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We derive exact general relations between various observables for N bosons with zero-range in-
teractions, in two or three dimensions, in an arbitrary external potential. Some of our results are
analogous to relations derived previously for two-component fermions, and involve derivatives of the
energy with respect to the two-body s-wave scattering length a. Moreover, in the three-dimensional
case, where the Efimov effect takes place, the interactions are characterized not only by a, but also
by a three-body parameter Rt. We then find additional relations which involve the derivative of the
energy with respect Rt. In short, this derivative gives the probability to find three particles close
to each other. Although it is evaluated for a totally loss-less model, it also gives the three-body
loss rate always present in experiments (due to three-body recombination to deeply bound diatomic
molecules), at least in the limit where the so-called inelasticity parameter η is small enough. As an
application, we obtain, within the zero-range model and to first order in η, an analytic expression
for the three-body loss rate constant for a non-degenerate Bose gas at thermal equilibrium with
infinite scattering length. We also discuss the generalization to arbitrary mixtures of bosons and/or
fermions.

PACS numbers: 67.85.-d

I. INTRODUCTION

Ultracold atomic gases with resonant interactions, that
is having a s-wave scattering length much larger in abso-
lute value than the interaction range, can now be studied
experimentally thanks to the broad magnetic Feshbach
resonances, not only with two-component fermions [1, 2]
but also with bosons [3–7] or mixtures [8, 9]. In this reso-
nant regime, one can neglect the range of the interaction,
which is equivalent to replacing the interaction with con-
tact conditions on the N -body wavefunction: In 3D, this
constitutes the so-called zero-range model [10–16], that
can also be defined in 2D (see e.g. [17–20]), and of course
in 1D [21, 22]. In each dimension, these models include
a length, the so-called d-dimensional scattering length a.
In three dimensions, when the Efimov effect occurs [10],
an additional length has to be introduced, the so-called
three-body parameter [23].

For the zero-range models, it was gradually realized
that several observables, such as the short distance be-
havior of the pair distribution function g(2)(r) or the
tail of the momentum distribution n(k), can be re-
lated to derivatives of the energy with respect to the
d-dimensional scattering length a. In 1D, the value of
g(2)(0) was directly related to such a derivative by the
Hellmann-Feynman theorem [21]; the coefficient of the
leading 1/k4 term in n(k) at large k was then related to
the singular behavior of the wavefunction for two close
particles, and ultimately to g(2)(0), by general properties
of the Fourier transform [24]. In 3D, for spin-1/2 fermions
(where the Efimov effect does not occur), an extension of
the 1D relations was obtained by a variety of techniques
[25–30], including the original 1D techniques. General-
izations were then obtained for 2D systems, for fermions

or bosons [31–34].
This is the second of a series of two articles on such

general relations. The first one covered two-component
fermions (Ref. [34], hereafter referred to as Article I).
Here, we consider single-component bosons, as well as
mixtures. In the 3D case, remarkably, the Efimov ef-
fect leads to modifications or even breakdown of some
relations, and to the appearance of additional relations
involving the derivative of the energy with respect to
the three-body parameter Rt. Several of the results pre-
sented here were already contained in [35] and rederived
in [36] with a different technique, that allowed the au-
thors of [36] to obtain still other Efimovian relations for
N bosons [71].
The article is organized as follows. Section II intro-

duces the zero-range model and associated notations for
the single-component bosons. Section III presents rela-
tions which are analogous to the fermionic ones. Addi-
tional relations resulting from the Efimov effect are de-
rived in Section IV. As an application, the three-body
loss rate of a non-degenerate Bose gas for an infinite scat-
tering length is calculated in Section V. Finally the case
of an arbitrary mixture is addressed in Section VI. We
conclude in Section VII. Note that, for convenience, the
main relations are displayed in Tables I, II, III.

II. MODEL AND NOTATIONS

In 3D, the zero-range model imposes the Wigner-
Bethe-Peierls contact condition on the N -body wavefunc-
tion: For any pair of particles i, j, when one takes the
limit of a vanishing distance rij ≡ |ri − rj | with a fixed
value of the center of mass cij = (ri + rj)/2 different
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from the positions rk of the other N − 2 particles, the
wavefunction has to behave as

ψ(r1, . . . , rN ) =

(

1

rij
− 1

a

)

Aij(cij , (rk)k 6=i,j) +O(rij)

(1)
where a is the 3D scattering length. The a priori un-
known functions Aij are determined from the fact that
ψ solves the free Schrödinger’s equation over the domain
where the positions of the particles are two by two dis-
tinct: Eψ = Hψ with

H =

N
∑

i=1

[

− ~
2

2m
∆ri + U(ri)

]

(2)

and U is the external potential. Also ψ is normalized to
unity.

If there are three bosons or more, the Efimov effect
occurs [10], and the zero-range model has to be supple-
mented by a three-body contact condition that involves
a positive length, the three-body parameter Rt: In the
limit where three particles approach each other (that one
can take to be particles 1, 2 and 3 due to the bosonic
symmetry), there exists a function B, hereafter called
three-body regular part, such that

ψ(r1, . . . , rN ) ∼
R→0

Φ(r1, r2, r3)B(c123, r4, . . . , rN ) (3)

where c123 = (r1 + r2 + r3)/3 is the center of mass of
particles 1,2 and 3, Φ is the zero-energy three-body scat-
tering state

Φ(r1, r2, r3) =
1

R2
sin

[

|s0| ln
R

Rt

]

φs0 (Ω), (4)

and where R,Ω are the hyperradius and the hyperangles
associated with particles 1, 2 and 3. We take the limit
R → 0 in (3) for fixed Ω and c123 (in analogy with the
two-body contact condition).

We recall the definition of R and Ω: From the Ja-
cobi coordinates r = r2 − r1 and ρ = (2r3− r1 − r2)/

√
3,

one forms the six-component vectorR = (r,ρ)/
√
2; then,

the hyperradius R =
√

(r2 + ρ2)/2 is the norm of R, and
Ω = R/R is its direction that can be parametrized by five
hyperangles, so that d6R = R5dRd5Ω. In Eq. (4), s0 =
i·1.00623782510 . . . is Efimov’s transcendental number, it
is the imaginary solution (with positive imaginary part)

of s cos(sπ/2) = (8/
√
3) sin(sπ/6); φs0(Ω) is the hyper-

angular part of the Efimov trimers wavefunctions [10],
which, in the present case (single-component bosons), is
given by φs0(Ω) ≡ N (1+Q) sinh

[

|s0|
(

π
2 − α

)]

/ sin(2α)
where Q = P13 + P23 and Pij exchanges particles i
and j, and where α ≡ arctan(r/ρ). Here we in-
troduced, for later convenience, a normalization fac-
tor such that

