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We investigate two-dimensional turbulence in finite-terapare trapped Bose-Einstein condensates within
damped Gross-Pitaevskii theory. Turbulence is producactivcular motion of a Gaussian potential barrier
stirring the condensate. We systematically explore a rarfigetirring parameters and identify three regimes,
characterized by the injection of distinct quantum vorteuctures into the condensate: (A) periodic vortex
dipole injection, (B) irregular injection of a mixture of #ex dipoles and co-rotating vortex clusters, and (C)
continuous injection of oblique solitons that decay intoter dipoles. Spectral analysis of the kinetic energy
associated with vortices reveals that regime (B) can iriteenily exhibit a Kolmogorow >3 power law over
almost a decade of length or wavenumb@rqcales. The kinetic energy spectrum of regime (C) exhibits
cleark=¥2 power law associated with an inertial range for weak-wavbulence, and & ’/? power law for
high wavenumbers. We thus identify distinct regimes ofifaggdor generating either two-dimensional quantum
turbulence or classical weak-wave turbulence that may &dleeble experimentally.

PACS numbers: 67.85.-d,67.85.De,03.75.Lm

I. INTRODUCTION scales|[22]. Thus in 2D classical turbulence, the kinetic en
ergy spectrum can exhibit the>3 power law in the iner-

Quantum turbulence (QT)I[1] involves chaotic vortex dy- tial range, and &> power law in the scale range of the en-
namics in a superfluid [2-6] and is often associated witrStrophy cascade [16]. The inverse-cascade phenomenon has
experiments have been conducted for over half a Cemur}t;,ascade spectrum has been observed in experiments with soap
and initially experiments were performed using superflgd h films [24].
lium [2]. More recently, attention has turned to superfluid A greatdealis known about 3DQT in BECs[3] 5, 11, 25],
Bose-Einstein condensates (BECs); these lend themselvésd experiments have observed [26, 27] and explicitly stud-
well to the problem, as many condensate parameters can figd [28+30] characteristics of 3DQT in BECs. Much less
finely controlled [4]. Moreover, modern optical techniquesis known about 2DQT; more work is required to understand
routinely allow visualization of vortex cores in ballistily ~ the fundamental characteristics of 2DQT, and to compare the
expanded BECs, whereas vortex visualization is challgnginclassical and quantum dynamics. Experimental progress on
in superfluid helium, although possible [7]. The presence oDQT in BECs has concentrated on methods to generate dis-
the Kolmogorov spectrum[8] has been established in supeprdered vortex distributions in highly oblate condensates
fluid helium 3DQT, both in experiments![9] and quantized observe the decay of these turbulent states|[31-33]. Respit
vortex filament model simulations [10]. Numerical studiesgrowing theoretical interest in 2DQT [34-47], work in BEC
of 3DQT in BECs using the Gross-Pitaevskii equation (GPE)as largely focused on decaying turbulencel[40, 41, 45]yevhe
have also established the presence of a Kolmogorov spetortex-antivortex recombination may generate a directgne
trum [11--18] 58]. Such evidence has aroused strong interesscadel [44]. However, if forcing can be chosen to generate
in the similarities between classical turbulence (CT) afft Q Suficient clustering of vortices of the same sign of circula-
and it is speculated that studies of QT may help progress thiéon [31,42] 45, 47], recombination can be suppressed, and a
classical theory [14]. inverse-energy cascade may be possiblel[31, 46]. Indeed, re

In forced 3D turbulence, a classical fluid exhibits a di- cent large-scale numerical modeling of an experiment invol
rect cascade of energy from the forcing scale down to théng a highly oblate 3D system withffective 2D vortex con-
damping scale. This sets the size of the inertial rahge [15finement exhibited characteristics consistent with anrsee
over which the kinetic energy spectrum approximates the Kolenergy cascade [31].
mogorovk—>/3 law over wavenumbelts Incompressible two- In regimes dominated by acoustic radiation, @etent type
dimensional (2D) classical fluids exhibit veryfldirent flow  of turbulence known agveak-waveurbulence (WWT)|[48,
characteristics due to the existence of an additional é¥is 149] can occur. WWT is a classical wave phenomena that has
invariant, namely the total squared vorticity,anstrophyjl6—  been studied in Gross-Pitaevskii theany [3,/5, 6/ 25, 37ihén
19]. Consequently small-scale forcing induces vortiagitag-  low temperature regime the existence of a large BEC causes
gregate into coherent rotating structures [20], assatiaith  the nonlinear interactions to be dominated by three-wawe pr
an inversecascade of energy to progressively larger lengthcesses which lead to characteristic power laws in the kineti
scales|[21]. In a distinct range of scale-space, a direct erenergy spectrum_[37]. In particular, three-wave 2D WWT in
strophy cascade occurs, in which enstrophy is conserWative BECs is predicted to generate&a’? spectrum at long wave-
transported from the forcing scale to progressively smallelengths, associated with a direct cascade of wave energy [37



