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We theoretically investigate a photonic Kagome lattice which can be realized in microwave cavity
arrays using current technology. The Kagome lattice exhibits an exotic band structure with three
bands one of which can be made completely flat. The presence of artificial gauge fields allows to
emulate topological phases and induce chiral edge modes which can coexist inside the energy gap
with the flat band that is topologically trivial. By tuning the artificial fluxes or in the presence
of disorder, the flat band can also acquire a bandwidth in energy allowing the coexistence between
chiral edge modes and bulk extended states; in this case the chiral modes become fragile towards
scattering into the bulk. The photonic system then exhibits equivalents of both a quantum Hall
effect without Landau levels, and an anomalous Hall effect characterized by a non-quantized Chern
number. We discuss experimental observables such as local density of states and edge currents. We
show how synthetic uniform magnetic fields can be engineered, which allows an experimental probe of
Landau levels in the photonic Kagome lattice. We then draw on semiclassical Boltzmann equations
for transport to devise a method to measure Berry’s phases around loops in the Brillouin zone.
The method is based solely on wavepacket interference and can be used to determine band Chern
numbers or the photonic equivalent of the anomalous Hall response. We demonstrate the robustness
of these measurements towards on-site and gauge-field disorder. We also show the stability of the
anomalous quantum Hall phase for nonlinear cavities and for (artificial) atom-photon interactions.

I. INTRODUCTION

Phenomena associated with flat bands in fermionic and
bosonic systems have drawn attention over the last three
decades [IH8]. The best known example is perhaps the
fractional quantum Hall effect [9]. If a single-particle
band is dispersionless in one direction, electrons are lo-
calized in that direction causing an element of the effec-
tive mass tensor to diverge. If the band is completely
flat in the entire k-space, then heavy degeneracy appears
and the density of states diverges. Such singularities in
the density of states are expected to produce anomalous
behaviors in physical properties including transport phe-
nomena and optical response. If a wavepacket is created
in the flat band system, the group velocity will automat-
ically vanish and very strong backscattering prevents the
packet from moving. In fact, this scenario takes place
on the Kagome lattice where localized states on hexagon
rings occur as a result of the alternating sign of the wave-
function amplitude [10, [11].

The topological properties of the band structure are
now essential in approaching the problem of Chern insu-
lators [12] or topological insulators [I3] [I4]. Bandstruc-
ture topology has been first discussed in the context of
the integer quantum hall effect by Thouless et al. [15].

More precisely, the set of energy eigenstates that form
an isolated band is described by the first Chern number
[16], a topological invariant associated with the band.
The Chern number has direct physical consequences: for
example, a completely filled (electronic) band has a quan-
tized Hall conductance, corresponding to the existence
of chiral edge modes [I7]. It is possible to view this in-
variant as the flux of the Berry curvature [I8] through
the first Brillouin zone [19]. The Berry curvature and

the Chern number have become important mathematical
concepts to classify topological phases in connection with
band structures. The Chern number has previously been
accessed through the conductance and chiral edge states
of quantum Hall systems, and the total Berry phase as-
sociated with a single Dirac point has been inferred from
transport in graphene [20]. Measuring the local Berry
curvature constitutes an actual challenge in experiments.

In this paper, we investigate anomalous Hall phases of
light on a specific Kagome lattice with artificial magnetic
fluxes, which has been introduced in the context of pho-
tonic lattices [21]; see Fig. [1} The effect of time-reversal
symmetry breaking in connection with this Kagome pho-
ton lattice has been previously studied at the level of a
few site geometry [21]. We show below that this lattice
with artificial gauge fields allows for the existence of an
anomalous quantum Hall phase, or a quantum Hall phase
without Landau levels [12].

Photonic lattices based on arrays of circuit quantum
electrodynamics (cQED) superconducting elements [22]
have been recently realized experimentally [23] 24]. Such
photon cavity lattices are predicted to exhibit interesting
many-body phenomena [25, 26] including a superfluid-
Mott transition of light [27H35], Bose-Hubbard models
with attractive interactions [36], fractional quantum Hall
physics [37H39] and interesting dynamics [40] in partic-
ular in ring geometries [41]. Recently a Rabi model has
been shown to present a Zs Ising universality class quan-
tum phase transition between two gapped phases, which
are not Mott insulator phases [42]. An anomalous quan-
tum Hall phase for light accompanied by unidirectional
photonic chiral edge states has been predicted in photonic
crystals [43][44] and confirmed experimentally [45]. In ad-
dition, two-dimensional photonic equivalents of topolog-
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FIG. 1. (Color online) The photonic Kagome lattice with
three sites per unit cell A, B,C. Artificial fluxes can be
threaded through the triangular plaquettes [21I]. Top left: lat-
tice periodic in the = direction, with “line” boundaries com-
posed of A, B sites only. The blue parallelogram encloses a
one-dimensional superunit cell which generates the entire lat-
tice. Top right: a projection of the Brillouin zone onto the
ks = ki1 direction. Bottom left: at ¢ = w/6 the system ex-
hibits a flat, topologically trivial middle band, while the lower
and upper bands are characterized by finite Chern numbers.
Bottom right: the middle band becomes dispersive if one de-
viates from 7/6, e.g. for ¢ = w/4. Here, we have considered
a cylinder geometry which allows for two chiral edge modes:
right-moving at the lower edge (purple), left-moving at the
upper edge (orange); corresponding chiral currents depicted
on the lattice. As discussed in Secs. IV B and C, the chiral
edge modes can also be detected in the square geometry [23].

ical insulators have been envisaged [46], 47]. Topological
properties of optical systems might help to implement
robust photonic devices [46] and to realize invisibility
cloaks [48]. Artificial gauge fields in photonic systems
have attracted growing attention [49] [50].

Our primary goal is to investigate the effect of the
topologically trivial flat band (with a zero Chern number)
on the robustness of photonic chiral edge modes. In our
realization of the Kagome lattice, neighboring hexagons
are subject to the same magnetic flux. The magnetic flux
opens a gap at the Dirac points and breaks time-reversal
symmetry allowing to stabilize topological phases char-
acterized by two bands acquiring non-zero Chern num-
bers (see Fig. |l)). The middle band can be made flat
or acquire a finite energy dispersion for certain values
of the artificial gauge fields (see Fig. [I)) or if disorder
is present; therefore, edge modes can coexist with ex-
tended bulk states at the same energy. In this situation
edge modes are fragile towards leaking into the bulk re-
sulting in an anomalous Hall phase with a non-quantized
Chern number [5I]. A similar effect has occurred in a
toy model on the honeycomb lattice [52]. We investigate
the evolution of unidirectional edge modes of light in the

presence of a localized scatterer by tuning the artificial
gauge fields and by introducing disorder. We present a
manner to determine Berry’s phases of photon wavepack-
ets through an interference experiment. There exists a
previous proposal to access the Berry curvature through
a measurement of group velocities of wavepackets in opti-
cal lattices [53]. We discuss a direct measurement of the
Chern number of a Bloch band, which does not require
summation of contributions across the Brillouin zone.
Underlying these methods is the implementation of uni-
form synthetic gauge fields through tunable cavities with
time-dependent frequencies, and the realization of Lan-
dau levels in photon systems. It shall be noticed that a
similar scheme has been recently realized in cold atom
systems [54] and that cavities with tunable resonances
have been already implemented in cQED [55, [56].

In addition, the quest for exotic phases on the Kagome
lattice represents an active subject of research [4, 57HG6].
Topological phases and their supporting artificial gauge
fields are potentially realizable in cold atom systems [67-
72]. The Hofstadter spectrum [73] on the related dice
lattice has been realized in GaAlAs/GaAs systems [74].
The Hofstadter spectrum for the Kagome lattice has also
been studied with superconducting wire networks [75].
Finally, the Kagome structure naturally appears in real
materials [76] [77] and recently it has been implemented
in cold atom systems [78].

The paper is organized as follows. We introduce the
tight-binding model of a Kagome lattice in the presence
of artificial gauge fields in Sec. [[I] Explicit solutions for
the edge mode wavefunctions in cylinder geometry and a
brief discussion of the bulk-edge correspondence are the
subjects of Sec. [T} Following this, in Sec. [[V] we present
observables specific to the anomalous Hall phase, namely
the bulk polarization, the edge currents, and the local
density of states. Sec. [V] further details on a method to
measure Berry’s phases of wavepackets in both clean and
disordered systems. The method requires a uniform syn-
thetic magnetic field, on whose realization in a photonic
lattice we elaborate. Additionally, we show a method
to directly find the topological Chern number of a given
Bloch band by counting energy levels of the system in an
artificial magnetic field. In Sec. [VI, we discuss in detail
the anomalous Hall effects of light in relation to Chern
numbers. In the particular case of disordered systems,
we present a real-space calculation of the Chern number
which will reveal a close analogy between tuning the ar-
tificial gauge fields and the presence of disorder in the
system (in cQED lattices, disorder can appear either as
an on-site scalar or as a vector potential). In Sec.
we discuss the role of symmetries and the local stability
of Dirac points in the three band system. In Sec. [VII|
we study the effect of interactions in QED cavities [79],
such as Bose-Hubbard [80] and Jaynes-Cummings [81],
on the topological phase. The Appendices are dedicated
to technical details.



II. TIME-REVERSAL SYMMETRY BREAKING

Below, we introduce the Kagome lattice with artificial
gauge fields. An effective tight-binding Hamiltonian for
photons with the possibility to break time-reversal sym-
metry can be realized in a cQED system by coupling su-
perconducting waveguides to nano-Josephson circulators
(rings) [2I]. The Kagome lattice is formed by triangular
and hexagonal plaquettes arranged as shown in Fig.
The resulting structure has three sites per unit cell, which
we denote by A, B,C. Letting a be twice the length of
a bond, we pick the following lattice vectors Ao and
reciprocal lattice vectors gy o:

Alza(l,O), A2:a<1 \/§>

32

47 47 1 V3
ng@(l,O)v g2=\/§a<2’—2>- (1)

The Brillouin zone, see Fig. [T} is hexagonal and contains
the common points of high symmetry I' = (0,0) and
K* =+ (5£,0).

We will use the following lattice coordinates: the di-
rections along A, Ay in real-space corresponding to
g1,82 in momentum space (top right panel of Fig. ,
where hats denote unit vectors. In this notation, Aj
coincides with the x direction, . We denote sites on
the lattice by a pair of integers m = (mj,msg), and co-
ordinates on the lattice in terms of lattice vectors by
rm = m1A; +moAs. Continuous coordinates are repre-
sented by a pair of real numbers r = (1, r2) in terms of
unit vectors, r = rlAl + TQAQ; momenta will be written
as k = k181 + kogo.

