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We investigate two-dimensional turbulence in finite-temperature trapped Bose-Einstein condensates within
damped Gross-Pitaevskii theory. Turbulence is produced via circular motion of a Gaussian potential barrier
stirring the condensate. We systematically explore a rangeof stirring parameters and identify three regimes,
characterized by the injection of distinct quantum vortex structures into the condensate: (A) periodic vortex
dipole injection, (B) irregular injection of a mixture of vortex dipoles and co-rotating vortex clusters, and (C)
continuous injection of oblique solitons that decay into vortex dipoles. Spectral analysis of the kinetic energy
associated with vortices reveals that regime (B) can intermittently exhibit a Kolmogorovk−5/3 power law over
almost a decade of length or wavenumber (k) scales. The kinetic energy spectrum of regime (C) exhibitsa
cleark−3/2 power law associated with an inertial range for weak-wave turbulence, and ak−7/2 power law for
high wavenumbers. We thus identify distinct regimes of forcing for generating either two-dimensional quantum
turbulence or classical weak-wave turbulence that may be realizable experimentally.

PACS numbers: 67.85.-d,67.85.De,03.75.Lm

I. INTRODUCTION

Quantum turbulence (QT) [1] involves chaotic vortex dy-
namics in a superfluid [2–6] and is often associated with
a random vortex tangle in three dimensions (3D) [2]. QT
experiments have been conducted for over half a century,
and initially experiments were performed using superfluid he-
lium [2]. More recently, attention has turned to superfluid
Bose-Einstein condensates (BECs); these lend themselves
well to the problem, as many condensate parameters can be
finely controlled [4]. Moreover, modern optical techniques
routinely allow visualization of vortex cores in ballistically
expanded BECs, whereas vortex visualization is challenging
in superfluid helium, although possible [7]. The presence of
the Kolmogorov spectrum [8] has been established in super-
fluid helium 3DQT, both in experiments [9] and quantized
vortex filament model simulations [10]. Numerical studies
of 3DQT in BECs using the Gross-Pitaevskii equation (GPE)
have also established the presence of a Kolmogorov spec-
trum [11–13, 58]. Such evidence has aroused strong interest
in the similarities between classical turbulence (CT) and QT,
and it is speculated that studies of QT may help progress the
classical theory [14].

In forced 3D turbulence, a classical fluid exhibits a di-
rect cascade of energy from the forcing scale down to the
damping scale. This sets the size of the inertial range [15]
over which the kinetic energy spectrum approximates the Kol-
mogorovk−5/3 law over wavenumbersk. Incompressible two-
dimensional (2D) classical fluids exhibit very different flow
characteristics due to the existence of an additional inviscid
invariant, namely the total squared vorticity, orenstrophy[16–
19]. Consequently small-scale forcing induces vorticity to ag-
gregate into coherent rotating structures [20], associated with
an inversecascade of energy to progressively larger length
scales [21]. In a distinct range of scale-space, a direct en-
strophy cascade occurs, in which enstrophy is conservatively
transported from the forcing scale to progressively smaller

scales [22]. Thus in 2D classical turbulence, the kinetic en-
ergy spectrum can exhibit thek−5/3 power law in the iner-
tial range, and ak−3 power law in the scale range of the en-
strophy cascade [16]. The inverse-cascade phenomenon has
been widely studied in classical fluids [22, 23], and the dual-
cascade spectrum has been observed in experiments with soap
films [24].

A great deal is known about 3DQT in BECs [3, 5, 11, 25],
and experiments have observed [26, 27] and explicitly stud-
ied [28–30] characteristics of 3DQT in BECs. Much less
is known about 2DQT; more work is required to understand
the fundamental characteristics of 2DQT, and to compare the
classical and quantum dynamics. Experimental progress on
2DQT in BECs has concentrated on methods to generate dis-
ordered vortex distributions in highly oblate condensatesand
observe the decay of these turbulent states [31–33]. Despite
growing theoretical interest in 2DQT [34–47], work in BEC
has largely focused on decaying turbulence [40, 41, 45], where
vortex-antivortex recombination may generate a direct energy
cascade [44]. However, if forcing can be chosen to generate
sufficient clustering of vortices of the same sign of circula-
tion [31, 42, 46, 47], recombination can be suppressed, and an
inverse-energy cascade may be possible [31, 46]. Indeed, re-
cent large-scale numerical modeling of an experiment involv-
ing a highly oblate 3D system with effective 2D vortex con-
finement exhibited characteristics consistent with an inverse
energy cascade [31].