In general, the power laws observed in a particular scalgeran by neglecting the thermal noise and retaining the damping

may depend on theffectiveness of damping at that scale. term. This leads to the damped Gross-Pitaevskii equation
Here we consider turbulent flows generated by forced stir{dGPE)

ring of an oblately confined BEC with a laser-generated Gaus-

sian potential. Stirring an oblately confined BEC in this way ihal”(r’t) = Ly(r,t) +iy[u— L] u(r,t), ()

can excite the superfluid into highly disordered states esigg ot

tive of turbulence. Focusing on the distinction between ZDQ describing the purely dissipative evolution of the condéas

and 2DWWT, we investigate the relationship between the stirwavefunctiony(r, t) due to a stationary thermal reservoir. The

ring characteristics and the kind of excited flow states genoperatorL is given by

erated. We systematically study a range of experimentally

accessible stirring parameters, and classify the regudtin _ _thf 2
perfluid dynamics through analysis of kinetic energy sggectr Ly(r. ) = 2m + V(0 + Gl (r. 7 (D). (4)

and vortex clustering dynamics. ) , . . I
This paper is structured as follows. In Secfidn Il we discuss! "€ dampingy can be derived ab-inito for quasi-equilibrium

our model. In Sectiofi DI we discuss our choice of simula-States, and it is typically very small (of order#p[54]. In

tion parameters, and identify distinct vortex injectioginees  this work we take the approach of modeling an experimen-
within the range of stirring parameters considered. In Secl@lly realizable system in all respects apart from the dagypi
tion[Vlwe qualitatively analyze the kinetic energy spectnal where we neglect the details of a full finite-temperature the
kinetic energy composition of a characteristic examplenfro ©'Y- Insteéad we treat the dimensionless damping parameter
each vortex injection regime. In Sectibi V we characterize?henomenologically, choosingto be much smaller than all
power law behavior and intermittency of spectra using linea ©ther dimensionless rates governing the dynamics.

least-squares fit analysis. In Section VI we discuss outtesu Ve Stir the superfluid by introducing a time-dependent re-
and conclude. pulsive Gaussian potential, which represents a blue-éetun

laser beam propagating alongof the form

()2 4 (v — Vo (6)2
ll. DAMPED GROSS-PITAEVESKII EQUATION Va(x.y.1) = Vo exp| - X=X +2(y Y| (5
g

The Hamiltonian for a three-dimensional Bose gas dewnhere f(t), yo(t)) specifies the location of the stirring beam
scribed by field operata#(r, t) is center. Ground states are obtained by propagalfihg (3) for
v = 1 using the Thomas-Fermi wavefunction as an initial con-
H = fd3r &"'(r,t)Hsp&(r,t) + gz&"'(r,t)z@"'(r,t)zﬁ(r,t)z&(r,t), dition, with the stationary Gaussian obsta¢le (5) at itdahi
2 0 position o(0), yo(0)) = (s,0). Our choice of stirring proce-
L _ . dure allows for several parameters to be varied. The energy r
with s_mgle-part]cle Hamlltonlgrh-lsp - _ﬁzvz/zm. +V(r. 1), quired to form a vortex dipole is a minimum at approximately
trapping potzent|aV(r,t), atomic massm, interaction param- o _ 0.4Rre in the Thomas-Fermi regimé [55], wheRe is
eterg = 4rhi*a/m, andsrwave scattering Iengta. We con-  he Thomas-Fermi radius in the radial dimension, and tteere i
sider confinement by acyllndncz_;llly symmetric harr_nonlqntra experimental evidence in agreement with this predictid.[2
Vio(r), augmented by a Gaussian stirring potenti&lr.t). e therefore consider only circular stirring symmetric abo
The resulting trapping potential is the trap center, such thag = scos(\t/s) andyp = ssin(v/s),
_ where v is the speed of the stirrer.

V1) = Vho(r) + V(1,9 ) We work in units of energy, length and time given fay¢
whereVio(r) = mw2(x2 + y2)/2 + mw?2/2 for trapping fre-  andé/crespectively, wherg is the healing lengthiif/ms? =
quenciesur, w,. We consider the case of strong confinemenw) andc = u/mis the speed of sound. The integration rou-
fiw, > u, keT, hw;, Wwhereu is the chemical potential anilis tine we implement is a pseudo-spectral adaptive RungeaKutt
the system temperature. Under these circumstances, the cdiethod of orders 4 and 5 [56]. We choose a damping param-
densate adopts a highly oblate ‘pancake’ shape, anfiés-e ~ €ter ofy = 0.03, which is smaller than any other simulation
tively two-dimensional. Theféective interaction parameter in Pparameter by at least an order of magnitude. Theg3aussian
2D is gop = g/ \2rt, wheret, = +/i/mw, is the harmonic half-width of the stirrer is chosen as= 4¢ in all simulations.
oscillator length in the direction. We note that our study of
this highly oblate 2D system has wider applicability to less
oblate systems which also exhibifective 2D vortex dynam-
ics [50,/51].

Treatment of[{ll) within a detailed reservoir interactioa-th A. System and parameters
ory leads to the Stochastic Projected Gross-Pitaevskia-equ
tion (SPGPE)([52], which describes the evolution of atoms We initially performed a systematic sequence of 130 sim-
with energy less than a chosen dtienergy and their interac- ulations over a range of obstacle strengtig) (and speeds
tion with thermalized atoms above the cfiitdhe description  (v) in order to determine temporal characteristics of the vo
we use can be obtained from the simple growth SPGPE [53x emission. The primary motivation for carrying out this

I11. REGIMESOF TURBULENCE
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(Vo) and speeds (v), accompanied by a specific example of the

@ 5o condensate density profile for each regime. Changes in the
- 0 . stirring phenomenology occur when the parametgrsand
Glusger Broisaiog : Vo/u are of order unity, corresponding respectively to the tran-
sition from subsonic to supersonic stirring speeds and from
s()ht(o)EHEq;fssion penetrable(Vo < p) to animpenetrable(Vo > u) obstacle
G beam. Note that the boundaries between regions in Figure 1