In a cQED system, a given waveguide of length in
the millimeter range typically supports a single photonic
mode. Furthermore, the photons which travel in these
one-dimensional waveguides do not carry a polarization
label and must be thought of as simply excitations of mi-
crowave resonators [82]. The hopping of photons from
one waveguide to another results in a translationally in-
variant tight-binding Hamiltonian. Following Ref. [21],
a honeycomb array of waveguides with nano-Josephson
circulators can be equivalently reformulated as the pho-
tonic Kagome lattice of Fig. [} The Hamiltonian can be
Fourier transformed, and we obtain:

A=Y LA, (2)

keBZ

and the spinor wl = (alk,agk,aéa contains the cre-

ation operators on each sublattice, and

hw 2|t|le?? cosa;  2|t|e T cos an
M = | 2|tle " cosay 2[t|e? cos ao
2|te’? cos gy 2|t|e ™™ cos an hw

3)

We have defined three dimensionless functions of momen-
tum,

Ao A — Ay
3 .
(4)

In the effective tight-binding model particles hop be-
tween nearest-neighbor sites with a complex hopping in-
tegral [t|e?®. Photons acquire a phase 3¢ around a trian-
gular plaquette and a phase of —6¢ around the hexagonal
plaquette, amounting to zero total flux in the parallelo-
gram unit cell of area |A; x As|, which is characteristic
of the anomalous quantum Hall effect without Landau
levels as introduced by Haldane [12]. The particles are
also subject to an artificial on-site potential induced by
the (electromagnetic superconducting resonator) waveg-
uide frequency w, and an artifical gauge field giving rise
to complex hopping integrals and breaking time-reversal
symmetry. It shall be noted that both the effective on-
site potential hw and the hopping strength |¢| should
be obtained rigorously after integrating out coupling el-
ement degrees of freedom (in our case, a Josephson ring
coupling three resonators) [21]. In a typical cQED exper-
iment, the energy of an incoming photon is much larger
than the size of the energy gap between bands: |t| is ex-
pected to lie below 100 MHz and the frequency w is in
the GHz, or microwave, range.

The rotational symmetry of the lattice is not strictly
necessary and anisotropies are possible; their effect on
the bandstructure is discussed in Sec. [VTIl In the rest of
the paper we shall focus on the isotropic case.

The Hamiltonian of Eq. [3]is a band Hamiltonian obey-
ing Bloch’s theorem. To determine the Bloch energies
E(k) for the three bands let us denote U (k) = —(E(k) —
hw)/|t], and a(k) = cos a; (k) cos as(k) cos(aia(k)). We
obtain the following equation for the eigenvalues

s Oélg(k) =k.

U3 (k) — 4U (k) (2a(k) + 1) + 16 cos(3p)a(k) = 0. (5)

For special values of the phase ¢, destructive interference
confines the wavefunction to the hexagonal plaquettes,
which renders the respective band completely dispersion-
less. We obtain such a solution with energy U(k) =
2 cos 3¢ whenever cos(3¢)(cos3¢ — 1)(cos3¢ + 1) = 0.
The middle band is flat whenever ¢ = ¢ + “%, where m
is an integer. When ¢ = “£%, the upper or lower band is
flat, touching the middle band at the I' point; the other
two bands form Dirac cones at the six corners of the Bril-
louin zone. For example, the bandstructure for the cases
¢ = § and 7 (which will be thoroughly discussed in the
text) is depicted in Fig. [1} along with edge modes arising
from a finite geometry to be discussed below. The edge
modes appear because by tuning the phase ¢ one breaks
time-reversal symmetry at the Dirac points. The band-
structure of Eq. 1) is invariant to a shift of 27“ in ¢; we
then restrict to ¢ € [0, 2F] in the further discussion.
Time-reversal symmetry is kept if the phases accumu-
lated along any closed loop on the lattice amount to an
integer multiple of = [2I]. This condition is equivalent
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FIG. 2. (Color online) Two-dimensional phase diagram of a
particle (photon) with energy E on the Kagome lattice defined
with hopping phase ¢: by tuning (E, ¢) the photon system
is either characterized by extended bulk states (“bulk band”)
or by a “band gap” where the system exhibits unidirectional
edge modes but no bulk states. The F' points represent states
in the flat band (the blue points at F — iw = 0 correspond
to a middle flat band separated by finite energy gaps from
the lower and upper bands; black points at E — fiw = £2|t|
correspond to flat upper or lower band). The D points are
degeneracy points between pairs of bands at the Dirac points
K®*. The dashed lines are explained in the main text.

to requiring that # y and its time-reversed counterpart,
7, are the same up to a gauge transformation on the
spinor ¢k in Eq. . In our case, if 3¢ is an integer mul-
tiple of 7, then the Hamiltonian is time-reversal symmet-
ric. The bandstructure properties can be summarized in
the (E, ¢) phase diagram of Fig. The phase diagram
represented is periodic in ¢. A particle created at energies
in the “band gap” regions cannot be in a two-dimensional
Bloch state of the Hamiltonian. States exist in this en-
ergy interval only in a finite geometry with boundaries, as
we show in detail in Sec. [[TIl Such a state would be con-
fined to the edges of the sample and propagate chirally
(chiral edge mode). The “bulk band” phase is embodied
by bulk extended states. When photonic bulk extended
states and chiral edge modes coexist at the same energy
FE, the edge excitations may scatter into the bulk; this
situation coincides with an anomalous Hall phase. The F'
points in the diagram of Fig. [2] correspond to flat bands.
Dashed lines from the F' points show the possible phase
transitions: horizontal blue line - from the flat band to a
band gap by changing the particle energy; vertical blue
line: from the flat band to a bulk band by changing the
phase ¢. The D points represent band degeneracies at
the Dirac points K*. Moving along the vertical red line
(a change in ¢) lifts the degeneracy and a finite band gap
is opened. A particle with a slightly larger energy would
be in a bulk band state.

At ¢ = 0, the system is gapless: there is a quadratic
touching with a flat band at the I' point, corresponding
to F' in Fig. and Dirac cones at the K points, cor-
responding to D. We will be focusing on the system in

the vicinity of ¢ = %, at which the system exhibits a
flat band. Changing the energy of the particle at the F'
points (equivalent to moving along a horizontal line in
the figure) will take us from the flat band into a band
gap. Changing ¢ at the F point (equivalent to moving
along the vertical line) will take us from the flat band
into a bulk-band with finite bandwidth.

III. CHIRAL EDGE MODES

In this section we make explicit the correspondence
between a bulk quantity, the Chern number, and the chi-
ral edge modes at the edges of a sample. It should be
noted that even though we choose the cylindrical geome-
try below for mathematical convenience, the edge states
can be detected in a square geometry; this point will be
illustrated below in Figs. 5 and 6.

Given a translationally invariant two-dimensional lat-
tice Hamiltonian whose eigenstates are the Bloch states,
the existence of chiral edge modes is signaled by the non-
zero values of the Chern number v(™) corresponding to
the Bloch band |nk) [15],

o) = 1 / &k (ak X .%’(”)(k)), (6)

- 2 BZ

where the vector field 2™ (k) is the Berry gauge poten-
tial associated to the n** Bloch band,

2 (k) = —i(nk|d|nk). (7)

The integral in Eq. @ is over the entire surface of the
Brillouin zone, so it is a summation over all of the states
enclosed in the n!" band.

When the bands are separated by an energy gap
throughout the Brillouin zone, the band Chern num-
bers of the lower, middle, and upper bands, respectively,
can be shown numerically to be —sgn (sin3¢),0 and
+sgn (sin 3¢), where ¢ € [0,2F]. The sin(3¢) function
was chosen to obey the 27 /3 periodicity of the bandstruc-
ture with respect to the phase ¢. In particular, this is
consistent with a recent result that implies that the flat
band of the Kagome lattice, if isolated from the other
bands by energy gaps (as is the case for ¢ = §), will be
non-topological [83].

The Chern number of Eq. @ is a topological index
whose value can only change if by variation of parame-
ters the bands touch at some degeneracy points in the
Brillouin zone and subsequently reopen the energy gap
[15]. As the parameter ¢ is varied, for values 0, %, %’T
two bands touch at all corners of the Brillouin zone form-
ing Dirac points; the remaining pair has a degeneracy at
the I' point. At the transition upper and lower bands
exchange Chern numbers leaving the middle band topo-
logically trivial throughout. The stability of Dirac points
and the nature of the exchange of Chern numbers is ex-
plained in Sec. [VII] We now make the correspondence
between the bulk quantity and the edge modes explicit.



FIG. 3. Effect of different boundary conditions on the disper-
sion of edge modes in the proximity of the dispersive middle
band for a system with ¢ = 7: left, two “line” boundaries;
middle, one “line” edge, the other “armchair”; right, both
boundaries are “armchair”. The bottom panels exhibit the
minimal ladder lattices that exhibit the three boundary con-
ditions. All three ladders shown support edge modes.

Consider an analogous fermion system at zero temper-
ature: all states with energies lower than the chemical
potential p are occupied. If p is set to an energy gap, the
sum of band Chern numbers for the occupied bands is an
integer quantity, possibly zero, which is proportional to
the Hall conductivity [I5]. The principle of bulk-edge cor-
respondence states that this sum counts the chiral edge
modes [I7] supported at the given chemical potential.
Since the argument is independent of statistics, it applies
equally well for photons; we will then replace the notion
of “chemical potential” by “energy of injected particle”.

Let us place the Kagome lattice in a cylinder geom-
etry: a particle injected at an energy inside the energy
gap can belong to one of two states localized at the edges.
We now find an analytical solution of the edge wavefunc-
tions. We consider a cylinder with line boundaries along
the periodic A; direction (boundaries containing A, B
sites only - see Fig. [3). The cylinder is generated by
translating the superunit cell (blue parallelogram in Fig.
along the lattice vector A;. The superunit cell is ob-
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tained by translating the triangular plaquette along As.
We number plaquettes along the superunit cell by integer
mg = 0,1, ..., Mamax, as in Fig. [l We Fourier transform
the operators am=(m,,m,) along the periodic k; direction

1 —1 mia
Aams (k1) = NAT E e~ thi(ma )amhm27 (8)
my

where « denotes the sublattice A, B or C; Nj is the num-
ber of repeated superunit cells making up the cylinder;
and integer mo indicates the triangular plaquette along
the superunit cell, as shown in Fig. The problem has
become to diagonalize the one-dimensional Hamiltonian
describing a superunit cell:

, a
Hie, = ] mz 26’¢agm2a,4m2 cos (kli)
2

+

ip+ik1 & T ip—iky %
+e ¢ tiaq GBm, T € ¢ ! 4a’Cm2aBym2+1

ma
+6Z¢+Zk1 by a;rqmz ACm, + el¢—lk1 1 aLmzaC’m271 + h.c.

9)

This form reduces to the one in Eq. when Fourier
transformed around the remaining direction k3. To ob-
tain the edge states, let us take the general form of an
eigenstate

W)= Y D> Yams(ki)ams),  (10)

a=A,B,C ma

where |amsg) is a ket localized on sublattice « of the
mbP triangular plaquette along the super-unit cell. The
Schrédinger equation

iy |V (k1)) = B (k1)|¥ (k1)) (11)
yields the following linear system for the components of

the wavefunction ¥am, = Yam, (k1) and the energy dis-
persion U = U(ky1) = — (E(k1) — hw) /]t],

R EFIy o 4 2 cos (]ﬁ%) e Y pmy + e T ETIOYC = Ui, (12)
(13)

(14)

etk E ity po 4 etk g Gy = Ue (15)
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the first three of which hold for msy spanning the supe-
runit cell “bulk” between 0 and Mg max, and the other
three are equations at the boundary. There exist solu-

(

tions which are exponentially suppressed with distance
from the boundary of the sample, which we put in the



form (a denotes sublattice)

wamg = Ameao- (18)

The condition that the two edges of the cylinder are line-
shaped amounts to requiring

Vo, —1 = YO momax = 0- (19)

A pair of chiral edge modes localized at the boundaries
of the sample arises:

ki _ 36
k cos (— — —)
E, = 2Jt| cos (;a) and Ay = —:7;,
cos (Tl + 7)
(k3¢
K sin (— — =
E_ = —2|t| cos <;a> and \_ = — - 2/ (20)

If |AL] < (>)1, then the state is confined to the top
(bottom) boundary. The states identified to be at the top
(bottom) travel in the +(—)A; direction, so “chirally”.
The edge modes along with the bulk states for a flat

s

band system with ¢ = & and for a dispersive middle

band system at ¢ = 7 are plotted in the bottom panels
of Fig. [[] The simple boundary condition chosen gives
an energy dispersion similar to that of a one-dimensional
tight-binding chain of lattice constant §. The factors
A+ describing the spatial suppression of the wavefunction
into the sample bulk can become singular or 0, in which
case the normalized wavefunction has 0 weight inside of
the bulk and is pinned to one of the two edges (see Figs.
and [4)). For other boundary conditions (see Fig. [3] for
the equivalent “armchair” condition), one can arrange
that the edge mode and the middle bulk band overlap
in energy, but not in momentum, or in both energy and
momentum. States overlapping in energy can scatter into
each other: in the “line” boundary conditions, a spatially
localized, d-function, impurity can scatter the edge mode
into the bulk, as we show in Sec. [[VC]

For the case of a Kagome ladder, the counter-
propagating edge modes exist as long as there are two
distinct edges, of either the “armchair” or the “line” type.
Therefore, any ladder will need to have at least one row
of hexagonal plaquettes. The configuration with the least
sites that sustains edge modes is shown in the bottom left
of Fig. [3] This specific ladder with two “line” boundaries
has the property that the flux per unit cell is 0.