∫

d5Ω |φs0(Ω)|2 = 1. Using
∫

d5Ω =
∫ π/2

0
dα sin2 α cos2 α

∫

d2r̂
∫

d2ρ̂, where d2r̂ and d2ρ̂ are

the differential solid angles in 3D, we obtain [37, 38]

N−2 =
6π2

|s0|
sinh(|s0|π/2)

[

cosh(|s0|π/2)

+ |s0|
π

2
sinh(|s0|π/2)−

4π

3
√
3
cosh(|s0|π/6)

]

. (5)

For N = 3 particles, it is well established that this
model Hamiltonian is self-adjoint and that it is the zero-
range limit of finite-range models, see e.g. [16] and refer-
ences therein. The fact that the zero-range (i.e. low-
energy) regime can be described using the scattering
length and a three-body parameter only is known as uni-
versality [15]. For N = 4, an accurate numerical study
[39] has shown, as was suggested by earlier ones [40–
42] and as supported by experimental evidence [43], that
there is no need to introduce a four-body parameter in
the zero-range limit, implying that the here considered
zero-range model Hamiltonian is self-adjoint for N = 4.
Physically, this is related to the fact that the introduction
of Rt, imposed by the three-body Efimov effect, neces-
sarily breaks the separability of the 4-body problem at
infinite scattering length ; this precludes the simplest sce-
nario imposing the introduction of a four-body parame-
ter, namely a four-body Efimov effect such as the one
found for 3 + 1 fermions in [44]. Here we consider an
arbitrary value of N such that the model Hamiltonian is
self-adjoint.
In 2D, the zero-range model is a direct generalization

of the 3D one, since one simply replaces the 3D zero-
energy two-body scattering wavefunction r−1

ij − a−1 by

the 2D one ln(rij/a), where a is now the 2D scattering
length. Accordingly, for any pair of particles i and j, in
the limit rij ≡ |ri − rj | → 0 with cij = (ri + rj)/2 fixed,
the N -body wavefunction satisfies in 2D:

ψ(r1, . . . , rN ) = ln(rij/a)Aij(cij , (rk)k 6=i,j) +O(rij).
(6)

There is no Efimov effect in 2D so that no additional
parameter is required [45–47]. The Hamiltonian is the
corresponding 2D version of (2).

III. RELATIONS WHICH ARE ANALOGOUS

TO THE FERMIONIC CASE

A first set of relations is given in Table I. These
relations and derivations are largely analogous to the
fermionic case (which was treated in Article I). An
obvious difference with the fermionic case is that there
are no more spin indices in the pair distribution function
g(2) and in the momentum distribution n(k). Accord-

ingly we now have g(2)(r, r′) = 〈ψ̂†(r)ψ̂†(r′)ψ̂(r′)ψ̂(r)〉 =
∫

ddr1 . . . d
drN |ψ(r1, . . . , rN )|2∑i6=j δ (r− ri) δ (r

′ − rj),

where ψ̂ is the bosonic field operator, and the momentum
distribution is normalized as

∫

n(k)ddk/(2π)d = N .
Apart from numerical prefactors, there are two more
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Three dimensions Two dimensions

C ≡ lim
k→+∞

k4n(k) (1)

C = 32 π2 (A,A) (2a) C = 8π2 (A,A) (2b)
∫

d3c g(2)
(

c+
r

2
, c− r

2

)

∼
r→0

C

(4π)2
1

r2
(3a)

∫

d2c g(2)
(

c+
r

2
, c− r

2

)

∼
r→0

C

(2π)2
ln2 r (3b)

(

∂E

∂(−1/a)

)

Rt

=
~
2C

8πm
(4a)

dE

d(ln a)
=

~
2C

4πm
(4b)

E − Etrap
if ∃ lim
=

~
2C

8πma
E − Etrap = lim

Λ→∞

[

− ~
2C

4πm
ln

(

aΛeγ

2

)

+ lim
Λ→∞

∫

k<Λ

d3k

(2π)3
~
2k2

2m

[

n(k)− C

k4

]

(5a) +

∫

k<Λ

d2k

(2π)2
~
2k2

2m
n(k)

]

(5b)

1

2

(

∂2En

∂(−1/a)2

)

Rt

=

(

4π~2

m

)2
∑

n′,En′ 6=En

|(A(n′), A(n))|2
En − En′

(6a)
1

2

d2En

d(ln a)2
=

(

2π~2

m

)2
∑

n′,En′ 6=En

|(A(n′), A(n))|2
En − En′

(6b)

TABLE I: For single-component bosons, relations which are analogous to the fermionic case. In three dimensions, the derivatives
are taken for a fixed three-body parameter Rt. As discussed in the text, in three dimensions, the relation between energy and
momentum distribution is valid if the large cut-off limit Λ → +∞ exists, which is not the case for Efimovian states (i.e.
eigenstates whose energy depends on Rt). The notation (A,A) is defined in Eq. (8). γ = 0.577215 . . . is Euler’s constant.

important differences which appear in the 3D case due
to the Efimov effect.
The first important difference is that the derivatives

with respect to 1/a in [Tab. I, Eqs. (4a,6a)] have to be
taken for a fixed three-body parameter Rt. This comes
from the relation

(

∂E

∂(−1/a)

)

Rt

=
4π~2

m
(A,A) (7)

with the notation (given for generality in dimension d):

(A,A) ≡
∑

i<j

∫

(
∏

k 6=i,j

ddrk)

∫

ddcij |Aij(cij , (rk)k 6=i,j)|2.

(8)
Eq. (7) was already obtained in [16] in the case N = 3.
A simple way to derive it for any N is to use a cubic
lattice model, of lattice spacing b, with purely on-site
interactions characterized by a coupling constant g0 [see
the Hamiltonian in Eq. (14) below, with h0 = 0], adjusted
to reproduce the correct scattering length [48]:

1

g0
=

m

4π~2a
−
∫

D

d3k

(2π)3
m

~2k2
(9)

where the wavevector k of a single-particle plane wave
on the lattice is restricted as usual to the first Brillouin
zoneD = (−π

b ,
π
b )

3. One then follows the same reasoning
as in (Article I, Section V, Subsections C-D-E). The key
point here is that, in the limit of b≪ |a|, the three-body
parameter corresponding to the lattice model is equal
to a numerical constant times b [72]. Thus, varying the
coupling constant g0 while keeping b fixed is equivalent
to varying a while keeping Rt fixed, so that

dE

dg0
=

(

dE

d(−1/a)

)

Rt

d(−1/a)

dg0
. (10)

The left-hand side of (10) is given by the Hellmann-
Feynman theorem:

dE

dg0
=

1

2

∑

r

b3〈(ψ̂†ψ̂†ψ̂ψ̂)(r)〉

=
N(N − 1)

2

∑

r,r3,...,rN

b3(N−1)|ψ(r, r, r3, . . . , rN )|2 (11)

where ψ is the eigenstate wavefunction on the lattice. In
the zero-range limit b≪ |a|, ψ has to match the contact
condition (1): Its two-body regular part A12, defined as

ψ(r, r, r3, . . . , rN ) ≡ φ(0)A12(r, r3, . . . , rN ), (12)

with the correctly normalized zero-energy two-body lat-
tice scattering wavefunction φ(r) [φ(r) = r−1−a−1+o(1)
at r ≫ b], has to converge to the zero-range model regular
part. Similarly, in the right-hand side of (10), the lattice
model’s (dE/d(−1/a))Rt

tends to the zero-range model’s
one if one takes the zero-range limit while keeping Rt

fixed [73]. Finally, the last factor of (10) can be evalu-
ated from (9). Using the relation φ(0) = −4π~2/(mg0)
established in [34], we obtain Eq. (7). The same lattice
model reasoning explains why the second-order deriva-
tive in [Tab. I, Eq. (6a)] also has to be taken for a fixed
Rt.