Vo/u

do not correspond to abrupt transitions, as there is a gradua
cross-over betweenfiiérent regimes.
® 7 Dipole Regime: Above a minimum velocity, w 0.3c, sin-
Lol gle dipoles shed from the obstacle in a regular, periodit-fas
(Smooth, periodic ) h .. . . . . ..
ion. The emission is associated with a density minimum that
dropsto zero at the time of dipole shedding. The dipoles-occa
sionally interact with each other, sometimes exchangimg co
stituent vortices, and eventually disappear in vortexvartex
annihilations. The overall dynamics are very temporalty-re
FIG. 1. (Color online) Regimes of vortex emission (left)tetenined ular, SUQQGSt'Ve_ of a Iamlnar regime. We d_o not (_)bserve_ any
by simulating the dGPE for parametevs/u = {0.5,0.6,..,1.4)  clusters of vortices with the same circulation being erditte
and vc = {0.3,04,..,15}. The points indicated by circles are from the obstacle in this regime. [Figure 1, panel A].
(A) Vo/u = 0.8, v/c = 0.4, (B) Vo/u = 13, v/c = 0.7 and (C) Cluster Regime: If we maintain a stirring velocity in the
Vo/u = 1.3, v/c = 1.3. Blurred regions indicate the approximate range 08¢ < v < ¢, but increase the obstacle strength such
extent of the transition regions. False colorimages of drelensate  that it becomes impenetrable, we observe that the temporal
density profiles (right) display regions of low density @wnd high ¢y 4racteristics of vortex emission become increasingégir
density (red). The three examples A, B and C correspond tetthe 1 - igp, increasing obstacle strength. Furthermore, we ob
ring parameters indicated on the regime map. In each castitrer . . !
has completed a cycle ofrZadians. The field of view in the density Se,rve. that some Vortl?es which shed fro'."” the obstacle cluste
profiles is (9@)2. with like-charged vortices. As we fu_r'_[her increase thergith
of the obstacle, the range of velocities for which we observe
this behavior extends, and clustering of like-chargedivest
becomes more prominent [Figlre 1, panel B].
procedure was to identify stirring parameters which aretmos Oblique Soliton Regime: For both penetrable and impene-
efficient for the production of like-charge vortex clustering, trable obstacles, increasing the stir velocity into theesspnic
i.e. turbulent behavior in the context of quantum vortebtur  regime v> ¢ causes the obstacle to shed oblique dark solitons
lence [46]. that are unstable to decay via the snake instability intonsha
Due to the number of simulations required we choose af vortex dipoles. A large compressional wave can also be
relatively small system, as this allows one to use a numerseen in front of the obstacle. The vortex dipoles that form du
ical grid with fewer points while still maintaining adeqeat to the snake instability have a small dipole length and fgipid
spatial resolution. We choose harmonic trapping frequenci annihilate, generating bursts of acoustic energy. Nurablyic
of (wr,wz) = 2r x (39,5000) Hz, so that the system is well we find that aimost all vortices (at leasi89%) are bound into
within the 2D regime. Working wit’Rb gives a 2D interac-  vortex-antivortex pairs throughout the simulation, anstive
tion parameter ofip = 0.19u£2. Choosing a peak density of do not observe significant clustering of like-charged exi
Ny = 5x10°cm2 results in a condensate with a Thomas-Fermiin this regime [Figur€ll, panel CJ.
radius ofRrr = 40¢, containingN ~ 1.3 x 10* atoms. Values  zero Emission Regime: The white regions of the param-
for the chemical potential, healing length and speed of douneter map in Figurél1 indicate the parameters for which we
areu/kg = 532nK, ¢ = 0.324um andc = 2.26mmn)s respec-  ppserve no vortex emission. It is already known that for an
tively. Foro = 4¢ the corresponding/# radius of a stirring  gpstacle moving through the condensate there is a critéeal v
beam would be 4/2¢ ~ 1.8um, an experimentally realizable |ocity below which vortex emission does not occurl [50, 57].
beam size. The system is simulated using a spatial domain ¢fowever, we also find that once the speed of a penetrable ob-
L2 = (183®&)? and a grid ofM? = 512 points. We have ver- stacle is increased past an upper critical value, vorties n
ified that the numerics are convergent for the chosen grid byonger nucleate inside the BEC. Instead, surface waves are
testing the most violent cases on a finer grid and verifyirg th generated and vortices eventually nucleate at the contiensa
phenomenology. boundary. The density minimum dragged behind the obstacle
falls further behind as its speed increases, eventuallshrea
ing a trailing distance of order the system size. Note that fo
B. Stirring Regimes sufficiently rapid stirring the BEC cannot respond to the ob-
stacle potential and will only see a time-averaged potentia
Three distinct regimes of vortex emission were found forFor smallerV, this regime will be reached at lower stirring
the parameters considered. Our findings are presented-in Figpeeds, a behavior that is consistent with the boundary seen
ure[d as a false color map for a range of potential strengthim Fig [, where it approachesin the regimeVy < u. We
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have also verified that this behavior occurs in the absence dhe grid resolution toM? = 2048&. The axial trapping fre-
dissipation. guencyw, and the peak density, are left unchanged, thus
preserving the interaction parametgp, and healing length
t — 90ms B w1 & This ensures that the characterization of the previous sec
tion remains valid for this system. For each set of pararseter
we evolve the system according to the dGPE (3), for several
complete cycles of the stirring. In general the kinetic gger
spectra, which we present below, fluctuate with time. To il-
lustrate the degree of variability we choose two represiseta
times during the motion, for which the atomic densities are
shown in FiguréR. In the Supplemental Material we provide
o  Mmovies of the dynamics in the three regimes, showing particl
T — 137ms density, comprgssi_ble and incom_pre_ssible energy spextd,
the vortex distribution for the entire time evolution.