In regimes dominated by acoustic radiation, a different type
of turbulence known asweak-waveturbulence (WWT) [48,
49] can occur. WWT is a classical wave phenomena that has
been studied in Gross-Pitaevskii theory [3, 5, 6, 25, 37]. Inthe
low temperature regime the existence of a large BEC causes
the nonlinear interactions to be dominated by three-wave pro-
cesses which lead to characteristic power laws in the kinetic
energy spectrum [37]. In particular, three-wave 2D WWT in
BECs is predicted to generate ak−3/2 spectrum at long wave-
lengths, associated with a direct cascade of wave energy [37].
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In general, the power laws observed in a particular scale range
may depend on the effectiveness of damping at that scale.

Here we consider turbulent flows generated by forced stir-
ring of an oblately confined BEC with a laser-generated Gaus-
sian potential. Stirring an oblately confined BEC in this way
can excite the superfluid into highly disordered states sugges-
tive of turbulence. Focusing on the distinction between 2DQT
and 2DWWT, we investigate the relationship between the stir-
ring characteristics and the kind of excited flow states gen-
erated. We systematically study a range of experimentally
accessible stirring parameters, and classify the resulting su-
perfluid dynamics through analysis of kinetic energy spectra
and vortex clustering dynamics.

This paper is structured as follows. In Section II we discuss
our model. In Section III we discuss our choice of simula-
tion parameters, and identify distinct vortex injection regimes
within the range of stirring parameters considered. In Sec-
tion IV we qualitatively analyze the kinetic energy spectraand
kinetic energy composition of a characteristic example from
each vortex injection regime. In Section V we characterize
power law behavior and intermittency of spectra using linear
least-squares fit analysis. In Section VI we discuss our results
and conclude.

II. DAMPED GROSS-PITAEVESKII EQUATION

The Hamiltonian for a three-dimensional Bose gas de-
scribed by field operator̂ψ(r, t) is

H =
∫

d3r ψ̂†(r, t)Hspψ̂(r, t) +
g
2
ψ̂†(r, t)ψ̂†(r, t)ψ̂(r, t)ψ̂(r, t),

(1)
with single-particle HamiltonianHsp = −~2∇2/2m+ V(r, t),
trapping potentialV(r, t), atomic massm, interaction param-
eterg = 4π~2a/m, ands-wave scattering lengtha. We con-
sider confinement by a cylindrically symmetric harmonic trap,
Vho(r), augmented by a Gaussian stirring potential,Vs(r, t).
The resulting trapping potential is

V(r, t) = Vho(r) + Vs(r, t) (2)

whereVho(r) = mω2
r (x2 + y2)/2 + mω2

zz2/2 for trapping fre-
quenciesωr , ωz. We consider the case of strong confinement
~ωz≫ µ, kBT, ~ωr , whereµ is the chemical potential andT is
the system temperature. Under these circumstances, the con-
densate adopts a highly oblate ‘pancake’ shape, and is effec-
tively two-dimensional. The effective interaction parameter in
2D is g2D = g/

√
2πℓz whereℓz =

√

~/mωz is the harmonic
oscillator length in thez direction. We note that our study of
this highly oblate 2D system has wider applicability to less
oblate systems which also exhibit effective 2D vortex dynam-
ics [50, 51].

Treatment of (1) within a detailed reservoir interaction the-
ory leads to the Stochastic Projected Gross-Pitaevskii equa-
tion (SPGPE) [52], which describes the evolution of atoms
with energy less than a chosen cutoff energy and their interac-
tion with thermalized atoms above the cutoff. The description
we use can be obtained from the simple growth SPGPE [53]

by neglecting the thermal noise and retaining the damping
term. This leads to the damped Gross-Pitaevskii equation
(dGPE)

i~
∂ψ(r, t)
∂t

= Lψ(r, t) + iγ
[

µ − L
]

ψ(r, t), (3)

describing the purely dissipative evolution of the condensate
wavefunctionψ(r, t) due to a stationary thermal reservoir. The
operatorL is given by

Lψ(r, t) ≡
[

−
~

2∇2
⊥

2m
+ V(r, t) + g2D|ψ(r, t)|2

]

ψ(r, t). (4)

The dampingγ can be derived ab-inito for quasi-equilibrium
states, and it is typically very small (of order 10−4) [54]. In
this work we take the approach of modeling an experimen-
tally realizable system in all respects apart from the damping,
where we neglect the details of a full finite-temperature the-
ory. Instead we treat the dimensionless damping parameterγ

phenomenologically, choosingγ to be much smaller than all
other dimensionless rates governing the dynamics.