An intriguing property related to the bulk-edge corre-
spondence is the phenomenon of polarization in a topo-
logically non-trivial system. We develop on this in the
context of a photonic system in Sec. [VA]

IV. OBSERVABLES

In this section, we elaborate on observable quantities
in the cQED based photon lattice exhibiting two differ-
ent Hall phases for light [2I]. In Sec. we discuss

K- Kt

FIG. 4.  The quantities A3 (solid line), and A2 (dashed
line) defined in Egs. describe how the wavefunction of
the edge mode decays into the bulk.The reference line is at
A3 = 1. For |Ax| > 1 the respective branch E4 (k1) is located
at the bottom edge. Conversely, if |[A+| < 1, it is located at
the top edge. This results in the color scheme for the edge
modes on Fig.

the polarization of a topologically nontrivial bulk in the
context of photonic systems and draw connections to the
local density of states in Sec. [[VB] Sec. [V (lis dedicated
to the lattice current density. Let us emphasize that the
local density of states and lattice current densities are in
principle accessible in square geometries.

A. Polarization

The phenomenon of polarization is a signature of the
fact that it is impossible to choose a smooth gauge for
the Bloch wavefunctions across the Brillouin zone in a
topologically non-trivial system. Polarization has been
introduced in the context of electronic Chern insulators
in Ref. [84], and it is related to the Hall conductivity.
In a photonic or cold atom system, polarization may be
observed in the dynamics of wavepackets, as we are about
to describe.

Let us consider the one-dimensional system described
by the Hamiltonian 7, of Eq. (9). This time we close
the cylinder around both directions A; and A, into
a torus, such that .74, now describes a periodic one-
dimensional lattice along the A, direction, in terms of
the periodic parameter k1. It is possible to find for this
one-dimensional periodic system a set of Bloch states
|nk) = |n ko; ki) with a smooth choice of gauge every-
where as a function of ky and for each value of k. This is
equivalent to the possibility to construct Wannier states
which are exponentially localized along the A, direction,
which is a classic result of Kohn [85]. For now let us focus
on a single band |nk) = |k1k2). The maximally localized
Wannier states take the following form [86]:

|W(k1, Rg)) = (21)

1 . ko )
Z —iJo? 22k w2) g—ika (B2 =U(k1)/27) | ) Fo)
(& € 1, ~h2/,
v Ny
ko

where Ny is the number of triangular plaquettes in the




quasi one-dimensional system; Ry is the real coordinate
of the center of the Wannier function along the As di-
rection, which is made precise below; %1 2(k1,k2) are
the components along the directions Al,AQ of the Berry
gauge field introduced in Eq. , and

(k) = a / % daa (s ). (22)
0

Since the Bloch functions can and have been chosen pe-
riodic and smooth in the kg direction, both of the com-
ponents of the Berry gauge field %1 2(k1, k2) are periodic
functions of k.

The coordinate of the center of the Wannier functions
drifts depending on the parameter k1. The expectation
value of the position operator ro is

U(k1)

(4m/V/3)°

The net displacement of the center of the Wannier state
when the parameter k1 winds around its period equals
the Chern number:

Ary = (471_/1\/5) (l <47T/\/§a) - l(O))

(W k1, Ro)|r2|W (k1, Ra)) = R — (23)

a
(47‘_/\/3) ngZ dk%(kﬁh k‘Q) va.

In the last line we have used the fact that %1 2(k1, k2) is
periodic in ks to reexpress the drift of the center of the
Wannier state as the line integral of the Berry gauge field
around the boundary of the first Brillouin zone 0BZ,
which is exactly the Chern number v. This condition
summarizes the fact that a smooth gauge cannot be cho-
sen for the Bloch functions in a band with non-zero v. If
this were true, then the Berry gauge field would be pe-
riodic in both directions, and the Chern number would
vanish. We arrive at the following boundary condition
for the Wannier states,

(W (/-:1 n 47r/\/§a,7"2>> — |W(k1, 72 — va)).  (25)

In particular, this tells us that if a wavepacket con-
structed out of such states is accelerated in the A; direc-
tion, then its center will drift along the As direction. A
wavepacket constructed within a band of 0 Chern num-
ber would return to its initial coordinate on the r5 axis
upon a complete revolution of k1. We shall come back to
this point in Sec. [VB]

B. Local density of states

The localization of chiral modes at the edges of the
sample, the existence of a flat band, and the extended

(24)

versus localized character of bulk states can be tested by
measuring the local density of states. Because phase in-
formation is absent from the density, it is not possible to
measure the polarization of Sec. [[VA] Given a complete
set of states |¥), each of which is an eigenstate of energy
FEy of the tight binding Hamiltonian of Eq. ,

H|\V) = Eg|P), (26)

one can define the local density of states in terms of the
energy F and the two dimensional real coordinate on the
lattice r

p(E.r) = 3 5(E — Bu)|(x] )P (27)
w

This quantity is by definition normalized to the number
of sites in the system,

/ dE Y p(E,rm) = 3N, (28)

where m = (mj, mg) indexes the sites, ry, = miA; +
molAs, and N denotes the number of unit cells and there
are 3 sites per unit cell. We plot the local density of
states in the same cylinder geometry with “line” edges
of Sec. [} We have approximated the é-function by a

7m /O\ga drks (%2 (47r/\/§a, n2> — %> (0, HQ))Lorentzian

. Ap
Alggo 7 (E— Ey) + A% NE=Ey),  (29)
where the width is set to Ag/[t| = 0.01 and a system of
23x 23 sites has been numerically diagonalized. In the flat
band model with ¢ = T, as shown explicitly in [21], there
exists a highly degenerate band of zero-energy states lo-
calized in the hexagonal plaquettes due to destructive
interference effects. When the flux ¢ is detuned from %,
the middle band becomes dispersive and the states leak
out of the hexagonal plaquettes and become extended
(for ¢ = %, see Fig. [5(c)). Finally, if disorder is intro-
duced into the flat band system at ¢ = %, the states
inside the middle band become delocalized due to dis-
order (Fig. . Intra-gap edge modes have non-zero

spectral weight only close to the edges of the sample.

C. Lattice currents

A measurement of the local density of states p(E,r)
cannot detect the chirality of edge modes. The simplest
possible quantity that can show us an observable effect
of chirality is the lattice current density. This operator is
defined between two lattice sites indexed by two pairs of
integers m and n, and situated at ry, and ry,. It measures
the number of particles that flow from one site to another
per unit time and takes the standard form [87]

Jean = —ichy (bmn + thn)en + ich (tian + tam)m. (30)
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FIG. 5. (Color online) Local density of states: states are
localized in the hexagonal plaquettes when the energy over-

laps with the flat band at ¢ = % (5(a)); for the same sys-

tem, intra-gap states are confined at the edges of the sample
(5(b)); dispersive middle band for ¢ = 7 contains extended
states (5(c)); for comparison, local density of states for the
disordered ¢ = % system is shown in for an energy E
within the proximity of the middle band.

Using the notation of Sec. [VB] the observable quan-
tity of interest is the current expectation value for an
eigenstate |W) of the tight-binding Hamiltonian 57 is
(U] jn| ).

From the study of edge mode dispersion relations in
Sec. [ we have concluded that the introduction of a
small impurity at the boundary can mix all momenta
and the edge state can scatter into the bulk. We test this
by introducing a d-function impurity at one of the sites
on the boundary of the system. The expectation value
(] jmn |¥) is the familiar current density associated with
the wavefunction | ).

We consider a system containing one impurity local-
ized in real space at a single site. This impurity couples
all pairs of k-points, implying that whenever the edge
mode and the bulk state are at the same energy, but sep-
arated in momentum, the edge mode will have a finite
lifetime towards scattering into a bulk state. Results for
the current operator in the Kagome system are plotted
in Fig. [6] In the left panel, we have plotted the cur-
rent of an edge state whose energy is located in the gap
just above and not overlapping with the middle band at
¢ = % (see Fig. [1) - the current (in red) will go around
the J-function impurity without leaking into the bulk.
This corresponds to the anomalous quantum Hall phase
and is reminiscent of the situation at ¢ = %. As soon
as the edge mode and the bulk band overlap in energy,
current at the edge has a probability to scatter into the
bulk. A state at this energy will essentially live inside of
the bulk (current depicted in green). This corresponds
to the anomalous Hall phase. If instead of an impurity
at the edge we had strong phase disorder W, = % for a

system with flux ¢ = 7, there would again be a finite

FIG. 6. (Color online) Plots of the expectation value of the
lattice current operator in two implementations of the ¢ = 7
system. Left panel: the system has a dispersive middle band
overlapping in energy with the edge mode (See Fig. . In the
presence of a -function impurity the edge state current (red)
will deviate around the impurity, maintaining its chirality, if
the energy of the edge state lies in the gap and does not over-
lap with the middle band. This corresponds to the anomalous
quantum Hall phase. The current for a state whose energy
is within the overlap region with the middle band is shown
in green. Right panel: in the presence of a dispersive middle
band (with ¢ = %) and disorder, the edge state can leak into
the bulk with a finite probability.

probability to scatter into the bulk, as shown in the right
panelof Fig. [6]

V. BERRY’S PHASE AND ANOMALOUS HALL
EFFECT OF NEUTRAL PARTICLES

When a system in an anomalous Hall phase is placed in
an external gauge field, it is possible to measure Berry’s
phases around closed loops in the Brillouin zone and band
Chern numbers. This section is dedicated to such observ-
ables. The treatment is applicable whenever the particles
are neutral, and therefore suitable for cold atom systems
as well. In Sec. [V'A] we explain a scheme to realize syn-
thetic gauge fields on the Kagome lattice that involves a
time-modulated potential gradient in the cavity array, as
suggested in Ref. In Sec. [VB] we present a way to
measure the Berry phases of wavepackets of photons at
a given energy based on interference. We also present a
manner in which the Chern number can be directly ex-
tracted from level-counting in the spectrum of the system
in a uniform synthetic magnetic field in Sec. [V.C|

A. Realization of a synthetic gauge field

We discuss here how to simulate the effect of a mag-
netic field in a system of neutral particles. Such artificial
magnetic fields, including frustrated or staggered config-
urations, have been actively studied in recent years. In a
cavity, photons coupled to artificial atoms, such as in the
Rabi model, are subject to an effective gauge potential
induced by the dipolar coupling [88]. On a lattice, gauge
fields can in principle be simulated by creating effective
Peierls phases through time-periodic driving as proposed
in Refs. [564, [89 90] for cold atoms. In what follows, we



shall follow the line of thought of Ref. [89]. The method
relies on adjusting the potential terms individually for
each site in the trapping optical lattice of the cold atom
system. In cQED systems, this is equivalent to adjusting
the frequency of each resonator individually and time-
dependently, which has become experimentally possible
[38, 65, 56, OT]. Ref. [38] has already proposed a means of
realizing a synthetic gauge field in a square lattice array
of coupled photonic cavities.