A. IncompressibleKinetic Energy Spectra

We decompose the system energy and calculate the incom-
pressible and compressible kinetic energy spectra aaaprdi
to the method outlined in Refs. [44,/58]. The incompressible
kinetic energy spectrum is associated with quantum vaatice
and the compressible part is associated with acoustic waves
The incompressible kinetic energy spectra corresponding t
the densities of Figuilg 2 are shown in Figlire 3.

All three regimes clearly displayka® power law in the ul-
traviolet (UV) region k¢ > 1) of the spectrum. This power
law is robust throughout the simulation in all regimes. This
is attributed solely to the internal structure of the vortexe
and has no clear correspondence with a direct enstrophy cas-

80 —40 0 40 80 -80 —40 0 40 80 cade [45]. We \_/viII hence focus on t.he infrgred (.IR) region
x/€ z/¢ (k& < 1), which is related to the spatial configuration of vor-
tices [46].
FIG. 2. (Color online) Density profiles produced within the) ( We observe that the spectrum of the dipole regime does re-
Dipole regime, (b) Cluster regime and (c) Oblique solitogimee, in ~ semble the Kolmogorok 2 law in the infrared region, over
the larger system that we have used for spectral analysissfiéctra  the scale ranger?40 < k¢ < 1, although some minor oscil-
corresponding to each density profile are shown in Fidurezd®a  |ations are observed [Figuré 3(a)= 90ms]. This is surpris-
The field of view is (216)*. The color bar represents atomic density ing due to the regular periodic nature of the vortex emission
as a fr.action of the pea}( d.ensity. The .black bar in the botneimll dynamics [see Supplemental Movie 1] and suggests caution
panel is~ 3Q§ long an_d indicates a forcing source of compressible;g necessary when interpreting spectra as signaturestf-tur
energy, as discussed in SEC. IV C. lence. The spectrum does at times lose much of this resem-
blance, as demonstrated by the spectrurh at177ms, but
in general bears some comparison to th& {aw while not
being particularly linear in log-space.
IV.  KINETIC ENERGY SPECTRA AND ENERGY Turning now to the cluster regime [Figuré 3(b)], we find
COMPOSITION that the spectrum shown in the Figure at 137ms displays a
close resemblance to the Kolmogotow/® power law within

We now consider a more detailed analysis of the pointshe range 2/40 < k& < 1. This spectral resemblance is
A, B, and C shown in Figur€l1, corresponding tocv=  analyzed further in Se€.JV. We note that = 27/40 is the
0.4,0.6,1.3 andVy/u = 0.8, 1.3, 1.3 respectively. For the pur- wavenumber that corresponds to the radial obstacle latatio
poses of spectral analysis it is desirable to consider &isyst We do however find that the power law is highly temporally
with a much greater spatial extent than that used for theé-previntermittent, sustaining briefly but also undergoing siigant
ous investigation, as one typically wishes to charactespee-  distortions several times throughout the course of the lsimu
tra over at least a decade of wavenumbers. We therefore efion [see Supplemental Movie 2]. A gualitative indication o
tend the spatial domain 10> = (27®)? and reduce the radial the extent to which the spectrum deviates from the power law
trapping frequency tay, = 27 x 16 Hz and keep constant, is displayed by the spectrumiat 94ms of FiguréB(b).
which results in a condensate containMg: 7.9 x 10* atoms Figure[3(c) displays example spectra for the oblique solito
with a Thomas-Fermi radius & = 10Q¢. We also increase emission regime. This regime does not exhibit any significan




—t = 90ms
---t = 177ms

—t = 84ms
---t = 103ms

FIG. 3. (Color online) Scaled incompressible kinetic egespec-
tra produced in the (a) Dipole regime, (b) Cluster regimej )
Oblique soliton regime. The spectra are presented for thesti
shown in FiguréR. Lines proportional ko (red) andk=2 (green)
are also shown. The vertical dashed lines are locat&d at2z/40

—t = 90ms
---t = 177Tms

E(k)¢/N po

E°(k)¢/N po

—t = 84ms
---t = 103ms

FIG. 4. (Color online) Scaled compressible kinetic eneqpcsra for
(a) the Dipole regime, (b) the Clustering regime and (c) thédDe
soliton regime. The spectra are presented for the timesrshofig-
ure[2. Lines proportional tk3/2 (black) and"/? (red) are provided
for comparison. The vertical dashed lines are locatéd at 27/40

andk¢ = 1. Movies displaying the temporal evolution of each spec-andks = 1. Movies displaying the temporal evolution of each spec-

trum are provided in the Supplemental Material.

clustering of like-sign vortices, and the spectrum cleddgs

not conform to a power law in the infrared region. The exam

trum are provided in the Supplemental Material.

turns to non power-law behavior, such as that seen in Figure 4
att = 90ms. The cluster regime [Figure 4(b): 94ms] can

ples presented are typical of what is observed througheut thdisplay power-law exponents of approximateB/2 in the IR

simulation. The time evolution of the power-law exponerits o
the dipole and cluster regime is further analyzed in Béc. V.