The second important difference with respect to the
fermionic case is that the relation [Tab. I, Eq. (5a)] breaks
down in general, and only holds for special states for
which the infinite-cutoff limit Λ → ∞ exists (such as the
universal states for 3 trapped bosons of [49, 50]). This
was overlooked in [32], and was shown for an Efimov
trimer in [38]. The correct relation valid for any N -body
state in presence of the Efimov effect was obtained in [36].
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IV. ADDITIONAL RELATIONS COMING

FROM THE EFIMOV EFFECT

In addition to modifying relations which already ex-
isted for fermions, the Efimov effect gives rise to addi-
tional relations, involving the derivative of the energy
with respect to the logarithm of the three-body parame-
ter. These relations are displayed in Table II.

A. Derivative of the energy with respect to the

three-body parameter

Our first additional relation [Tab. II, Eq. (1)] expresses
the derivative of the energy with respect to the three-
body parameter Rt in terms of the three-body regular
part defined in Eq. (3). This is similar to the relation
(7) between the derivative with respect to the scattering
length and the (two-body) regular part [74]. We will first
derive this relation using the zero-range model in the case
N = 3, and then using a lattice model for any N .

1. Derivation using the zero-range model for three particles

We consider two wavefunctions ψ1, ψ2, satisfying the
two-body boundary condition (1) with the same scat-
tering length a, and the three-body boundary condition
(3,4) with different three-body parameters Rt1, Rt2. The
corresponding three-body regular parts are denoted by
B1, B2. We show in the Appendix A that

〈ψ1, Hψ2〉 − 〈Hψ1, ψ2〉 =
~
2

m

3
√
3|s0|
2

sin

[

|s0| ln
Rt2

Rt1

]

×
∫

d3c123B
∗
1 (c123)B2(c123), (13)

which yields [Tab. II, Eq. (1)] by choosing ψi as an eigen-
state of energy Ei and taking the limit Rt2 → Rt1 [75].

2. Derivation using a lattice model

We now derive [Tab. II, Eq. (1)] for all N using as in
Sec. III a cubic lattice model, except that the Hamilto-
nian now contains a three-body interaction term (of cou-
pling constant h0) allowing one to adjust the three-body
parameter Rt without changing the lattice spacing:

Hlatt =

∫

D

d3k

(2π)3
~
2k2

2m
ĉ†(k)ĉ(k) +

∑

r

b3U(r)(ψ̂†ψ̂)(r)

+
g0
2

∑

r

b3(ψ̂†ψ̂†ψ̂ψ̂)(r) + h0
∑

r

b3(ψ̂†ψ̂†ψ̂†ψ̂ψ̂ψ̂)(r).

(14)

Here the bosonic field operator obeys discrete commu-

tation relations [ψ̂(r), ψ̂†(r′)] = δrr′/b
3 and the plane

wave annihilation operators obey as usual [ĉk, ĉ
†
k′ ] =

(2π)3δ(k − k
′) provided that k and k

′ are restricted to
the first Brillouin zone D.
We then define the zero-energy three-body scattering

state φ0(r1, r2, r3) as the solution of Hlatt|φ0〉 = 0 for
a = ∞, with the boundary condition

φ0(r1, r2, r3) ∼ Φ(r1, r2, r3) (15)

in the limit where all interparticle distances tend to infin-
ity. Here Φ is the zero-range model’s zero-energy scatter-
ing state, given in Eq. (4). This defines the three-body
parameter Rt(b, h0) for the lattice model (since Φ de-
pends on Rt). The Hellmann-Feynman theorem writes:

∂E

∂h0
=
∑

r

b3 〈(ψ†ψ†ψ†ψψψ)(r)〉

= N(N−1)(N−2)
∑

r,r4,...,rN

b3(N−2)|ψ(r, r, r, r4, . . . , rN )|2.

(16)

For the lattice model we define the three-body regular
part B through:

ψ(r, r, r, r4, . . . , rN ) = φ0(0,0,0)B(r, r4, . . . , rN ); (17)

in the zero-range limit, we expect that this lattice model’s
regular part tends to the regular part of the zero-range
model defined in Eqs. (3,4). Thus, in the zero-range limit:

(

∂E

∂(lnRt)

)

a

= N(N−1)(N−2)|φ0(0,0,0)|2
(

∂h0
∂(lnRt)

)

b

×
∫

d3r d3r4 . . . d
3rN |B(r, r4, . . . , rN )|2. (18)

It remains to evaluate the derivative of h0 with respect
to Rt: This is achieved by applying (18) to the case of
an Efimov trimer in free space, where the regular part
can be deduced from the known expression [38] for the
normalized wavefunction. This yields [Tab. II, Eq. (1)].

B. Short-distance triplet distribution function

Similarly to the pair distribution function
g(2), one defines the triplet distribution function

g(3)(r1, r2, r3) = 〈ψ̂†(r1)ψ̂
†(r2)ψ̂

†(r3)ψ̂(r3)ψ̂(r2)ψ̂(r1)〉,
which is given in first quantization by N(N − 1)(N −
2)
∫

d3r4 . . . d
3rN |ψ(r1, . . . , rN )|2. In the limit R → 0

where the three positions r1, r2, r3 approach each
other, the many-body wavefunction behaves according
to (3). The result [Tab. II, Eq. (2)], where the integral
over c123 is taken for fixed R and Ω, then directly
follows, using [Tab. II, Eq. (1)]. As a consequence, in
a measurement of the positions of all the particles, the
mean number of triplets of particles having a small
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(

∂E

∂(lnRt)

)

a

=
~
2

m

√
3 |s0|2
4

N(N − 1)(N − 2)

∫

d3c123 d
3r4 . . . d

3rN |B(c123, r4, . . . , rN )|2 (1)

∫

d3c123 g
(3)(r1, r2, r3) ∼

R→0
|Φ(r1, r2, r3)|2

(

∂E

∂(lnRt)

)

a

4√
3 |s0|2

m

~2
(2)

~Γ ∼
η→0

(

∂E

∂(lnRt)

)

a

2η

|s0|
(3)

TABLE II: For single-component bosons in 3D, additional relations coming from the Efimov effect. B is the three-body regular
part of the N-body wavefunction; g(3) is the triplet distribution function; Γ is the decay rate due to three-body losses and η is
the corresponding inelasticity parameter (see text). The integral in (2) is taken for fixed relative coordinates.

hyperradius R is given by

Ntriplets(R < ǫ) =
1

3!