Generally, a static gradient of the frequency wy, of
the resonator located at site m yields an artificial elec-
tric field. Additionally, it is possible to have time-
varying frequencies wm, r, which produce complex hop-
ping amplitudes and so mimic the effect of a gauge field.
Consider that that there is a driving frequency at site
m = (my, ms) with the following dependence on the time
T

= H + Z (hw + hwg cos (T + mab) my) al am,

(31)
where the time-dependent Hamiltonian is the original
tight-binding Hamiltonian of Eq. , to which we
add a time-dependent perturbation. The perturbation
amounts to a tilt along the A; direction, modulated in
time. Q is the driving frequency, and for the following
derivation we assume that the driving frequency is reso-
nant with the on-site energy Aw in the sense that ) = w.
The details of this choice and the calculation are pre-
sented in Appendix Here we summarize the results.

In the rotating wave approximation, the time depen-
dence of Eq. has the following effects: photons ac-
quire an additional phase myf along each bond in the
A; direction; they acquire no additional phase along the
bonds in the Ay direction. The following equations sum-
marize the changes incured by the complex hopping am-
plitudes:

bond || Ay : [tle™" = [tle™" - T (%) e,
bond || Ay : [tle™ — |t|e™. (32)

The function J_1(z) is a Bessel function of the first kind.
There will be a total phase f = 20 around the parallel-
ogram plaquettes of area |A; x As| (see Fig. [I). The
artificial gauge field extracted from Eq. gives rise to
a uniform magnetic flux across the lattice, although the
field itself is not uniform at the level of one unit cell due
to the presence of the oblique bonds; nevertheless, this
non-uniformity can be removed by a gauge transforma-
tion (see Appendix . This construction is equivalent
to the Peierls substitution: a particle in a gauge field
s(r) acquires a phase Opmn = 3 f:r: dr.o7;(r) between
two sites located at ry, and r, (the choice of path does
not matter if the vector potential is that of an infinitely
thin solenoid at the center of the plaquette). We shall
make the convention that the photon coupling to such
artificial gauge fields has an effective synthetic charge e,
and all fields to be used below will have a subscript “s”

to highlight the distinction from actual electromagnetic
fields.

The experimental realization of an artificial field would
allow us to measure Berry’s phases around closed loops
in the Brillouin zone or directly access the Chern num-
ber, as explained in Sec. [VB|and [V C| respectively. The
potential to create a magnetic field can make a measure-
ment of Landau levels of the Kagome lattice accessible,

see Sec. V.l

B. Berry’s phases from semiclassical dynamics

In this section we describe a method to measure
Berry’s phases around closed constant energy contours
in the Brillouin zone. For this we draw upon the semi-
classical dynamics of a wavepacket within a given band
of a Bloch Hamiltonian.

In Sec. [[VA] we have noted that, due to the po-
larization phenomenon, wavepackets accelerated in the
A direction drift in the A, direction. The motion of
wavepackets subject to a uniform force is complicated due
to Bloch oscillations. Proposals exist to access Berry’s
phases in a cold atom system relying on a measurement
of the group velocity of a wavepacket under an external
scalar potential exhibiting Bloch oscillations [53]. Here
we present an alternative method to map Berry’s phases
of wavepackets, based solely on interference, and without
the need to measure the group velocity of wavepackets.

The semiclassical dynamics of a wavepacket centered
at momentum and coordinate k., r. and in a Bloch band
is given by [92H94]

. 10E, o~
I‘C—ﬁ akc chJkC
ik, = —es85(re) — este X Bs(re), (33)

where &5, #, are synthetic classical fields, and e is a syn-
thetic effective charge, which is left as an explicit quantity
in the equations in order to highlight the analogy with
electronic systems. F(k.) is the Bloch band energy, and

Fre = O x B(K) (34)

is the Berry curvature [I8] associated with the Berry
gauge field introduced in Eq. @; we have dropped the
band index n, as we neglect transitions to other Bloch
bands; .% only has a z component. The semiclassical Eqs.
are dual in the following sense: the second equation
represents the electromagnetic force; in the first equation,
the band energy plays the role of a scalar potential in
momentum space, while the second term is nonvanishing
only when the wavepacket is accelerated, and the Berry
curvature acts like a magnetic field in momentum space.
The group velocity g—li is corrected by an “anomalous”
contribution [95] which is now known to be inherently
connected to geometric phases of wavefunctions [92], [96].

The geometric phase of a wavepacket can be measured
in a system subject to a uniform synthetic magnetic field



perpendicular to the plane, &, = |%|z, but no elec-
tric field. The semiclassical equations of motion for the
wavepacket become

P = ej%,s k. x % (35)
. €s OF
hk, = ~ 5 Za, (k.) T B, (36)

and Zg, is a correction from the Berry curvature:

1

Zg (k) =—"7———.
<@s( ) 1+ %gkc . {@S

(37)

Eq. implies that the force k. is always perpendicular
to the group velocity gTE. Consequently, the energy of
the wavepacket is a constant of motion,

SE(k,) = STEﬁkC —0. (38)

The trajectory in momentum space follows a contour of
constant energy in the Brillouin zone. The trajectory
in real-space described by Eq. , on the other hand,
is related to the trajectory in momentum space by a 7
rotation and a rescaling. A wavepacket evolving on a
constant energy contour will return to the original point
in k-space. If the orbit is closed in the first Brillouin zone
(continuous lines in Fig. m), then the trajectory in real
space will be a closed curve as well. Alternatively, the
orbit may be periodic in the extended Brillouin zone and
follow a separatrix (dashed lines in Fig. E[), in which case
the trajectory in real space will not be closed. Finally,
the Berry curvature correction in Eq. can only affect
the rate at which the momentum k. varies, but not the
form of the trajectory. The acceleration will be small in
areas of strong Berry curvature, typically close to the K
points.

It is possible to determine resonance conditions for
those paths which close in the Brillouin zone. Let us as-
sume that we are in the case in which the wavepacket tra-
verses a closed curve in phase space. Along a phase space
loop of constant energy F, denoted C(E), the wavepacket

will acquire a phase [92] [04]

e :jidk%(k)—i—dr. (k— esfs), (39)

where the gauge field @7, generates the magnetic field
By = Or X ;. This can be further simplified to

T
yc:jf dk~%(k)—/ dt(es”%r—es(fxgﬁs)-r)
g o h h

€g T .
:?idk.%(k)+?h/o dt( (i x Bs)-r),  (40)

where T is the period of the motion. The first term of
the integrand is the Berry phase accumulated along the
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FIG. 7. (Color online) Constant energy trajectories in mo-
mentum space, overlayed on the constant energy contours of
the lowest band at ¢ = %. Trajectories can be closed within
the first Brillouin zone resulting in closed real space trajec-
tories or, if the initial momentum lies on the separatrix lines
(see, for example, the dashed lines), then the trajectory in mo-
mentum space can only close in the extended Brillouin zone,
and in real space the particle traces a straight line.

path, T'c = § dk.Z (k). The second term can be written
entirely in momentum space,

T
eS .
% . dt((rx%s)'r)

T
€s h o . h .
=5 ; dt(esﬂstZX%s> (6s%skxz>

h R
—265%57{Cdk-(kxz)

h
e B o, (41)

where dk - (k x z) = 2 d. is twice the surface area ele-
ment for the surface enclosed by the curve C'(E) in mo-
mentum space. Collecting the two pieces, the full phase
acquired by the wavepacket around a closed loop in mo-
mentum space is

o =Tc + So. (42)

esHBs

The arriving wavepacket will interfere with the emitted
wavepacket and the amplitude will be maximal if

I'c+ o =2n(n+vy), n=integer, (43)

es B

where the Maslov index [97] is taken to be vy = 3.
There is an implicit energy dependence in the trajectory
C = C(FE), therefore the phases in Eq. are energy
dependent. This last equation is the Onsager relation
[98] and can be viewed as a Bohr-Sommerfeld quantiza-
tion condition for the closed trajectories in phase space.

An analogous situation occurs in electronic systems, in



the de Haas - van Alphen effect [94], where peaks in the
magnetization as a function of the external magnetic field
are a result of such a resonant behavior.

In a photon system, the Berry phases can be accessed
as follows. Suppose that a wavepacket of known energy
E and initial momentum k.(t = 0) can be produced.
Upon tracing a closed path in real space, the traveling
wavepacket returns and interferes with the emitted sig-
nal. One can tune the external field %, such that the
amplitude at the emitter is resonant. Two consecutive
resonances determine the area .#¢ of the common closed
path in momentum space, see Eq. . This allows
for the determination of the Berry phase along the path
C(E) up to a multiple of 27. By keeping the energy E
fixed and changing initial momentum one can explore all
curves at the given energy within the Brioullin zone. Two
examples are given in Fig. [ What such a measurement
would yield with and without disorder is presented in
Sec. [Vl in connection to a realization of the anomalous
Hall effect in the Kagome photon system.

We have shown that an interference experiment can be
realized to measure the Berry phase of a wavepacket in-
jected at a specific energy and initial momentum. Berry
phases appear in measurements of a photonic equivalent
of the anomalous Hall effect, as explained in the next
section.

Moreover, the measurement can be changed to probe
Landau levels. Instead of keeping the energy fixed and
varying the magnetic field %, let us keep the field fixed
and vary the energy. Separations between resonant or-
bits discussed above correspond to transitions between
Landau levels. The analysis of level splitting in the pres-
ence of A, allows us to directly probe the Chern number
of a Bloch band. This is the subject of Sec. [V.C]

C. Direct determination of Chern number from
level counting in the Hofstadter spectrum

In this section we present a way to directly determine
the Chern number of a Bloch band from the spectrum in
a synthetic magnetic field. In a magnetic field, the three
original Bloch bands will split into subbands, sometimes
called magnetic Bloch bands. The resonant semiclassi-
cal trajectories of Sec. [VB] correspond to the magnetic
subbands of the original Bloch band under the influence
of the synthetic magnetic field Zs. The Chern number
influences how a Bloch band splits into magnetic sub-
bands [92]. There exists a maximum number of closed
resonant trajectories within the Brillouin zone. This is
obtained by observing that the maximal area of a single
resonant closed trajectory C, ¢, has to be equal to the
area of the first Brillouin zone. This dictates, then, that
the number of subbands obtained by splitting any one of
the Bloch bands is given by:

p=frs)] a
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FIG. 8. Low magnetic field %5 spectrum of the Kagome
lattice with ¢ = 7: at 0 external field, we recover the original
bandstructure of Fig. At flux p/q there are 3¢ subbands
with possible degeneracies. For example, at p/q = 1/5, the
density of states reveals that there are 6 separated subbands in
the upper band, 5 degenerate subbands in the middle band,
and 4 separated subbands in the lower band in agreement
with Eq. , and consistent with the fact that the lower
and upper Bloch bands have Chern numbers -1 and 1, respec-
tively. The bands become degenerate (no energy gaps in the
spectrum) at p/q = 1/4. See text for details.

where v is the Chern number associated with the band,

f= M is the flux through the unit cell of a uniform

synthetic magnetic field %, in units of e%, and the square
brackets indicate the integer part of the real number. The
field #; has to be small enough such that the resulting
subbands cannot become degenerate. This is argued in
more detail numerically in what follows.