B. Compressible Kinetic Energy Spectra

region and-7/2 in the UV region, but is also susceptible to
significant deviations (e.g. at= 137ms).

The oblique soliton regime displays veryigrent behavior
to the other two cases. The spectrum produced in this regime
[Figurel4(c)] displays a clear bilinear form, again with poaw
law exponents 0£3/2 and—7/2. Thek-3/2 power law evident

We now describe the compressible kinetic energy spectracross a decade of wavenumbers in the IR region is consistent
for our characteristic cases, shown in Figule 4. The dipolevith an inertial range for three-wave WWT in 2D_[48, 49].
regime [Figurd ¥(a)] can transiently resemble power-law be The shape of the spectrum in the IR region is found to be ex-

havior in the UV region of the spectrum (e.g.tat 177ms in
Figure[4). This behavior is clearest during dipole annttula

tremely robust throughout the simulation, as shown here by
the two example spectra. The UV region exhibits larger fluc-

events [see Supplemental Movie 1], but is seen only briefly atuations than the IR region, but these fluctuations appear to
individual sound pulses are emitted. The spectrum quiakly r be closely centered about&/2 power law. The time evolu-
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tion of the power-law exponents of the clustering and oldiqu

soliton regimes is further analyzed in Seg. V. FIG. 6. (Color online) Fractional energy composition as racfion

of time for the (a) Dipole regime, (b) Cluster regime and (&)iGue
soliton regime. The vertical dashed lines indicate the siatewhich
we have presented the density profiles in Fidure 2 and theragac

C. Forcing Scales Figure$_8 anfl]4. One orbital stirring period takes 88 ms fobwvi c,
52 ms for = 0.7c, and 27 ms for ¥ 1.3c.

Here we identify possible sources of forcing from observ-
ing spectra at early evolution times. In the dipole and elust

regimes the incompressible spectra show no indication of a D. Energy Composition
localized forcing peak. However, in the soliton regime we ob
serve a peak localized &f ~ 2 [Figure[$(a)]. This is consis-  |n each stirring regime the system reaches an approximate

tent with rapid nucleation of many regularly spaced vosice steady state due to the balance of forcing and damping. How-
in the early wake of the obstacle [see Supplemental movie 3kver, due to the cyclic nature of the stirring, the total en-
In the other two regimes, the vortex emission is slower, angrgy continues to exhibit significant fluctuations (of order
may cause the appearance of a forcing peak to be washed ogbos). In Figurd s we show the fractional kinetic energies
The compressible spectrum also shows a clear source &/Ei; whereE is either the total incompressibIE{gn) or
forcing atké ~ 0.5, as displayed in Figuid 5(b). This feature compressiblekg, ) kinetic energy, or the total quantum pres-
is observed in all regimes, although it is largest in the-soli sure Eqn) [41]. The quantum pressure arises due to sharp
ton regime. We attribute this peak to the compression waveariations in the atom density, such as near a vortex core,
that forms in front of the obstacle. As time progresses, wend signals a departure from hydrodynamics. We find that the
observe that the peak drifts towards lower wavenumber$ untfractional energies stabilize relatively quickly to stgadate
the compression wave has developed to its full spatial éxtervalues.
of approximately 38, as indicated by the scale barinFigl'e 2 we note some global observations. First, the vertical
(c). We have also examined the compressible energy densityashed lines, which indicate the times at which we have pre-
in position space and verified that there is a high conceatrat  sented the spectra, all lie within the steady-state regintieeo
of compressible energy in this region. fractional energy. These times are also longer than onpéuill
The distinct kink in Figurél4(c) at¢ ~ 2 suggests there riod of the stirring orbits of each case, given in Figure @ud-I
may be a second forcing peak at this scale. There is sonteiations observed in spectra are therefore not a conseguenc
indication of a feature at this scale in the compressible-spe of calculating spectra prior to the steady state being r@ch
trum between 2- 6 ms [see Supplemental Movie 3], but the Also, all cases exhibit a short initial stage in which the eom
peak is not as prominent as those shown in Figlire 5. Exanpressible energy dominates over the incompressible. Fhis i
ining the position-space compressible energy densityesteth  due to the initial compression of the fluid in front of the abst
times, we find that the sound pulses which shed behind thele when stirring begins. Figukeé 6(a) clearly demonstrttes
obstacle produce a signal higher than any other compressibpredictable and periodic nature of vortex emission withia t
energy source. These features are approximatel\8¥ in dipole regime, evident as periodic oscillations in the meo
size, consistent with the location of the kink poinkét~ 2. pressible energy. One can also see that the energy is largely
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FIG. 7. (Color online) (a) The exponent (E'(k) « k*) obtained
from a least-squares-fit of the infrared spectrum in theldipegime
(A), presented as a function of time. The horizontal dasliee | i
shows the Kolmogorov law( = 5/3) for comparison. (bR? value 0 L il 4 s
for the linear fit defined by exponeat The vertical dashed lines 0 >0 ¢ (ms) 100 150
indicate each time the stirrer completesrar@dian cycle.