∫

R<ǫ

d3r1d
3r3d

3r3g
(3)(r1, r2, r3)

∼
ǫ→0

m

2~2|s0|2
(

∂E

∂(lnRt)

)

a

ǫ2
[

1− Re
(ǫ/Rt)

2i|s0|

1 + i|s0|

]

(19)

where we used the Jacobian D(r1,r2,r3)
D(c123,R) = 3

√
3 and the

division by 3! takes into account the indistinguishability
of the particles within a triplet.

C. Decay rate due to three-body losses

In experiments, the cold atomic gases are only
metastable: There exist deeply bound dimer states, that
is with a binding energy of order ~

2/(mb2), where b is
the van der Waals length of the real atomic interaction.
These deeply bound states can be populated by three-
body collisions, which are strongly exothermic (with re-
spect to the trapping potential depth) and thus lead to a
net loss of atoms. Usually, one expects that these deeply
bound dimer states have a vanishing small effect on the
metastable many-body states for b → 0; the metastable
states then converge to stationary states described by the
zero-range model.
In presence of the Efimov effect, however, the probabil-

ity pclose to find three particles within a distance b (e.g.,
with an hyperradius R < b) vanishes only as b2 accord-
ing to Eqs. (3,4,19). As the three-body loss rate scales
as pclose~/mb

2, it does not vanish in the zero-range limit
[13, 51]. Fortunately, one can still in that limit simply
include the losses by modifying the three-body boundary
conditions [52, 53]: One keeps Eq. (3) with a modified Φ
deduced from Eq. (4) by the substitution

sin

[

|s0| ln
R

Rt

]

→ 1

2i

[

e−ηei|s0| ln(R/Rt)

−eηe−i|s0| ln(R/Rt)
]

. (20)

The so-called inelasticity parameter η ≥ 0 determines to
which extent the reflection of the incoming hyperradial
wave exp[−i|s0| ln(R/Rt)] on the point R = 0 (where the

non-universal short range three-body physics takes place)
is elastic.
In this work, we have considered so far the ideal case

where η is strictly zero. We now show that this al-
lows to access the decay rate due to three-body losses
to first order in η by taking simply a derivative of the
loss-less eigenenergies E. In a first approach, generaliz-
ing to three-body losses the procedure used for two-body
losses in [27], we simply assume that E(lnRt) is an an-
alytic function of lnRt. As the substitution (20) simply
amounts to performing the change

lnRt → lnRt −
iη

|s0|
, (21)

we conclude that the resulting eigenenergy for non-zero
η acquires an imaginary part −i~Γ/2 given to first order
in η by [Tab. II, Eq. (3)]. Furthermore, we have devel-
oped an alternative approach, that relates for arbitrary
η the decay rate Γ to the integral of |B|2, where B is de-
fined by Eq. (3), see Appendix B. Combining this with
[Tab. II, Eq. (1)] in the limit η → 0 reproduces the rela-
tion [Tab. II, Eq. (3)].

V. APPLICATION: THREE-BODY LOSS RATE

FOR A BOSE GAS AT THERMAL EQUILIBRIUM

We consider a 3D Bose gas, in a cubic quantization box
of volume V , at thermal equilibrium in the grand canon-
ical ensemble and in the thermodynamic limit. Within
the zero-rangemodel, with a truncation of the three-body
energy spectrum (that is introducing a lower energy cut-
off, as discussed below), relation [Tab. II, Eq. (3)] can
be used to obtain, to first order in the inelasticity pa-
rameter η, the three-body loss-constant L3 customarily
defined by

d

dt
N = −L3n

2N (22)

where N is the mean particle number and n = N/V the
mean density. Applying [Tab. II, Eq. (3)] to each many-
body eigenstate, taking a truncated thermal average [76]
and keeping in mind that each loss event eliminates three
particles out of the system [77], we obtain

dL3

dη
(η = 0) =

6

~|s0|n2N

(

∂Ω

∂(lnRt)

)

µ,T

(23)
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where the derivative of the grand potential Ω is taken for
fixed chemical potential µ and temperature T .
To obtain analytical results, we restrict to the non-

degenerate limit µ → −∞, where the density vanishes,
nλ3 → 0, with λ = [2π~2/(mkBT )]

1/2 the thermal de
Broglie wavelength. One then can use the virial expan-
sion [54–58]:

Ω(µ, T ) = − V

λ3
kBT

∑

q≥1

bqe
qβµ, (24)

with β = 1/(kBT ), and bq only depends on q-body
physics and temperature. The leading order contribu-
tion that involves lnRt is thus for q = 3, so that

dL3

dη
(η = 0) →

nλ3→0
−12π

|s0|
~λ4

m

(

∂b3
∂(lnRt)

)

T

(25)

where we used nλ3 ∼ exp(βµ).
The coefficient bq can be deduced from the solution of

the q-body problem. We thus restrict to the resonant
case 1/a = 0, where the analytical solution for q = 3 is
known in free space [10]. Due to separability in hyper-
spherical coordinates [59] the solution is also known for
the isotropic harmonic trap case [49, 50], which allows us
to use the technique developed in [58, 60] to write b3 as

b3 = 33/2 lim
ω→0

[

Z3

Z1
− Z2 +

1

3
Z2
1

]

(26)

where Zq(ω) is the canonical partition function at tem-
perature T for the system of q interacting bosons in the
harmonic trapping potential U(r) = 1

2mω
2r2. Since the

center-of-mass is separable, Z3/Z1 simply equals the par-
tition function Z int

3 of the internal variables. The internal
3-body eigenspectrum in the trap involves fully univer-
sal states (not depending on Rt), and a single Efimovian
channel with Rt-dependent eigenenergies En(ω), n ∈ Z,
solving a transcendental equation. Within the boundary
conditions (3,4), the sequence En(ω) is unbounded be-
low. To give a mathematical existence to thermal equilib-
rium, we thus truncate the sequence, labelling the ground
three-body state with the quantum number n = 0 and
then keeping only n ≥ 0 in the thermal average [78].
In the free space limit ω → 0, this corresponds to a
purely geometric spectrum of trimer states with a ratio
exp(−2π/|s0|) and a ground state Efimov trimer energy:

E0(ω) →
ω→0

− 2~2

mR2
t

e
2

|s0|
Im ln Γ(1+s0) ≡ −Et. (27)

Given Et, this uniquely determines the three-body pa-
rameter Rt [79]. This finally leads to

(

∂b3
∂(lnRt)

)

T

= − 33/2

kBT
lim
ω→0

∑

n≥0

e−βEn(ω) ∂En(ω)

∂(lnRt)
. (28)

Details of the calculation of that limit are exposed in Ap-
pendix C. The resulting expression for the three-body

loss rate constant can be split in contributions of the
three-body bound free-space spectrum and continuous
free-space spectrum:

dL3

dη
(η = 0) →

nλ3→0
72

√
3
~λ4

m
(Sbound + Scont) . (29)

The bound-state contribution naturally appears as a
(rapidly converging) discrete sum over the trimer states:

Sbound =
π

|s0|
∑

n≥0

βEte
−2πn/|s0| exp

(

βEte
−2πn/|s0|

)

.