We are aiming to solve the Hofstadter problem of a
tight-binding system in a magnetic field [73]. Let us pick
the Landau gauge, &7, = (—%.y, 0), where the two com-
ponents are cartesian. Due to the presence of a magnetic
field, the Hamiltonian will couple different points in the
Brillouin zone. If the flux f introduced above for the uni-
form synthetic field is a rational number expressed as p/q
with p and ¢ non-negative integers which are relatively
prime, then, in general, the resulting Hamiltonian will
couple ky to k, £ %J% and to ky, + SLs‘ This momentum

space coupling can be removed by remarking that trans-
lational invariance is recovered if one reverts to a ¢ times
larger unit cell in real space, and a ¢ times smaller Bril-
louin zone, called the magnetic Brillouin zone, defined

for our lattice as [07 Z—ﬂ X [0, ;—\%} The original 3-band

Hamiltonian becomes a 3¢-band problem defined on the
reduced Brillouin zone. Folding of bands appears, and at
a general level the 3¢ bands are allowed to become de-
generate within the magnetic Brillouin zone. Technical
details are given in Appendix For now we focus on
counting the magnetic subbands obtained from a given
Bloch band, which provides a direct way of determining
the Chern number of the original (zero field) bands.
Assume for simplicity that the dimensionless flux per
unit cell is f = L for some positive integer Q. For large
enough @, the field is weak, and any one of the three
original Bloch bands will split, according to Eq. ,



into [v 4+ @], where v is the Chern number on each of the
three original Bloch bands. This is consistent with the
fact that the spectrum in a magnetic field at flux 1/Q
should exhibit 3Q) levels. Taking the band-structure at
¢ = T (see Fig. |I)) as representative for our time-reversal
symmetry broken phase with gapless edge modes, the
formula in Eq. predicts that the lower, middle and
upper bands will split into @ — 1, @ and @ + 1 subbands,
respectively. The caveat to this discussion is that for
special fractions f one can expect that the resulting sub-
bands become degenerate even if the original system is
non-degenerate [15] [92].

One can directly access the Chern number of a spe-
cific band as follows (see Fig. : set the external syn-
thetic field to a specific rational number dimensionless
flux and count the resonant trajectories corresponding
to each of the three original Bloch bands (they will be
typically separated by gaps of order |¢|, as in the original
system, if the field is weak). For example (see Fig. , at
f =1/5, the lower, middle, and upper Bloch bands split
into [v+5] = 4, 5, 6 subbands, consistent with their Chern
numbers v = —1,0, 1, respectively. There are a total of
15 subbands, but the 5 subbands corresponding to the
middle band are degenerate. Importantly, at f = 1/4,
the spectrum has no energy gaps, in which case Chern
numbers are exchanged between bands. We have proved
numerically the requirement f < 1/4 to probe the Chern
numbers of the original Bloch bands. Since the spectrum
of the Hofstadter problem is periodic in f, this require-
ment actually translates to f € [0,1/4)U[2,9/4) U ....

D. Bounds on the strength of the synthetic
magnetic field

When the external field is too strong, or varies too
quickly, tunneling to a different band becomes possible.
To be safe from Landau-Zener tunneling [99], the mag-
netic field has to be small. This translates to a condition
[94] on the period of motion on a closed loop, T, intro-
duced in our calculation above,

B E
T < E, fg (45)

where E, is the size of the gap, which in our problem is of
order the hopping energy, E ~ |t|, and E is the constant
energy along the loop C(F). The period of motion can
be further reexpressed by making an estimate from Eq.

&9,
hlc(E)
7. (32)-2,

: (46)

where the averages are taken over the path C, whose
length in momentum space is denoted I (FE). Collecting
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equations yields the following condition

e (E) 1 |E )
esZz. (ko) (gTE) B,

R

It turns out that this bound is independent of the lattice
spacing a or the absolute value of the hopping integral
|t|. For the typical values of the Berry curvature etc., the
bound of Eq. is satisfied by taking the flux of A,
f < 1, which is consistent with the results in the Sec.
VBl

VI. ANOMALOUS HALL EFFECTS OF
PHOTONS

In this section, we discuss the anomalous Hall effects
of light and evaluations of Chern numbers for the clean
and for the disordered case.

A. Chern number

The experiment of Sec. [VB|amounts to measuring line
integrals of the Berry gauge field Z(k) [18]:

To(E) = fc k.2 (K). (48)

Since C(F) is a constant energy curve in the Brillouin
zone, the phase can be reexpressed as a sum only over
the states of the Bloch band which lie below the given
energy of the curve, F,

I'o(E)= [ d*k0(FE — E(k)) % (49)
BZ

This value is, in general, not quantized: only after sum-
ming over the full Bloch band can the phase become a
multiple integer of 2w. In electronic systems, the non-
quantized part is the intrinsic contribution to the anoma-
lous Hall effect [96] T00] of a partially filled band (non-
quantized Hall conductivity o,,), and can be interpreted
as a Berry phase of quasiparticles at the Fermi surface
[51]. In a bosonic system, we interpret this as the anoma-
lous transport of a wavepacket whose energy overlaps
with that of a bulk band.

So far, we have dealt with a single Bloch band. In a
multiple band system, we can define the following quan-
tity as a sum over states below some energy:

v(E) = % 3 /BZ PPkO(E — E,(K).F,  (50)

where now the Berry curvature flgn) is defined as in Egs.
(@ and (34) but for the n'* Bloch band |nk). v(E) is
plotted in Fig. @ When the energy F lies in a gap, v(E)
is an integer, and it is the sum of the Chern numbers of
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FIG. 9. (Color online) Panel A: Dispersive middle band for ¢ = §. The Chern number, computed with formula of Eq. (50)

gives a non-quantized value in the overlap region which can be measured directly in an interference experiment. Panel B: Chern

number calculation for the flat band system ¢ = %

C: flat band system with increasing amplitude of on-site disorder Ws;te = 0,

with increasing amplitude of phase disorder: Wy =0, % -

correlation, and is drawn from a uniform distribution (see text).

all bands that lie below the given energy. We may rewrite
this quantity in a form that is manifestly invariant under
gauge transformations of Bloch vectors, and will be useful
as we tackle the disordered case in Sec. [VIBl We define
the projector Px = Px(FE) onto the Bloch states of energy
below E. The projection operator is obtained from the
Bloch eigenvectors of the tight-binding problem, and is
therefore k-dependent. We can rewrite Eq. as

1
= 7TI' {Pk [akmpk’ akyPk]} :

211

v(E) (51)

The number v(FE) is an integer only when the energy lies
between two bulk bands without touching them, inside
of a gap, and it takes non-universal values for the slight-
est overlap in energy with the bulk bands (see Fig. E[)
The quantization of this quantity corresponds to the ex-
istence of counter-propagating edge modes (see Sec. .
The detuning of the phase ¢ will make v(E) take a non-
quantized value, which corresponds to edge modes that
can decay into the bulk of the material. We corroborate
that disorder is similar in effect to changes of the phase ¢:
it also spreads the middle band leading to non-quantized
values of the Chern number. This is explained in the
next section and summarized in Fig. [0

B. Disordered system

In this section we investigate the robustness of edge
states in the disordered system. The Bloch state formu-
lation used so far cannot be used since the system breaks
translational invariance. To arrive at the formula for the
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Chern number in real-space for disordered systems, we
start from the clean case. The trace in Eq. (51)) can be
taken with respect to the basis of states localized at each
site, |m), where m = (mq, m2) indexes a site on the lat-
tice. In this section we return to the x,y basis, as this is
more useful for deriving formulae suitable for numerical
computations. Letting as usual rp, = mi1 A + moAo,

v(E) =
. 211 . .
— Jim 2 S e |P(B) [, PB)], ~ily, P(E)] [rm).

m

(52)

where P(F) is the Fourier transform of the operator
Py (FE) defined above, and projects onto states with en-
ergy below E. The total number of sites in the system is
denoted by N. In the thermodynamic limit for a clean
system, this formula is exactly that from Egs. (50)) and
(51). Its advantage is that it allows us to compute the
Chern number in a disordered system. In Ref. [I0I] it
was shown that the Chern number v(E) is an integer as
long as the energy E belongs to a gap in the spectrum.
The integer value can change to a different one only if
the energy E crosses a region of extended states, such as
traversing a bulk band.

When the system is disordered and finite, the prob-
lem of averaging over disorder configurations arises along
with that of taking the thermodynamic limit. The Chern
number can be defined as an ensemble average over dis-

order configurations [I0T], 102]

wm=/wwmm, (53)



where the disorder configurations § are distributed ac-
cording to a measure du(0), and vs(E) is the value of
the Chern number for the specific disorder configuration.
One defines a Hamiltonian %5 for each disorder config-
uration 4, and associates the projector Ps(F) to it as in
the clean case, which gives a formula for vs(F):

vs(E) =
2 erm‘Pé

m

i[x’ P5(E)]’ —i[y,P(;(E)]] |r1‘n>7
(54)

where now x,y are the position operators in cartesian
coordinates. This equation has the property that the
average over an ensemble of disorder configurations can
replace the thermodynamic limit of a single system. The
technical details, and reformulations suitable for numer-
ics are reserved for the Appendix [B]

We have computed the Chern number for the Kagome
system with a flat middle band using the methods de-
scribed in [102] at ¢ = %, implemented on a lattice of
24 x 24 sites, or 192 unit cells. At each point, the Chern
number was computed for 40 disorder configurations and
averaged. A white noise disorder potential (uncorrelated
from site to site) was sampled on the lattice. For a disor-
der amplitude W, a random number between [—%, %]
is produced. The two types of disorder that can appear
on the lattice are scalar disorder, on the on-site frequen-
cies, which we denote Wy, and vector disorder on the
hopping phases, denoted Wy.

Fig. @shows our results for Wy, between 0 and 1.5]¢]
and Wy between 0 and 3” The originally flat middle
band spreads with dlsorder in view of Sec. [[VB] the
broadening of the middle band is associated with states
leaking out of the hexagonal plaquettes due to the de-
tuning of the flux. Comparatively, the role of scalar or
vector disorder potentials is the same. We are not ad-
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dressing here the interesting question of comparing the
two types of disorder.

VII. ANISOTROPIES

Recently it has become possible to realize, shift,
and merge Dirac cones in optical lattices [103] [104].
Anisotropies on the honeycomb lattice have been stud-
ied [105]. In the cQED realization of the Kagome lattice,
anisotropies are inherent: the on-site energies hwa p.c
and hopping amplitudes ¢4, p ¢ obtained after integrat-
ing passive circuit elements are generally distinct (this is
presented in detail in Ref. [21]). Small anisotropies leave
the main features of the bandstructure intact. Below is
a quantiative analysis of the effects of anisotropies.