FIG. 8. (Color online) (a) The exponent(E (k) « k) obtained
) . . L from a least-squares-fit of the infrared spectrum in thetetuggime
incompressible, and that the compressible contributioegs  (B), presented as a function of time. The horizontal daskwee |
ligible. Similarly, in the cluster regime the incompredsib shows the Kolmogorov lawa(= 5/3) for comparison. (b2 value
energy accounts for the overwhelming majority of the totalfor the linear fit defined by exponeat (c) Vortex clustered fraction
energy, although there is a slightly larger compressibfgréo  Nc/Ny as a function of time. The vertical dashed lines indicatéeac
bution than in the dipole regime. This suggests that theéelus time the stirrer completes arzadian cycle. Time intervals where
regime is well approximated as incompressible, and may b&* > 0.95 are shaded grey.
regarded as a kind of ideal quantum turbulence regime.

There is a clear dlierence in energy distribution between N ) N 5

the oblique soliton regime [Figui@ 6(c)] and the other twoWhereSer = L2, (i — f)? andSwt = 3%y (vi — )% An R
cases. The compressible energy remains dominant in the iny2lue close to 1 indicates the data closely conform to agsttai
tial stages for a significantly longer period in this regirap line [59].
proximately 20ms). The compressible energy accounts for a
much greater proportion of the total energy, so that it is in
fact greater than the quantum pressure contribution, in con
trast with the other two cases. However, the incompressible

energy is still the major contributor in the steady-statgmes. In the case of the incompressible spectrum, we are only
interested in the IR-region (due to universality of the UV re

gion [46]). We fit within the range 2/30 < k¢ < 1, and
analyze the dipole and cluster regimes. The incompressible
V. CHARACTERIZATION OF POWER LAWSAND spectrum of the soliton regime does not conform to a power
INTERMITTENCY law (as seen in Figuid 3) and we do not consider it further.
FigurdT displays the results from this analysis of the dipol

Some of the spectra we have presented in the previous se@gime. Consistent with our observations in Sedtion 1V A, we
tion exhibit intermittent power law behavior. Intermitgnis ~ see that the power-law exponent(E' o k™) for the fit to
likely to be an irreducible aspect of a trapped system, due téhe data sits near the Kolmogorov valuggor most of the
finite size éfects. In this section we conduct further, quantita-Simulation. However, as previously noted, the spectrunots n

tive spectral analysis in order to gain a deeper undersigndi Particularly linear in log-space compared to the othemmegi.
of this behavior. TheR? value in the steady state¥ 90ms) has a mean of 0.9

For the spectra that exhibit power-law behavior, we perfornand is always less than 0.95. As discussed in Section |11, th
a linear least-squares-fit in logarithmic space. From thés w temporal characteristics of the dipole regime are reguldr a
obtain a best-fit value for the power law exponent, and als@eriodic, suggestive of laminar flow. Since we do not expect
an indication of the goodness of fit (given by tRevalue) as Power-law behavior in the dipole regime, we taRe= 0.95
functions of time. For a data sgt}l\, with meany, and aset asa benchmark value,_ such thatRén> 0.95 dem_onstrates a
of fitted valuesf;, theR? value is given by goodness of fit exceeding that of the dipole regime.

The results from the cluster regime are presented in Fig-
ure[8. From Figurgl8(a) we can see that in the early stages,
~ 25ms, the exponent fluctuates about/3 andR? ~ 0.95.

A. Incompressible Spectra

S
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FIG. 9. (Color online) (a) The exponengs(E°(K) o« k#, k¢ < 1)  FIG. 10. (Color online) (a) The exponemgES(K) o« k% ké < 1)
and 2 (E°(k) « k™, k¢ > 1) obtained from least-squares-fit of the and A (E°(k) « k™, k¢ > 1) obtained from least-squares fit of the
compressible spectrum in the cluster regime (B), presessddnc-  compressible spectrum in the soliton regime (C), preseasednc-
tions of time. The horizontal dashed line shows the WWT it tions of time. The horizontal dashed line shows the WWT it

(8 = 3/2) for comparison. Also shown for comparison is the dash-(3 = 3/2) for comparison. Also shown for comparison is the dash-
dot lineA = 7/2. (b) R? value for the best fit analysis as a function dot line1 = 7/2. (b) R? value for the best fit analysis as a function
of time. The vertical dashed lines indicate each time thressttcom-  of time. The vertical dashed lines indicate each time thresstcom-
pletes a 2 radian cycle. pletes a 2 radian cycle.

At later times there are points at whietdeviates significantly indicating a notable correlation between the approachtof
-5/3 ) .

from the Kolmogorow™ / law, to values as low as 1. How- 5,3 and the size of the clustered fraction. Note that the shade

ever, the points at which deviates the most from/3 also regions in figuréB(c) which indicate the® > 0.95 also ap-

coincide with decreases in tiRé value of roughly 10% [Fig-  proximately coincide with the peaks in the clustered frati
ure 6(b)], indicating that the spectrum is poorly describgd

power law at these times. One also observes several shert tim
spans where returns approximately to/3, andR? > 0.95, as B. Compressible Spectra
indicated in Figur€l8 by the shaded regions.

To quantify the relation between the spectral linearity in
log space and the approach®to 5/3, we make use of the
correlation between two paramete¢sandY, defined as

We also perform a least-squares fit on the compressible
spectrum. We perform this analysis on all three regimes for
the UV-region, as all exhibit some indication of power law

(XY) — (XXY) with exponent-7/2. Additionally the IR regions of the clus-
CX.Y) = T oxoy (7) " ter and soliton regimes are analyzed, as these regimesitexhib
a —3/2 power law within this scale range. We fit within the
with 0% = (X% - (X)%, and for our purpose$X) =  ranges2/40< k¢ < 1.5 (IR) and 2< k& < 10 (UV).