(30)
This allows to predict the mean number Ntrim of trimers
with energy Etrim = −Ete

−2πn/|s0| in the loss-less system
at thermal equilibrium: Since the contribution to dN/dt
(to first order in η) of the term of index n in (30) is intu-
itively −3ΓtrimNtrim, where the decay rate of the trimer
is Γtrim ≃ (2η/~|s0|)∂lnRt

Etrim, we obtain

Ntrim

N
∼

nλ3→0
33/2(nλ3)2e−βEtrim . (31)

This agrees with Eq. (188) of [55] obtained from a chem-
ical equilibrium reasoning.
The continuous-spectrum contribution to (29) natu-

rally appears as an integral over positive energies E, see
Appendix C. Mathematically, it can also be turned into
an easier to evaluate (rapidly converging) discrete sum
[80]:

Scont =
1

2
+
∑

n≥1

e−nπ|s0|Re
[

Γ(1− in|s0|) (βEt)
in|s0|

]

.

(32)
As expected, Scont is a log-periodic function of Et. In
practice, due to |s0| > 1, it has weak amplitude oscilla-
tions, between the extreme values ≃ 0.478 and ≃ 0.522.
Our continuous-spectrum contribution to L3 is equiva-
lent, to first order in η, to the result of a direct three-
body loss rate calculation for the thermal ensemble of
free-space three-boson scattering states [61].
In experiments, the interaction potential has a finite

range b, and the actual L3 will deviate from the above
results. For clarity, we now denote with a star the quan-
tities corresponding to a finite b. Due to the three-body
losses, the so-called weakly bound trimer states are actu-
ally not bound states, they are resonances with complex
energies E∗

n − i~Γ∗
n/2. Assuming that Γ∗

n ≪ |E∗
n|, we

can name these resonances quasi-bound states or quasi-
trimers. Their contribution to the decay rate of the Bose
gas, from the reasoning below Eq. (30), can be estimated
as

Γ∗
quasi−bound ≃ 33/2(nλ3)2N

∑

n≥0

Γ∗
ne

−βE∗
n . (33)

This is meaningful provided that the thermal equilibrium
trimer population formula Eq. (188) of [55] makes sense
in presence of losses, that is the formation rate of quasi-
trimers of quantum number n has to remain much larger
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than Γ∗
n (in the zero-range framework, this is ensured by

first taking the limit η → 0 and then the limit of vanish-
ing density nλ3 → 0). Evaluation of the finite-b positive-
energy continuous spectrum contribution L∗

3,cont>0 to the
three-body loss rate constant is beyond the scope of this
work. We can simply point out that, taking the limit
b → 0 (with a fixed, infinite scattering length) makes
L∗
3,cont>0 converge to the value obtained in the zero-range

finite η model; further taking the zero-η limit gives

lim
η→0

1

η

(

lim
b→0

L∗
3,cont>0

)

=
dL3,cont

dη
(η = 0). (34)

In practice, as soon as b≪ λ and η ≪ 1, we expect that

L∗
3,cont>0 ≃ η

dL3,cont

dη (η = 0).

VI. ARBITRARY MIXTURE

In this Section we consider a mixture of bosonic and/or
fermionic atoms with an arbitrary number of spin com-
ponents. The N particles are thus divided into groups,
each group corresponding to a given chemical species
and to a given spin state. We label these groups by
an integer σ ∈ {1, . . . , n}. Assuming that there are no
spin-changing collisions, the number Nσ of atoms in each
group is fixed, and one can consider that particle i be-
longs to the group σ if i ∈ Iσ, where the Iσ’s are a fixed
partition of {1, . . . , N} which can be chosen arbitrar-
ily. For example, a possible choice is I1 = {1, . . . , N1};
I2 = {N1 + 1, . . . , N1 + N2}; etc. The wavefunction
ψ(r1, . . . , rN ) is then symmetric (resp. antisymmetric)
with respect to the exchange of two particles belong-
ing to the same group Iσ of bosonic (resp. fermionic)
particles. Each atom has a mass mi and is subject to
a trapping potential Ui(ri), and the scattering length
between atoms i and j is aij . We set mi = mσ and
aij = aσσ′ for i ∈ Iσ and j ∈ Iσ′ . The reduced masses
are µσσ′ = mσmσ′/(mσ+mσ′). We shall denote by Pσσ′

the set of all pairs of particles with one particle in group
σ and the other one in group σ′, each pair being counted
only once:

Pσσ′ ≡ {(i, j) ∈ (Iσ × Iσ′) ∪ (Iσ′ × Iσ) / i < j} . (35)

The definition of the zero-range model is modified as
follows: In the contact conditions (1,6), the scattering
length a is replaced by aij , and the limit rij → 0 is
taken for a fixed center of mass position cij = (miri +
mjrj)/(mi + mj); moreover Schrödinger’s equation be-
comes

N
∑

i=1

[

− ~
2

2mi
∆ri + Ui(ri)

]

ψ = E ψ. (36)

Our results are summarized in Table III, where we in-

troduced the notation in dimension d:

(A(1), A(2))σσ′ ≡
∑

(i,j)∈Pσσ′

∫

(

∏

k 6=i,j

ddrk

)

∫

ddcij

A
(1)∗
ij (cij , (rk)k 6=i,j)A

(2)
ij (cij , (rk)k 6=i,j). (37)

