

= γΛj
l(E ′v′gj/c

2 − P ′

j) = [γΛ̂ · (E ′v′

g/c
2 −P

′)]l,

[(γ + 1)c2/γ2]Bl

= (ηilvj − ηjlvi)P ′jv′ig = (v′glvjP ′j − P ′

lviv
′i
g )

= [v′

g(v ·P ′)−P
′(v · v′

g)]l = [v × (v′

g ×P
′)]l,

whence Eqs. (85) and (86) readily follow.
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