N;lzi’\fl X(t) denotes an average ovdg time samples. We We note that, in the dipole regime, whenever a dipole re-
compute the correlation betwedm — 5/3| and R? in the  combination event occurs (e.g., tat- 118 ms, see Supple-
steady state (averaging data for tintes> 50ms) and find mental Movie 1), the best fit value far (E°(k) o« k™) tran-
C(la - 5/3, R?) = —-0.63, indicating a correlation between the siently passes through'Z, with R2 > 0.99 indicating a high
approach of to 5/3 observed in Figuilg 8 (a) and the approachdegree of linearity. Soon after the event(125ms),A ~ 1.5

of the spectrum to a power-law form. and linearity is greatly degradeB{ ~ 0.67).

In Figure[8(c) we have plotted the clustered vortex frac- The cluster regime results are displayed in Figure 9. dere
tion Ng/Niot, WwhereN; is the number of vortices which have (ES(k) « k) quickly approaches/2, within approximately
nearest neighbors of the same circulation, blpglis the total ~ 8ms, and thereafter fluctuates ne#2 3with fluctuations of or-
number of vortices. Vortices detected outside the highitiens der 10-20% of this valueR2 exhibits significant fluctuations,
region (farther than 8Ryr from the trap center) are excluded between values of.97 and 08, indicating intermittency. In
from the calculation. Notice thatin the early stages (5ms)  the UV-regionl (ES(K) o« k™) exhibits similar behavior, sit-
whereq fluctuates about /38, the clustered fraction is rela- ting near 72 with fluctuations also of order 10-20%z3 is
tively large Nc/Nwt ~ 0.55. Further comparison between comparatively high: largely aboved®, and always greater
and the clustered fraction shows that the greatest departurthan 095.
of « from 5/3 occur when the clustered fraction is reduced In the soliton regime, one again sees taguickly ap-
to ~ 0.2, indicating that vortex dipoles are dominating the proaches B, withint ~ 15ms [Figurd_I0(a)]. By this time
flow characteristics. Inspection of the figure shows thatrwhe RZ > 0.95, indicating that the spectrum is well described by a
«a closely approaches/3, the clustered fraction approaches power law. Thereaftgs exhibits relatively minor fluctuations
~ 0.5. Inthe steady state we fil@{la—5/3|, Nc/Niot) = —0.48,  from the value 32 (< 10%), anng nearly always exceeds



Regime*a (E', IR-region)| R2 ||/3 (EC,IR-region)| R ||/1 (ES, UV-region)| R2

Dipole ~5/3 < 0.95 (always) - - - -

Cluster ~5/3 > 0.95 (intermittently ~3/2 > 0.95 (intermittently) ~7/2 > 0.99 (intermittently)
Soliton - - ~ 3/2 > 0.93 (aIwayng = 0.96) ~7/2 > 0.99 (always)

TABLE I. Stirring regimes and approximate power-law expuiseobserved in the energy spectrum. Dashes denote thecaelsgoower-law
behavior.

0.95. Similarly, in the UV region rapidly conforms to 72,  from dipole recombination, is not a major contributor withi
and remains within 10% of this value. For> 10msR§ is  this regime. However, dipole recombination can potentiall
always above ®9. We summarize our results on power law disrupt an inverse cascade [[11]. It may also be the case that
spectra for the dipole, cluster and soliton regimes in T@Bble the clusters that are produced do not havéiGent spatial
and temporal extent to support a stable power law. Indeed, th
stirring obstacle significantly disrupts freely develapivor-

VI. DISCUSSION AND CONCLUSIONS tex flow, inhibiting clusters of size comparable to the siigr
radius from forming. This is consistent with our observatio
A. Dipole Spectra that thek=> law does not extend to wavenumbers lower than

k = 27/(40¢), where 4@ is the radial obstacle location. In

Our numerical investigation has uncovered several surpris2ddition, our stirring procedure usually produces cluster
ing results that require further discussion. One such résul ©Nly two, and at most four vortices, whereas the synthegical

the resemblance of the incompressible spectrum to the Ko@€nerated clusters in [46] that produce a very clear power la
mogorovk-5/3 law in the dipole regime. It appears, however, OVe' & decade of wavenumbers contain more than 10 vortices.

that this has little to do with turbulent phenomena. The tem/t iS @lso evident from Figurgl8(c) that, despite the continu
poral emission and spatial vortex distribution charastis ~ ©US forcing mechanism, dipoles are still the dominant vorte
of the system are highly ordered and regular and there is npiructures as the_ clustered fraction is below 0.5 for theomaj
significant clustering. These features are clearly shown by Of the simulation.