Since aσσ′ = aσ′σ there are only n(n+ 1)/2 independent
scattering lengths, and the partial derivatives with re-
spect to one of these independent scattering lengths are
taken while keeping fixed the other independent scat-
tering lengths. We note that, in Ref. [32], [Tab. III,
Eqs. (4a,4b)] were already partially obtained [81].
In 3D the three-body Efimov effect occurs, except for

a mixture of only two fermionic groups with a heavy-to-
light mass ratiomσ/mσ′ < 13.6069 . . . [62–64]. When the
three-body Efimov effect occurs, as for single-component
bosons, the derivatives with respect to any scattering
length have a minima to be taken for fixed three-body
parameter(s), and the relation between E and the mo-
mentum distribution [Tab. III, Eq. (4a)] breaks down,
which was not realized in [32] [82]; moreover, we expect
new relations analogous to the ones given in Section IV
for bosons. Furthermore, we assume here that there is no
fermionic group σ with a mass ratio mσ/mσ′ > 13.384
with respect to any other group σ′, so as to avoid a four-
body Efimov effect [44]. More generally, the zero-range
model Hamiltonian is assumed to be self-adjoint without
introducing interaction parameters other than scattering
lengths and three-body parameters.
The derivations of the relations of Tab. III are anal-

ogous to the ones already given for two-component
fermions and single-component bosons. The lemmas [Ar-
ticle I, Eqs. (33,35)] are replaced by

〈ψ1, Hψ2〉 − 〈Hψ1, ψ2〉

=



















2π~2

µσσ′

(

1

a
(1)
σσ′

− 1

a
(2)
σσ′

)

(A(1), A(2))σσ′ in 3D

π~2

µσσ′

ln(a
(2)
σσ′/a

(1)
σσ′)(A

(1), A(2))σσ′ in 2D,

(38)

where ψ1 and ψ2 obey the same contact conditions (in-
cluding the three-body ones if there is an Efimov effect),
except for the independent scattering length aσσ′ , that is

equal to a
(i)
σσ′ for ψi, i = 1, 2. The momentum distribu-

tion for the goup σ is normalized as
∫

nσ(k)d
dk/(2π)d =

Nσ. The pair distribution function is now defined by

g
(2)
σσ′(u,v) =

∫

ddr1 . . . d
drN |ψ(r1, . . . , rN )|2

×
∑

i∈Iσ ,j∈Iσ′ ,i6=j

δ (u− ri) δ (v − rj) . (39)

The Hamiltonian of the lattice model used in some of the
derivations now reads

Hlatt = H0 +
∑

σ≤σ′

g0,σσ′ Wσσ′ (40)
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Three dimensions Two dimensions

∂E

∂(−1/aσσ′)
=

2π~2

µσσ′
(A,A)σσ′ (1a)

∂E

∂(ln aσσ′)
=

π~2

µσσ′
(A,A)σσ′ (1b)

Cσ ≡ lim
k→+∞

k4nσ(k) =
∑

σ′

(1 + δσσ′)
8πµσσ′

~2

∂E

∂(−1/aσσ′)
(2a) Cσ ≡ lim

k→+∞
k4nσ(k) =

∑

σ′

(1 + δσσ′)
4πµσσ′

~2

∂E

∂(ln aσσ′)
(2b)

∫

d3c g
(2)
σσ′

(

c+
mσ′

mσ +mσ′
r, c− mσ

mσ +mσ′
r

) ∫

d2c g
(2)
σσ′

(

c+
mσ′

mσ +mσ′
r, c− mσ

mσ +mσ′
r

)

∼
r→0

(1 + δσσ′)
µσσ′

2π~2
∂E

∂(−1/aσσ′)

1

r2
(3a) ∼

r→0
(1 + δσσ′)

µσσ′

π~2
∂E

∂(ln aσσ′)
ln2 r (3b)

E − Etrap =
∑

σ≤σ′

1

aσσ′

∂E

∂(−1/aσσ′)
E − Etrap = lim

Λ→∞



−
∑

σ≤σ′

∂E

∂(ln aσσ′)
ln

(

aσσ′Λeγ

2

)

+
∑

σ

∫

d3k

(2π)3
~
2k2

2mσ

[

nσ(k)− Cσ

k4

]

(4a) +
∑

σ

∫

k<Λ

d2k

(2π)2
~
2k2

2mσ

nσ(k)

]

(4b)

1

2

∂2En

∂(−1/aσσ′)2
=

(

2π~2

µσσ′

)2
∑

n′,En′ 6=En

|(A(n′), A(n))σσ′ |2
En − En′

(5a)
1

2

∂2En

∂(ln aσσ′)2
=

(

π~2

µσσ′

)2
∑

n′,En′ 6=En

|(A(n′), A(n))σσ′ |2
En − En′

(5b)

(

∂2F

∂(−1/aσσ′)2

)

T

< 0 (6a)

(

∂2F

∂(ln aσσ′)2

)

T

< 0 (6b)

(

∂2E

∂(−1/aσσ′)2

)

S

< 0 (7a)

(

∂2E

∂(ln aσσ′)2

)

S

< 0 (7b)

TABLE III: Main results for an arbitrary mixture. In three dimensions, if the Efimov effect occurs, the derivatives must be
taken for fixed three-body parameter(s), the expression for E in line 4 breaks down, and the last two lines, with derivatives of
the free energy F and of the mean energy E respectively taken at fixed temperature T and entropy S, are meaningless in the
absence of spectral selection (see Sec. V). γ = 0.577215 . . . is Euler’s constant.

where H0 =
∑N

i=1

[

− ~
2

2mi
∆ri + Ui(ri)

]

with the discrete

Laplacian defined by 〈r|∆r|k〉 ≡ −k2〈r|k〉 (for k in the
first Brillouin zone) and Wσσ′ =

∑

(i,j)∈Pσσ′
δri,rjb

−d.

In the formulas of Article I involving the two-body
scattering problem, one has to replace g0 by g0,σσ′ , a
by aσσ′ and m by 2µσσ′ . Denoting the correspond-
ing zero-energy scattering wavefunction by φσσ′ (r), the
lemma [Article I, Eq. (56)] is replaced by 〈ψ′|Wσσ′ |ψ〉 =
|φσσ′ (0)|2 (A′, A)σσ′ .

VII. CONCLUSION

In dimensions two and three, we obtained several re-
lations valid for any eigenstate of the N -boson problem
with zero-range interactions. The interactions are char-
acterized by the 2D or 3D two-body s-wave scattering
length a and, in 3D when the Efimov effect takes place,
by a three-body parameter Rt. Our expressions relate
various observables to derivatives of the energy with re-
spect to these interaction parameters. Some of the ex-
pressions, initially obtained in [35], were derived in [36]
with a different technique. For completeness, we have
also generalized some of the relations to arbitrary mix-
tures of Bose and/or Fermi gases.

For the bosons in 3D, especially interesting are the
relations involving the derivative of the energy with re-

spect to the three-body parameter. Physically, one of
then predicts (to first order in the inelasticity parame-
ter η) the decay rate Γ of the system due to three-body
losses, that occur in cold atom experiments by recom-
bination to deeply bound dimers. This means that one
can extract Γ from the eigenenergies of a purely loss-less
(η = 0) model. As an application, we analytically ob-
tained (within the zero-range model, and to first order in
η) the three-body loss rate constant L3 for the 3D non-
degenerate Bose gas at thermal equilibrium with infinite
scattering length. Experimentally, this quantity is under
current study with real atomic gases [61].