Dirac cones are stable due to discrete symmetries
[106], [107]. The isotropic Kagome lattice (isotropic hop-
ping amplitudes and site potentials), is symmetric under
inversions with respect to the center of a hexagonal pla-
quette, and under rotations by 27/3, up to the permu-
tation of the sublattice indices (lattice geometry in Fig.
. Additionally, for special values of the phase ¢ the
system is invariant under time-reversal symmetry. These
three symmetries fix the position of the Dirac cones at
the corners of the Brillouin zone between two bands. Two
more Dirac cones are merged at the I point (where the
dispersion of one of the bands is flat, and of the other
quadratic). If the rotational symmetry is broken due
to anisotropy, then the Dirac cones can be shifted in k-
space. For strong enough anisotropy, Dirac cones meet
at time-reversal invariant points in the Brillouin zone,
where they can annihilate. Such points are the I' point
and the M points. In the example below, Dirac points
annihilate at the M points.

Using the notations introduced in Sec. [T} let us de-
fine ¢1,2,12 = cos(ag212). The Hamiltonian including
anisotropies is

fuwo A 2tagcosaq 2t cosag
JA. = | 2tpacosaq hwp 2tpc cosaa | . (55)
2tca cosas 2tcp COs o hwe
which leads to the following equation for the three energy levels:
— B3 4 h(wa + wp +we)E? — (h2(wAwB + wpwe +wewa) — 4(|tas|?cE + |tac|*c + \th|20%2)) E

—Ah(wacty |t + wpciltac)® + weci|tap|?) + 16|t apt act o |cicacia cos(3¢) + hPwawpwe = 0. (56)

Let us consider, for example, the case when the hopping
integrals are isotropic, but there is an anisotropy between
the on-site energies w4 p,c at the level of each triangular
plaquette. The spectrum can become degenerate at the
M points defined by k, =0, k, = + 2\7} One has ¢y =1,
ca =0, and ¢35 = 0. Then for all ¢, a degeneracy occurs

(

if we = (wA+oJB:I:\/(wA—wB)2 %“ABF) /2. At
the other two pairs of M points, k, = £7, k, = ia%
and k, = , by = :FaLﬂ the degeneracy occurs if the
cyclic permutations of the condition above hold. This
procedure allows us to produce a degeneracy between
the upper and middle bands or the lower and middle



bands (although all three bands cannot be degerate at
the same k). The values for wa p ¢ necessary for this
degeneracy are on the order of the hopping amplitude
[t|. The touching cannot be lifted by varying the phase ¢.
The degeneracy at the M points is quadratic in at least
one direction in k-space, which is a feature of the fact
that two Dirac cones with linear dispersion annihilate at
the time-reversal invariant point (see, for example Ref.
[106]). One can tune the anisotropy as to annihilate a
pair of Dirac cones between the lower and middle band,
for example. As soon as the Dirac cones have annihilated,
the bands are no longer degerate and the respective gap
no longer carries edge modes.

In an experiment it is plausible to consider the case
of anisotropic phases 3¢y, and 3¢4own around the up-
pointing and down-pointing triangular plaquettes, re-
spectively. This arrangement maintains the requirement
that there is zero flux per unit cell, and the effect will be
to merely shift the Dirac cones due to the anisotropy.

VIII. INTERACTIONS

In this section we address the stability of the topolog-
ical phase in the presence of interaction effects. A host
of methods have been used to show that the topologi-
cal phases are stable even in the presence of interactions
[108, 109]. At a simple perturbative level, we show that
interactions cannot change the effective free particle dis-
persion bandstructure: they cannot cause the bands to
become degenerate and reopen the gap. The general ar-
gument goes as follows: if the system is in a topological
phase with gaps between bulk bands, then it is enough to
show that for weak enough interactions the shifts in the
energy levels are smaller than the free particle spectrum
gap size of order the hopping strength |¢].

The following are interaction Hamiltonians which can
be potentially implemented in arrays of resonators. The
boson Hubbard model was discussed, for example, in an
important paper by M. P. A. Fisher et al. [I10]. The
Jaynes-Cummings Hamiltonian [81], on the other hand,
models an interaction between lattice photons and quan-
tum two-level systems situated at each site. Both the
boson Hubbard model and the Jaynes-Cummings model
exhibit a phase transition from a superfluid to a bosonic
Mott insulator state. Both interactions are in principle
realizable in a ¢cQED experiment [24] 26]. For complete-
ness, we add a brief analysis of fermionic interactions in

Appendix [C]

A. Bose-Hubbard model

We start with the unperturbed Hamiltonian, the one
presented in Eq. ,

A=Y Pl =

keBZ

> al W B ask,  (57)
,3,kEBZ
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where the Greek indices indicate the sublattice in the
spinor wlt = aLk7aTBk,aTCk . The interaction Hamilto-
nian for the Bose-Hubbard model is quartic in the cre-

ation and annihilation operators

U
_ T T _ _
HBH = 5 Em alam(alam —1) =

i aJr aT a a
IN o ki —k%a ko +k%akaQa ks |

k a=A,B,C ki,ko
(58)

where N is the number of unit cells and we have used
the Fourier transform on each sublattice « = A, B,C as
ok = \/% >om ca e~ KRmg  We would like to describe
the spectrum of elementary excitations above the ground
state. The minimum of the spectrum is at the I' point:
the ground state of the bosonic system has all photons
condensed at k = 0 in the lowest band (see Fig. . Let
us denote the minimum single particle energy at the I'
point by Ej.

In the following treatment we shall restrict to a sub-
space of constant particle number n, where n = Nny.
We have denoted by N the number of unit cells in the
lattice, implying that there are 3N sites, and by ng the
number of condensate particles per unit cell. The spec-
trum of elementary excitations in the superfluid phase is
determined by using the Bogoliubov approximation [I11],

Gax = vV Nngdk + bo k- (59)

Eq. defines the excited state operators by k0. The
full Hamiltonian can be brought into the following form

HG = H + Ay =

Eg + g:ﬁ (bLk (%aﬁ _ E0§°‘B> bﬁ,k) +
Uno

. (261 scbor e + b,k + BB i) 5 (60)

k#0,a

where Fg = nkFEj is the total ground state energy, and
the remainder describes the excitation spectrum. We
shall only focus on the excitation spectrum and drop the
ground state energy from our notation. The Hamiltonian
can be diagonalized by a Bogoliubov transformation [T11]
from the particle operators b, k to a new set of quasipar-
ticle operators Bn,k, which annihilate a quasiparticle in
the n'? band. The details of the Bogoliubov transforma-
tion are reserved for Appendix [D} The Hamiltonian of
Eq. can be recast into a diagonal form from which
one can extract the quasiparticle dispersions, which we
denote by &, (k),

K=" (KD b (61)
k,n
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FIG. 10. (Color online) The left panel shows the deviation of
the effective quasiparticle dispersion &, (k) (black) from the
free particle dispersion E,(k) (dashed, red) for the ¢ = %
system with U/|t| = 0.13 (the plot is along the line k, =
0). Right panel: low energy quasiparticle spectrum exhibits
linear dispersion (magenta) at the I" point k = 0; plotted for

comparison is the free particle dispersion (light gray).

In the following, we discuss the stability of the topo-
logical phase when the Bose-Hubbard interaction is in-
troduced. In general, if the interactions induce no band
crossings, the Chern numbers on individual bands will
be conserved, and the topological phase is maintained.
The Hubbard interaction induced dispersion &, (k) can
only change significantly from the free particle dispersion
E, (k) of Eq. in the vicinity of the band minimum at
the I' point, where the quasiparticle has a linear disper-
sion (the sound mode). Fig. shows the quasiparticle
dispersion in comparison to the free particle dispersion,
in the flat band system at ¢ = &. As long as the Bose-
Hubbard coupling U is on the order of |¢| or smaller, the
shift in the energy levels cannot make the gap close and
reopen, and the topological phase is protected. In the
weak interaction regime, the middle flat band can ac-
quire a dispersion: This situation is similar to the effect
of detuning the hopping phase ¢, or the effect of disorder.

B. Jaynes-Cummings interaction

We proceed with the Jaynes-Cummings interaction [81]
which couples photons to quantum two-level systems
at each site. The Jaynes-Cummings system exhibits a
quantum phase transition of polaritons from a superfluid
phase to a Mott insulating phase [33], resembling that of
the Bose-Hubbard model. The system is governed by the
following Hamiltonian which describes the tight-binding
photons, the two-level systems, and the coupling between
these

A = Z tonn iy Gn + Z €0 om+ Z g(of am +h.c.)
m,n m m

(62)

where we have written the tight-binding Hamiltonian in a
more generic form as a sum over all pairs of sites, in terms
of generic hopping integrals ¢y n. Note that here the on-
site energies Aiw have been included in the diagonal terms
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tm,m- Here O’rin = 03,m 190y m are Pauli ladder operators

describing a two-level system at lattice coordinate m.
To characterize the stability of the anomalous Hall
phases in the presence of a weak (finite) Jaynes-
Cummings interaction, in Appendix [E] we find an effec-
tive low-energy Hamiltonian for the photon sector 7.
We consider the following limit of small conversion g,

g < |t < hw. (63)

This assumption is prompted by the following stability
condition specific to the Jaynes-Cummings lattice [33]. If
the ground state energy of the single particle spectrum,
FEy, has a negative value, there is no mechanism to limit
the number of photons that populate the ground state,
and therefore the system becomes unstable. We there-
fore need Eg > 0, which translates to a condition that
hw > z|t|, where here z = 4 is the coordination number
of the Kagome lattice. In a typical cQED experiment,
we expect || to not exceed 100 MHz and w to lie in the
GHz range. Additionally, under reasonable experimen-
tal conditions the two level system excitation energy e
and the (renormalized) resonator frequencies w will both
lie in the (microwave) GHz range. The condition that
hw =~ € is sufficient to order the two-level systems in
the ground state, and the determination of an effective
photon-photon interaction is well motivated. This, as
we show below, leads to a positive value of the Hubbard
coupling, i.e. a repulsive interaction.

To fourth order in the Jaynes-Cummings coupling g,
we obtain the following effective low-energy Hamiltonian:

HH =
207 & fag*

T T
Ey + maloalo + 5 a10@108;0 10, (64)

(2E0 — 6)

where fo and f4 are positive dimensionless factors which
can be found in Appendix |E{and the operator alTO creates
a particle in the ground state of the photon tight-binding
Hamiltonian (lower band at the T' point, k = 0). Eq.
shows that to lowest order the interaction shifts the

(lowest) band minimum by an amount ézgf -. The next
non-vanishing contribution appears at the quartic or-
der. The repulsive character is obtainable under reason-
able experimental conditions for the Jaynes-Cummings
model, where both Aw and € would be in the microwave
range. One way to understand the presence of a repul-
sive photon-photon interaction is by noting that the two-
level systems are bosons with hard-core on-site repul-
sion. More precisely, if two-level systems are represented
by bosons with interactions, the Jaynes-Cummings term
can be absorbed by a shift of the bosonic two-level sys-
tem field, and then the interaction term of the two-level
systems also generates an on-site interaction for the pho-
ton in the shifted basis. The correspondence between the
Jaynes-Cummings lattice and Bose-Hubbard model has
also been demonstrated through a field theory approach
close to the Mott-superfluid transition of light [33]. In the
calculation that led to Eq. 7 we have considered the




ground state with all photons at wavevector k = 0. This
does not provide precise information about the range of
the interaction, but it is telling that a Hubbard-type re-
pulsive photon-photon interaction can emerge. Finally,
as long as the perturbation g is weak compared to the
size of the gap, which is of order [¢|, the detuning e, and
the on-site energy fw, the interactions cannot cause de-
generacies, and the topological phase will be stable.