Figure[6(a) and Figuifd 2(a) respectively (and in Suppleaient

Movie 1). However, particular configurations of dipoles may

produce an approximate power law over a short spectral range C. Weak-Wave Spectra
via interferencel[46]. A dipole produces an incompressible _ _ _
spectrum that is oscillatory in the IR region, with tkepace The power-law behavior observed in the compressible spec-

oscillation frequency inversely dependent on the dipofe se trum of the clustering and soliton regimes is indicative of
aration scale. A range of dipole scales could smooth out theeak-wave turbulence in the IR-region. We obsenie?
spectral oscillations. We note also that the range of dipol€ompressible energy spectrum; in the presence of a conden-
scales is much larger in the dipole regime than in the solitorsate this spectrum indicates a direct cascade of acoustic en
regime. Furthermore, during the time interval wherekiié®  ergy, driven by three-wave interactions|[37].
region develops, the spacing of positive and negativecesti In the UV-region, the origin of the observed’/2 power
is actuallyincreasingsee Supplemental Movie L.~ 50-100 law is less clear. We note that the dispersion relation is ap-
ms]. This is caused by dissipative motion carrying the dipol proximately quadratic at high wavenumber; hence the three-
toward the condensate boundary. wave kinetic equation that yields the3/2 law in the IR-
The lack of incompressible energy at smialin the soli-  region is not relevant in the UV-region [37]. The cross over
ton regime is consistent with a system dominated by a singléo the—7/2 power law occurs &¢ =~ 2, suggesting that four-
small dipole scale. Furthermore, although the exponent fowave interactions are responsible for the transport ofggner
the IR region of the dipole spectrum approximatég3, the  at larger wavenumbers [48]. Further analysis is required to
spectra show a relatively low level of linearity (as meadure identify the origin of this power law in the presence of a BEC.
by theR? value) in log space, compared with the intermittent
results of the clustering regime [Figure 8]. It is clear ttrat

resemblance to a Kolmogorov law indicates the need for cau- D. Forcing Scalesand Cascades
tion when interpreting spectra, and the danger of relying on
single measure for identifying turbulent states. We have no direct evidence of energy cascades, largely due

to the dificulty in computing unambiguous fluxes of incom-
pressible and compressible components in a compressible su
B. Clustering and Intermittency perfluid [41]. Furthermore, we do not observe any evidence
for spontaneous vortex clustering either spatially or temp
We also observe strong intermittency of the Kolmogorovrally [60]. The approximatd >3 incompressible spectrum
k=52 power-law within the cluster regime. It is evident from observed in the clustering regime suggests an inertialerang
Figure[6(b) that compressible energy, which largely oats  for vortex energy, but the direction of any associated adesca
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is not clear. It has also been noted that dipole recombinatio Analysis of the incompressible kinetic energy spectra
can provide a mechanism for a direct energy cascade [41%hows that the cluster regime intermittently exhibits a-Kol
However, as observed in Ref. [46], if the forcing scale isrneamogorovk=>'3 power law within the scale ranger 240 < k& <
ké = 1 and dipole recombination is suppressed, an inversé [Figurd3(b)]. The size of the clustered fraction is negsyi
cascade of energy to larger scales might occur. This is a cortorrelated with the deviation of the power-law exponentrfro
sequence of the shape of the incompressible spectrum in thés/3. This regime simultaneously exhibits two intermittent
UV-region, which has a universkt® form due to the structure power laws in the compressible energy spectrum with expo-
of the vortex core in 2D, and thus is unavailable for dynami-nents—-3/2 and—7/2. In contrast, the oblique soliton regime
cal energy transport. The scale of forcing due to vortexlgipo does not exhibit power-law behavior within the IR region of
creation behind a stirring obstacle is of ord&r= 1, as in- the incompressible spectrum but instead exhibits stromly an
dicated in Figuréls(a). The correlation between the clester temporally robust3/2 and-7/2 power laws in the compress-
fraction and the approach of the incompressible spectrum tible spectrum. The infrared power-law3/2) is consistent
a k>3 power law is consistent with an intermittent inverse- with weak-wave turbulence [37], whereas the origin of the
energy cascade. —7/2 UV power law presents an intriguing avenue for future
The WWT power laws are most clearly observed in thework
soliton regime. The %2 spectrum corresponds to a direct  The intermittency of the Kolmogordes/3 law in the clus-
cascade [37], suggesting acoustic forcing at small wave-nuner regime raises questions as to how one can experimentally
bers. The large peak shown in Figlife 5(b) that drifts towardgroduce a state of vortex turbulence that is closer to being
smallk in the compressible spectrum is consistent with thisfully developed than that which we have produced in this
interpretation. work. ldentifying forcing that leads to larger clustereddr
tions would provide a way to further suppress dipole decay.
Additionally, the cyclic nature of the stirring mechanispra
pears to limit the range over which a power law can be ob-
served, and to disrupt clusters at large scales, introducin
To summarize, we have investigated two-dimensionaintermittency. Identifying experimentally realizablérshg
guantum turbulence in Bose-Einstein condensates usingchemes that avoid these issues remains a future challenge.
damped Gross-Pitaevskii theory. The range of stirringrpara
eters we have explored exhibits a variety of vortex emission
regimes, with dferent temporal characteristics. A penetra-
ble obstacle\{, < u) moving at stficient subsonic speeds
(0.3c g v < ¢) results in the smooth, periodic emission of vor-
tex dipoles. Maintaining a subsonic stirring velocity bt i We thank Tom Billam for a critical reading of this
creasing the obstacle strength so that it becomes impéieetra manuscript, and Sam Rooney for useful discussions. We are
results in increasingly sporadic emission of vortices dred t supported by the Royal Society of New Zealand and the Mars-
production of like-charged vortex clusters. Increasirgdtir-  den Fund under grants UOO162 and UOO004 (AB), the Uni-
ring speed into the supersonic regime results in the shgddinversity of Otago (MR), and the US National Science Founda-
of dark solitons, which decay into chains of vortex dipoles. tion grant PHY-0855467 (BA).

E. Conclusionsand Outlook
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