Mathematically, the 3D relations hold under the as-
sumption that the two-body scattering length and the
three-body parameter are sufficient to make the N -boson
problem well-defined, with a self-adjoint Hamiltonian.
Therefore they may be used to numerically test this as-
sumption, for example by checking the consistency be-
tween the values of the derivative of the energy with re-
spect to the three-body parameter obtained in different
ways. Three possible ways are: numerical differentiation
of the energy, the present relation on the short-distance
triplet distribution function, or the virial theorem which
also involves this derivative [65].
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Appendix A: Derivation of a lemma

Here we derive the lemma (13) for three bosons in the
zero-range model. The first step is to express the Hamil-
tonian in hyperspherical coordinates [16, 66]: Using the
value of the Jacobian given below Eq. (19),

〈ψ1, Hψ2〉 − 〈Hψ1, ψ2〉

= − ~
2

2m
3
√
3

∫ ∞

0

dRR5

∫

d5Ω

∫

d3c

{

ψ∗
1

(

∂2

∂R2
+

5

R

∂

∂R
+
TΩ
R2

+
1

3
∆c

)

ψ2 − [ψ∗
1 ↔ ψ2]

}

= − ~
2

2m
3
√
3

{
∫ ∞

0

dRR5

∫

d5ΩAc(R,Ω)

+

∫

d5Ω d3cAR(Ω, c) +

∫ ∞

0

dRR5

∫

d3cAΩ(R, c)

}

(A1)

where c = c123 and

Ac(R,Ω) ≡
∫

d3c

{

ψ∗
1

1

3
∆c ψ2 − [ψ∗

1 ↔ ψ2]

}

(A2)

AR(Ω, c) ≡
∫ ∞

0

dRR5

{

ψ∗
1

(

∂2

∂R2
+

5

R

∂

∂R

)

ψ2

− [ψ∗
1 ↔ ψ2]

}

(A3)

AΩ(R, c) ≡
∫

d5Ω

{

ψ∗
1

TΩ
R2

ψ2 − ψ2
TΩ
R2

ψ∗
1

}

, (A4)

TΩ being a differential operator acting on the hyperangles
and called Laplacian on the hypersphere.
The quantity AR can be computed using the following

simple lemma: If Φ1(R) and Φ2(R) are functions which
decay quickly at infinity and have no singularity except
maybe at R = 0, then

∫ ∞

0

dRR5

{

Φ∗
1

(

∂2

∂R2
+

5

R

∂

∂R

)

Φ2 − [Φ∗
1 ↔ Φ2]

}

= − lim
R→0

R

(

F∗
1

∂F2

∂R
−F2

∂F∗
1

∂R

)

(A5)

where Fi(R) ≡ R2 Φi(R). Expressing the right-hand-side
of (A5) thanks to the boundary condition (3) then yields

the desired result (13), because the other two contribu-
tions Ac and AΩ both vanish as we now show.
The quantity Ac(R,Ω), rewritten as 1

3

∫

d3c∇c ·
(ψ∗

1∇cψ2 − ψ2∇cψ
∗
1) with the divergence theorem, is

zero, since the ψi’s are regular functions of c for every
(R,Ω) except on a set of measure zero.
It remains to show that

AΩ(R, c) = 0 for any c and R > 0. (A6)

We will use the fact that ψ1 and ψ2 satisfy the two-
body boundary condition (1) with the same a, and apply
lemma [Article I, Eq. (33)]. More precisely, we will show
that for any smooth function f(R, c) which vanishes in a
neighborhood of R = 0,

∫ ∞

0

dRR5

∫

d3c f(R, c)2 AΩ(R, c) = 0; (A7)

this clearly implies (A6). To show (A7) we note that

− ~
2

2m
3
√
3

∫ ∞

0

dRR5

∫

d3c f(R, c)2 AΩ(R, c)

= − ~
2

2m
3
√
3

∫ ∞

0

dRR5

∫

d5Ω

∫

d3c

{

(fψ∗
1)
TΩ
R2

(fψ2)− [ψ∗
1 ↔ ψ2]

}

, (A8)

which can be rewritten as

∫

d3r1d
3r2d

3r3 {(fψ∗
1)H(fψ2)− [ψ∗

1 ↔ ψ2]}

+
~
2

2m
3
√
3

∫ ∞

0

dRR5

∫

d5Ω

∫

d3c

{

(fψ∗
1)

(

∂2

∂R2
+

5

R

∂

∂R
+

1

3
∆c

)

(fψ2)− [ψ∗
1 ↔ ψ2]

}

.

(A9)

The first integral in this expression vanishes, as a conse-
quence of the lemma [Article I, Eq. (33)]. This lemma is
indeed applicable to the wavefunctions fψi: They van-
ish in a neighborhood of R = 0 (see the discussion in
Article I), moreover they satisfy the two-body boundary
condition for the same value of the scattering length a (as
follows from the fact that R varies quadratically with r
for small r). The second integral in (A9) vanishes as well:
The contribution of the partial derivatives with respect
to R vanishes as a consequence of lemma (A5), and the
contribution of ∆c vanishes because the fψi’s are regular
functions of c.

Appendix B: Relation between Γ and B for any η

Contrarily to the remaining part of the paper, we as-
sume here that the inelasticity parameter η > 0 and is
not necessarily a small perturbation, so that the N -body
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wavefunction ψ obeys contact conditions given by Eq.(3)
and by Eq.(4) modified according to (20). As a conse-
quence, ψ is in general an eigenstate of H with a complex
energy E − i~Γ/2, where Γ is the decay rate. If ψ is nor-
malized to unity at time 0 then

Γ = − d

dt
(||ψ||2)(t = 0). (B1)

This can be transformed using the continuity equation

∂t|ψ(X, t)|2 + divXJ = 0 (B2)

where we collected all the particles coordinates in a single
vector X = (r1, . . . , rN ) with 3N components, and where
we introduced the probability current in R

3N :

J =
~

m
Im (ψ∗gradXψ). (B3)

Eq. (B2) is valid for all rij > 0, and results as usual from
Schrödinger’s equation.
To avoid the singularities that appear in ψ for three

coinciding particle positions, we introduce exclusion vol-
umes Bijk(ǫ) = {X ∈ R

3N/Rijk < ǫ} for all triplets
{i, j, k} of particles (of hyperradius Rijk) in the integral
defining ||ψ||2, taking the limit ǫ → 0 at the end of the
calculation. With the divergence theorem, this leads to

Γ = − lim
ǫ→0

∫

Iǫ

d3NX ∂t(|ψ(X, t = 0)|2)