IX. CONCLUSIONS

Motivated by the recent experimental progress in the
context of arrays of electromagnetic superconducting res-
onators [23], we have investigated the anomalous Hall ef-
fect of light on the Kagome lattice with artificial gauge
fields [21]. The photonic system here exhibits equivalents
of the quantum Hall effect without Landau levels, and
the anomalous Hall effect with a non-quantized Chern
number. In particular, we have shown that a topologi-
cally trivial band can affect the quantization of Chern
numbers as well as the robustness of the chiral edge
modes. We have discussed observables which are acces-
sible experimentally. We have introduced a method to
measure Berry’s phases around loops of constant energy
in the Brillouin zone. The method is based solely on
wavepacket interference and can be used to determine
band Chern numbers or the photonic equivalent of the
anomalous Hall response. It provides an alternative to a
recent method proposed to measure line integrals of the
Berry gauge field in cold-atomic systems, which relies
on the measurement of group velocities of wavepackets
and a force-reversal protocol [53]. In cQED systems, this
is realized by adjusting the frequency of each resonator
individually, which has become experimentally possible
[38, [55], 56, [@1]. It shall be noted that interference exper-
iments can also be envisioned to probe the Landau levels,
emerging when placing the Kagome lattice in a uniform
magnetic field. An open and interesting question to in-
vestigate in the near future would be the influence of ar-
tificial gauge fields on the superfluid-Mott transition of
light in cQED photon-based lattices, following a similar
line of thought to that used in recent theoretical investi-
gations [I09] T12]. Recent progress in this direction has
been realized in Ref. [II3] where a chiral Mott insulator
with a gap to all excitations and staggered fluxes has been
found. Transport of microwave photons through cQED
lattices with artificial gauge fields and disorder would be
an interesting topic to explore. Another relevant subject
to consider more thoroughly both theoretically and ex-
perimentally is the realization of quantum impurity mod-
els exhibiting fingerprints of many-body physics such as
the Kondo model and Spin-Boson models [IT4HI17].

We acknowledge useful discussions with Stephan
Rachel, Peter Orth and Arun Paramekanti. AP and
KLH are supported by the NSF through DMR-0803200
and DMR-0653377. AAH acknowledges support from the
NSF Grant DMR-0953475.
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Appendix A: Synthetic gauge fields

In this appendix we present a more detailed derivation
of the results in Sec. [V Al

1. Magnetic field

This derivation starts from an idea used in Ref. [89]
for square lattices. Consider the time-dependent Hamil-
tonian of Eq. , which we reproduce here:

I = H + Z (hw + hwg cos (Q7 + mab) my) ainam.
(A1)

We construct the solution to the Schrodinger equation
as follows. If the hopping is supressed, |t| = 0, then the
following function solves the time-dependent Schrédinger
equation:

) = 3 e m),

Om(T) = —wr — % sin (U7 + 0ma)my.  (A2)
The solution for || # 0 is constructed from this as
(A3)

) = Z dmei¢m lm),

where the dy, must now obey the following differential
equation

ihdp =Y tmpe' O dy,. (A4)

In this last equation, the ty, » is the tight-binding hop-
ping integral, which takes the value |t|e**® for nearest-
neighbors and zero otherwise, and ¢, are the phases
computed in Eq. . The perturbation has induced
a time-dependent phase factor e/(?m—%») which we will
now simplify by keeping only those parts that oscillate
very slowly (rotating wave approximation). We shall use
the following expansion

+oo

— Z 6“06._7[(2),

l=—00

izsina
e

(A5)

where J;(z) are the Bessel functions of the first kind.
Upon inspection of the expansion in Eq. and of the
phase ¢, in Eq. we find that, in general, one must
have the driving frequency 2 be an integer multiple of the
on-site frequency w, i.e. lw, in order to obtain at least
one time-independent term in the expansion. The largest
contribution is obtained if we take {2 = w. We obtain the



following effective changes to the hopping amplitudes
bond || A :
e = e - T () e
bond || A, :
|t|e ™ — |tle” "

bond || (AQ - Al) :

[tle™"" — [tle™" (J_l (%(ml + 1)> e g
(A6)

The ratio 9§ provides an additional experimental param-
eter to tune the hopping strength via the Bessel functions
of the first kind J_1.

The time-dependent perturbation has induced spa-
tially dependent phases and a dressing of the hopping
integral |t|. These spatially dependent phases mimic the
phases that would be produced by a gauge field in the
minimal substitution. The fact that an additional phase
is acquired along oblique bonds parallel to As — A; im-
plies that at the level of each unit cell the phases will cor-
respond to a field that is non-uniform across the unit cell.
However, the total phase acquired by a photon traversing
around a parallelogram unit cell of area |A; X Ay, see
Fig. [1} is going to be a constant equal to f = 26. Since
the uniformity of the field at the level of the unit cell can
be recovered by a gauge transformation, we perform all
of our calculations (Appendix for a uniform field.

2. Spectrum in a magnetic field

In this appendix we show the detailed calculations for
the spectrum of the Kagome system placed in a uni-
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form magnetic field %,. The phase acquired by a par-
ticle along an elementary parallelogram unit cell of the

is f = ‘@S‘IT% = 8nf =
V/3ba, where f is dimensionless, and b has units of in-
verse length. The phase acquired by a photon around the
unit cell is eight times the phase acquired on a counter-
clockwise loop around a triangular plaquette. Let us for
simplicity pick the following gauge field in the Landau
gauge, s = (—%Bsy,0), where the two components are
cartesian. Due to the presence of a magnetic field, the
Hamiltonian will couple &y to ky :I:% and to k, £b. With-
out loss of generality, we take fiw = 0. The Hamiltonian
reads

Kagome lattice (see Fig.

_ i ik.Aq T T
H = ‘t|el¢ E et 1aAkw,kyaBkzvky+b + O Ay ke, OBEa Ky —b
k

. f .
P —ik. Ao T T
te'ie (e AC ky ky OB kg by +2 T OC ky ey UB Ky oy — &

iL ;i :baV/3
L —ik(A—Ay)—ibeB ¢
°< ® OA ke by Ak ey 5
) + h.c.

’L

t
£ QA Ky ky OC kg key—E

For rational values of f = %, where p,q are relatively

prime integers, one can reduce the Brillouin zone from

the original [0, 2—”} {0 4\7}] to the magnetic Brillouin

zone {O, z—’;] [O s } The couplings between different

momenta dlsappear and we have replaced the original
problem with that of a periodic one-dimensional chain of
3q sites. Let us take a generic wavefunction to be

qg—1

= >

n=0,a=A,B,C

wa"alkz,k2+n% |O>a (AS)

n

where gy O+ creates a photon on sublattice « at

a given momentum. Then the Schrodinger equation is
equivalent to the following set of three Harper equations

i f bf . 0 b
Ekz,k2¢Am _ ‘t|ez¢ iig ( +iby3 wcm e (km;k +m2 ) (Ar— Az)'(/JC m+1) + |t|€ z(b( (kz7ky+m2)-A1,(/}B)m+2 + Q/JB,me)
Ekm,ng/JBm = \t|e’¢ (el(kz’kyHm 2)12))‘A11/1A,m72 + 7/1A,m+2> + |tle 915 (ez(k’”’kﬁ(m l)g)'AzllJc,mq + 1/Jc,m+1)
Ekm,kg"r/)Cm = ‘t|ei¢+i 1f6 ( (k,,ky—i—m ) A2¢B m+1 + 7/}B m— 1)

+|t|e*i¢+i% (@i(kw’kfﬁﬂm*l) 5)-(A1— Az)ﬂb“‘rd,A 1 e ibeg/s 7 )

(A9)

The solution to these equations gives the spectrum of the system for every rational flux f = p/q, and the pattern of
splittings into magnetic subbands is known as the Hofstadter butterfly [73]. The spectrum of the problem is periodic
in f of period 2, for example f =0 and f = 2 systems have the same spectrum etc.

Appendix B: Evaluation of Chern numbers in
disordered systems

This appendix is dedicated to presenting more rigorous
statements behind the real-space Chern number formulae

(

of Egs. and . The general theory was introduced
in [T0T) 102]. To keep our discussion generic and more

(A7)



suitable for numerics, we shall rescale our Brillouin zone
to [0, %’T} X [O, 27“] . The results for the reciprocal unit cell
of the Kagome lattice can be adapted from the following
by the introduction of the appropriate Jacobian.

Consider a two-dimensional lattice with K orbitals per
site. We may take {|ma)|a = 1,..., K} to be kets local-
ized at each site m = (mj,msg), corresponding to each
orbital. This amounts to a basis of the full Hilbert space.
The orbitals o may represent actual orbitals, or spin,
isospin due to more ions per unit cell etc. The Bloch
transformation is a unitary transformation that takes the
Hilbert space H to a direct sum of CX spaces of K-tuples
of complex numbers, U : H — ®repzCK. A ket localized
at site m transforms as

1 —i
Ulma) = — @yepz e KTmE,,

o (B1)

where ry, = m1A1 +moAs, and &, is the column vector
of K elements with the ot entry equal to 1, and the rest
0.

The Fourier transform of any operator A is

UAUT = @xenzA(k). (B2)

The momentum space derivatives of an operator trans-
form as

UT (@kGBZaij(k)) U=—i [ij A} ) .7 =Y, (BS)
The following identity of traces has to hold for a clean
infinite system
L / Tr{A(k)}d’k = lim In {A} (B4)
(27)2 T Ases AT AV
where Tr is the trace over orbitals, whereas Tr 4 is the
trace over orbitals and over the sites included in a patch
of the system of area A.

Spatial disorder configurations § are distributed ac-
cording to a probability measure du(d), which by as-
sumption obeys the following properties. The probabil-
ity measure for disorder configurations is invariant under
spatial translations (homogeneity); any subset of the dis-
order configuration space invariant under translations is
a set of measure 0. These properties amount to requiring
that the probability measure for disorder configurations
is ergodic with respect to spatial translations. Ergodic-
ity implies that spatial and disorder configuration aver-
ages are interchangeable. The averaging in Eq. can
be performed over a small system with many disorder
configurations to the same effect as on a system in the
thermodynamic limit with a single disorder configuration
(self-averaging property).

For each disorder configuration &, one defines an oper-
ator As (for example, the Hamiltonian 5). One cannot
define k-space calculus rules because the Fourier trans-
form is no longer defined, but one may replace calculus
rules in the Brillouin zone by the “non-commutative” rule

8kj A5 — —i[Tj,A(;], Vo (B5)
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and integration becomes

fim_ S Tea{A) = [ duol sl (B0
A=o00 A
where the trace at the origin is given by tro{A} =
Tr{mgAmo} involving the projector mo = > |0, a)(0, &
onto quantum states at the origin m = (0, 0).

With the help of such calculus rules, the Chern number
in the disordered continuum becomes

v(E) = 27”'/du(5)tro{Pa(E)[*i[I7Pa(E)],*i[y,P(s(E)H}

(B7)
Ref. [I01] contains a proof of the fact that this expres-
sion for an infinite system is the analytical index of a
Fredholm operator, and thus an integer. This integer
can only change if the energy F crosses a region of ex-
tended states in the spectrum, i.e. something like a bulk
band. For our numerical calculations, used the develop-
ments in Ref. [I02], which gives a fast converging formula
for the Chern number of Eq. . The Brillouin torus
is discretized into N, x IV, patches of momentum space
area A, A, and integration is approximated by Riemann
summation.