= − lim
ǫ→0

∑

{i,j,k}

∫

∂Bijk(ǫ)

d3N−1
S · J (B4)

with the surface element d3N−1
S oriented towards the

exterior of Bijk. Here Iǫ is R
3N minus the union of all

Bijk(ǫ); it is thus the set of all the X having all the
Rijk > ǫ. Using the bosonic symmetry we single out the
decay rate due to particles 1, 2 and 3:

Γ = −N(N − 1)(N − 2)

3!
lim
ǫ→0

∫

∂B123(ǫ)

d3N−1
S · J. (B5)

The integration domain in Eq. (B5), which is the bound-
ary ofB123(ǫ), is actually a cylinder in R

3N , and the coor-
dinates number 10 to 3N of the surface element d3N−1

S

are zero, so that one can keep the contribution to the
probability current of the first 3 particles only: We can
thus replace d3N−1

S ·J with d8St ·Jt, the nine-coordinate
vectors Jt and d8St coinciding with the first nine coor-
dinates of J and d3N−1

S. For fixed r4, . . . , rN we thus
have to evaluate

γ(ǫ) ≡ −
∫

R=ǫ

d8St · Jt =

∫

R>ǫ

d3r1d
3r2d

3r3divr1,r2,r3Jt,

(B6)
where we used the divergence theorem. We then change
the integration variables from r1, r2, r3 to c123,R, with a

Jacobian given below Eq. (19). Further use of the identity

3
∑

i=1

divri
(

ψ∗grad
ri
ψ − c.c.

)

= divR (ψ∗grad
R
ψ − c.c.)

+
1

3
divc123

(

ψ∗grad
c123

ψ − c.c.
)

(B7)

and backward application of the divergence theorem
yields

γ(ǫ) = −3
√
3 ǫ5

∫

d3c123

∫

d5Ω
~

m
Im[ψ∗∂Rψ]R=ǫ.

(B8)
The R→ 0 behavior of ψ being given by B times a known
function, see Eq. (3) and Eq.(4) modified according to
(20), we finally obtain

Γ =
~

m
N(N − 1)(N − 2)

√
3

4
|s0| sinh(2η)||B||2 (B9)

with ||B||2 =
∫

d3c123 d
3r4 . . . d

3rN |B(c123, r4, . . . , rN )|2.
In the limit η → 0, ||B||2 tends to its value in the loss-less
model and we recover [Tab. II, Eq. (3)] using [Tab. II,
Eq. (1)].

Appendix C: Free space limit of a virial sum

Here we derive the free-space limit (28) of a sum
over the internal Efimovian eigenenergies En(ω) for three
bosons in a harmonic trap with oscillation frequency ω,
interacting in the zero-range limit with infinite scattering
length. A rewriting of the implicit equation for En of [49]
gives, for n ∈ N:

Im ln Γ

(

1 + s0 − Ẽn

2

)

+
|s0|
2

ln

(

2~ω

Et

)

+nπ = 0. (C1)

We have introduced the notation Ẽn = En/(~ω). Also,
Γ(z) is the Gamma function and its logarithm lnΓ(z) is
the usual univalued function with a branch cut on the
real negative axis. The left-hand side of (C1) can be
shown to be a decreasing function of En, using relation
8.362(1) of [67], so that Eq. (C1) determines En in a
unique way. The fact that Et, as given by (27), is the
free space ground trimer binding energy can be checked
from (C1) by a Stirling expansion for Ẽn → −∞.
To evaluate the sum in (28) for ω → 0, we collect the

eigenenergies En into three groups. The (finite) transi-

tion group corresponds to |En| not much larger than ~ω,
and gives a vanishing contribution to (28) for ω → 0.
The bound state group corresponds to negative eigenen-
ergies with |En| ≫ ~ω; the corresponding free space
trimer sizes are much smaller than the harmonic oscil-
lator length [~/(mω)]1/2, so that the trapping potential
has a negligible effect and En(ω) is close to the free space
trimer energy of quantum number n:

En(ω) ≃ −Ete
−2πn/|s0|. (C2)
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This directly leads to the contribution Sbound in (30).
Finally, the third group contains the positive eigenen-

ergies with En ≫ ~ω, that shall reconstruct the free space
continuous spectrum for ω → 0. As shown in Sec. 3.3.a
of [16], these En are almost equally spaced by 2~ω. We
need here the leading order deviation from equispacing,
that we parametrize with a “quantum defect” ∆ as

Ẽn =
n→+∞

2n+∆(En) +O(1/n). (C3)

For Ẽn → +∞, Stirling’s formula cannot be immediately
applied to (C1) since the argument of the Gamma func-
tion remains at finite distance from the poles of Γ (on
the real negative axis). Using Γ(z)Γ(1 − z) = π/ sin(πz)
[67], we obtain the useful identity:

− Im lnΓ

(

1 + s0 − Ẽ

2

)

= Im lnΓ

(

1− s0 + Ẽ

2

)

+
π

2
Ẽ + Im ln

[

1 + e−π|s0|e−iπẼ
]

(C4)

for all real Ẽ. Note that the logarithm in the last term
of that expression is unambiguously defined (by a series
expansion of ln(1+u) with u) since e−π|s0| < 1. Stirling’s
expansion can now be used in the right-hand side of (C4),
turning (C1) into an implicit equation for the “quantum
defect” ∆:

∆(E) =
|s0|
π

ln

(

E

Et

)

− 2

π
Im ln

[

1 + e−π|s0|e−iπ∆(E)
]

.

(C5)

Since exp(−π|s0|) ≪ 1, we have a small-deviation prop-

erty: ∆(E) only slightly deviates, by O[exp(−π|s0|)],
from the first term in the right-hand side of (C5). This
deviation was not fully taken into account in §3.3.a of
[16]. To remain exact, we multiply (C5) by iπ on both
sides, and we exponentiate the resulting equation. Since
exp[−2iIm ln(1+u)] = (1+u∗)/(1+u), we obtain a solv-
able equation for exp(iπ∆) that determines ∆ modulo 2.
From the small-deviation property stated above, we can
lift the modulo 2 uncertainty:

∆(E) =
|s0|
π

ln

(

E

Et

)

+
2

π
Im ln

[

1− e−π|s0|

(

E

Et

)−i|s0|
]

.

(C6)
Finally, it remains in (28) to replace the sum over n (for

En in the third group) by an integral
∫ +∞

0 dE/(2~ω),
where 2~ω is the leading order level spacing, to obtain
the continuous spectrum contribution

(

∂b3
∂(lnRt)

)cont

T

= − 33/2

2kBT

∫ +∞

0

dE e−βE ∂∆(E)

∂(lnRt)
.

(C7)
After expansion of ∂lnRt

∆(E) in powers of e−π|s0|, the
integral over E can be expressed in terms of the Gamma
function, which eventually leads to (32).
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