Derivatives in k-space are approximated by a finite-
differences formula

Q
Ok, Pc = 0k, Py = Y _ ¢[Pagtin, — Piw—jn ], i =2,y
j=1

(B8)
where the coefficients ¢, are chosen to insure exponential
convergence in the limit of large N, ,, and @ is an ad-
justable number of order N, ,. Then the Chern number
becomes

1
V(E) = 5= > Tr{Py, [on, Pr, 80P, }A?
kn

= —2miTe{Dr, ez (Pr, [0k, Pr,, » Ok, Pr,]) }-(BI)

We can now replace the derivatives in momen-
tum space by their real-space counterparts through
Ulem™AP(E)e™ M) UT = ®kepzPria(E). We arrive at
the final formula for the Chern number

I/(;(E) =
211

" N.N,

(mal|Ps(E)[—ilz, P5(E)], —ily, P5(E)]]jma),

(B10)

where the sum is now manifestly over a finite system.
The bracket used above is derived from the original com-
mutator [z, Ps(E)]

I_'r7 P5(E)J =
lz Cj(efzjx.AIP(s(E)eux.Az _ ezjm.AIP(s(E)efzgx.AI)’
j=1

(B11)



and an analogous equation holds for y. The result needs
to be averaged over disorder configurations,

W(E) = [ du@ps(E). (B12)

Appendix C: Interacting fermions on the Kagome
lattice

In this appendix we analyse a Hamiltonian describing
a fermionic nearest-neighbor interaction on the Kagome

lattice:
(i5)
The Fourier transformed interaction Hamiltonian reads

PRSI

Ink

(C1)

T T
) Ay 1-k@AN0E 5 kOB T

A
cos (k.2) aklfkaA,lag,nJrkaC,n +

A — A
cos (k122

where N is the number of unit cells on the lattice. We
begin with the model containing a flat middle band at
¢ = . Mean-field theory is performed easily if we

switch to the band basis (a;rk, Ink, uk) where the op-
erators create particles of given momentum in each of
the three bands, “lower”, “middle”, and “upper”. In the
band basis, the tight binding Hamiltonian 44 of Eq.
describing free particles is diagonal,

) ag,lfkacxlag,nJrkaBm}v (C2)

Tli%(Tk = dlag(El(k)7Em(k)7Eu(k)) (03)

The columns of T" are the Bloch eigenvectors of 7. Then
the two bases are related by the following unitary trans-
formation,

Ak ax
apk | =Tk | amx |, where
ack yk
TAZ( ) TAm( ) TAu( )
T = | Tpi(k) Tem(k) Tpu(k) (C4)
Toi(k) Tom(k) Tou(k)

At 1/3 filling, or when the lower band is completely oc-
cupied, the resulting mean-field Hamiltonian amounts to
simply

%MF —

v
3 Z a}kalk + const, (C5)

keBZ

while at 2/3 filling, when both the lowest and the flat
band are filled, the mean-field Hamiltonian takes the
form

‘%MF = % Z (ag'kalk + ainkamk) . (06)

keBZ
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Then at mean-field level the nearest-neighbor interaction
amounts to shifting the bands by an amount constant in
k-space. For strong enough interactions V', the bands
will close gaps, but as long as V' < |¢|, which is the size
of the band gap at ¢ = %, the picture cannot be changed
qualitatively and the topological phase is robust to this
interaction effect. The cancelation of any k-dependent
shifts is a feature of the C's symmetry of the lattice.

Appendix D: Bogoliubov transformation

In this appendix we present a way to diagonalize the
Hamiltonian of Eq. . The Hamiltonian matrix can
be written in the following basis

of = (barly

with the b, operators as defined on each sublattice o €

{A,B,C} in Eq. (59).
=Y Bl APy,

keBZ

Wbl b ), (D)

(D2)

where now the Hamiltonian may be expressed as

haa(k) hap(k) hac(k)
hpa(k) hgpk) hpck) |,
hca(k) hep(k) hoco(k)

whose elements are 2 x 2 matrices defined as

e (K) ( 0 )

oo - U;zg <%p_aka+% 9
AP0

ool = (75 fua )

where 47 is the free particle Hamiltonian in Eq. . In
the weak coupling limit U < |¢|, the Bogoliubov transfor-
mation can be performed as follows. The b operators can
be transformed to quasiparticle operators b via a canon-
ical transformation

Sy = (D3)

(D4)

®y = By Py, (D5)

with ® defined as in Eq. QD with b replacing b where the
condition for By to preserve the b~oson~ic commutation re-
lations between the b operators, by, b};k/] = Juplkr and

[, bpir] = 0 is the following pseudo-unitarity condition
BYBl = %, where (D6)

where id3« 3 is the identity acting on sublattice space and
og is the third Pauli matrix. By must diagonalize the
Bogoliubov Hamiltonian of Eq. (D3); let

Bl # By = . (D7)
From the condition in Eq. one can reexpress this as
S B} YY) By = By 'S By = S (D8)

whence the matrices ¥ and Y% are similar and it
suffices to diagonalize the matrix ¥.7% to determine the
spectrum of Bogoliubov quasiparticles.

= id3x3 ® 03,



Appendix E: Effective photon Hamiltonian

In this appendix we derive an effective low-energy
Hamiltonian 27 for the photons in the Jaynes-
Cummings lattice model deep in the superfluid (delocal-
ized) phase.

The low energy state is the condensate state of n pho-
tons and all of the 3N two-level systems are in their
ground state.

|Gn> = |9n> & ®| \L>m (E1>

where the operator a;rk creates a photon in the lowest

band at wavevector k and
1 n
90) = = (theo) 10} (E2)

and |0) is the photon vacuum.
Consider the regime of weak coupling between photons
and two-level systems described in the main text

g < |t < hw. (E3)

Under realistic experimental conditions, Aiw = €, which
causes the two-level systems to be ordered in the ground
state, and motivates our approach and to determine an
effective photon-photon interaction starting with the ket
in Eq. (E1). Defining the projector on the ground state
and the projector onto all excited states of the system as

= |Gpn)(Gp|and K =id — Q. (E4)
These operators project into the subspace with n polari-
tons, where __ al am + oo, is the polariton number.

The indices m here represent the lattice coordinates.
Then

HQ =nE(k =0)Q +
Zgam‘gn gn|®|T ¢|m®|¢ \an
Q%:TLEl( =0)Q +

Zglgn Ygnlaly @ | )

ﬂm@M¢¢h

(E5)

Above, Ej(k) is the dispersion of the lowest band. Simi-
larly we will denote by E,, ., the dispersion relations for
the middle and upper bands, respectively, of the original
tight-binding Hamiltonian. The following operators are
now completely specified using the equations above

QAQ =nki(k =0)Q
KAQ = HQ — QA4Q
QIGK = QA — QAQ (E6)

Finally the projections onto excited states can be ex-
pressed simply in terms of the projector onto the ground

21

state
KK = 7 — Qi — HQ + QHAQ
= Ay + A+ A,
I = Ztm,nainan —nEk=0)Q

m,n
_ + -
ﬁfe—g €0mOm
m

Hy =9 Tmim + Omak,

m

—QA — AQ +2Q4Q.  (ET)
The effective low energy Hamiltonian is written as

1

eff —
A = QIQ+ QI

KAQ.  (ES)

A perturbation series in the small parameter g can be
obtained by expanding the denominator:

1 1
EfK%ﬂtK_Ef((%’;Jr%ﬁJr%”g)_
1 1 B
= : A =
1

“+(E—¢Ziz@)

+<E—é§+%®f+0@ﬂ

E— (A, + )

(E9)
The main step is to invert
. (E10)
E — (M, + )
where
(E11)

_ + -
H = E €0mOm
m

There is a basis in which the operator 2, + S is diag-
onal:

Aoy + A =

E alkalkEl

=0) QJreZJ,J;J;I,

+ a’mka‘mkE (k) + aj;kaukEu (k)

_nE(k (E12)

where we have introduced the operators creating a parti-
cle in the lower, middle and upper band as a}k, aink and
a};k7 respectively. These band basis operators are related
to the original operators aTAk etc. by a linear transforma-
tion which is written explicitly in Appendix [C} The cor-
responding band dispersion relations are Ej ,, . (k), and
this form of the tight-binding Hamiltonian is simply the



diagonal form of Eq. . We have now obtained a sum
of decoupled Hamiltonians; the tight-binding part is al-
ready diagonal in the band basis introduced here; the
two-level system piece is already diagonal in coordinate
space.

Let us compute the effective Hamiltonian up to lowest
order contribution in g, from Eq. :

1
AT S QAQ+QIHK 7— KAQ. (E13)

(A + )

Only the terms containing a;x—g contribute due to the
projectors @ at the two ends of the second term. Then we
only need to take the following terms for the evaluation

of Eq. (E13):

% + A = a}oaloEl(O) — EZU:’Y_]U;. (E14)

We have cast the denominator into a form which is di-
agonal with respect to both photon quantum numbers
and two-level system quantum numbers. The | [)(1 | of
QK and the | 1){({ | of KS2Q acting on the diagonal
matrix in between them will yield the projector onto the
down state | })(} |, i.e. the second term in Eq.
will be a c-number times (. More explicitly,

1
E — alyainEi(0) + nE(0)Q — € X, 0ihom

9° > m Unm
T a;roalOEl(O) . |gn><gn‘ 02y @ ‘ \lf>m<~L |m

ng2

N E—(n—l)El(O)—eQ_

QAK KAQ =

= |9n) (gnl

2 T
g~ a;nai0

E—(n—1)E(0) —¢

Then to lowest order ¢2,

afoaon

(E16)
To retrieve the effective Hamiltonian for the theory, we
need to take the limit E — nEj(k = 0), i.e. this is
only a valid expression close to the state ground state
onto which @ projects. Taking the limit above gives us
an effective shift of the k = 0 energy. Peeling off the
projector @), we obtain the following effective low-energy

o g
20 = Q (El(0)+ E—(n—-1)E/(0) —

Q. (E15)
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Hamiltonian:

2
eff _ 9 T
N = <El(0) + EZ(O) — €> 10010, (E17)

which shows that at lowest order2the interaction shifts
band minimum by an amount %

E; (0)—6 :

Higher order contributions yield effective interactions
for the photons. The next nonvanishing contribution is
in g%, and comes from the term

1 2
eff .
H DQ%K(E—(%—&-%)) Hy

After a similar calculation to the one above, we obtain
the following form for this term,

4
%eﬁD 97

ol ,
B0 — 7 2, it e

m,m’

(E19)

In the main text, we have denoted the ground state en-
ergy of the single particle tight-binding model as E;(0) =
Ey. Peeling off the projector onto the ground state, @,
we may rewrite the effective Hamiltonian 27 as

fag*

(-
(2E, — €)3 Mo™0%o o, (E20)

2
Eo + %a%azo +

where fo and fy are dimensionless quantities defined as
fo = (ITawl? + |Tpiwl® + [Tcw|?) and fi = (|Tawl* +
|TB10|* + |Tciol*), where the T’s are the elements of
the unitary transformation from sublattice basis to band
basis, introduced in Appendix [C} aox = Taxax +
Tamkajnk + Taukalk for each « = A, B, C.

Under realistic experimental conditions, where both Fjy
and € are in the microwave range, one can obtain a repul-
sive interaction with g*/(2Ey — €)® > 0. Since we have
only considered the ground state in which all photons are
at wavevector k = 0, this approach does not provide pre-
cise information about the range of the interaction, but
it is telling that a Hubbard-type repulsive photon-photon
interaction can emerge.
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