We stir the superfluid by introducing a time-dependent re-
pulsive Gaussian potential, which represents a blue-detuned
laser beam propagating alongz, of the form

Vs(x, y, t) = V0 exp

[

− (x− x0(t))2 + (y− y0(t))2

σ2

]

, (5)

where (x0(t), y0(t)) specifies the location of the stirring beam
center. Ground states are obtained by propagating (3) for
γ ≡ 1 using the Thomas-Fermi wavefunction as an initial con-
dition, with the stationary Gaussian obstacle (5) at its initial
position (x0(0), y0(0)) = (s, 0). Our choice of stirring proce-
dure allows for several parameters to be varied. The energy re-
quired to form a vortex dipole is a minimum at approximately
s = 0.4RTF in the Thomas-Fermi regime [55], whereRTF is
the Thomas-Fermi radius in the radial dimension, and there is
experimental evidence in agreement with this prediction [26].
We therefore consider only circular stirring symmetric about
the trap center, such thatx0 = scos(vt/s) andy0 = ssin(vt/s),
where v is the speed of the stirrer.

We work in units of energy, length and time given byµ, ξ
andξ/c respectively, whereξ is the healing length (~2/mξ2 ≡
µ) andc =

√

µ/m is the speed of sound. The integration rou-
tine we implement is a pseudo-spectral adaptive Runge-Kutta
method of orders 4 and 5 [56]. We choose a damping param-
eter ofγ = 0.03, which is smaller than any other simulation
parameter by at least an order of magnitude. The 1/eGaussian
half-width of the stirrer is chosen asσ = 4ξ in all simulations.

III. REGIMES OF TURBULENCE

A. System and parameters

We initially performed a systematic sequence of 130 sim-
ulations over a range of obstacle strengths (V0) and speeds
(v) in order to determine temporal characteristics of the vor-
tex emission. The primary motivation for carrying out this
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FIG. 1. (Color online) Regimes of vortex emission (left), determined
by simulating the dGPE for parametersV0/µ = {0.5,0.6, ...,1.4}
and v/c = {0.3,0.4, ...,1.5}. The points indicated by circles are
(A) V0/µ = 0.8, v/c = 0.4, (B) V0/µ = 1.3, v/c = 0.7 and (C)
V0/µ = 1.3, v/c = 1.3. Blurred regions indicate the approximate
extent of the transition regions. False color images of the condensate
density profiles (right) display regions of low density (blue) and high
density (red). The three examples A, B and C correspond to thestir-
ring parameters indicated on the regime map. In each case thestirrer
has completed a cycle of 2π radians. The field of view in the density
profiles is (90ξ)2.

procedure was to identify stirring parameters which are most
efficient for the production of like-charge vortex clustering,
i.e. turbulent behavior in the context of quantum vortex turbu-
lence [46].

Due to the number of simulations required we choose a
relatively small system, as this allows one to use a numer-
ical grid with fewer points while still maintaining adequate
spatial resolution. We choose harmonic trapping frequencies
of (ωr , ωz) = 2π × (39, 5000) Hz, so that the system is well
within the 2D regime. Working with87Rb gives a 2D interac-
tion parameter ofg2D = 0.19µξ2. Choosing a peak density of
n0 = 5×109cm−2 results in a condensate with a Thomas-Fermi
radius ofRTF = 40ξ, containingN ≈ 1.3× 104 atoms. Values
for the chemical potential, healing length and speed of sound
areµ/kB = 53.2nK, ξ = 0.324µm andc = 2.26mm/s respec-
tively. Forσ = 4ξ the corresponding 1/e2 radius of a stirring
beam would be 4

√
2ξ ∼ 1.8µm, an experimentally realizable

beam size. The system is simulated using a spatial domain of
L2 = (130ξ)2, and a grid ofM2 = 5122 points. We have ver-
ified that the numerics are convergent for the chosen grid by
testing the most violent cases on a finer grid and verifying the
phenomenology.

B. Stirring Regimes

Three distinct regimes of vortex emission were found for
the parameters considered. Our findings are presented in Fig-
ure 1 as a false color map for a range of potential strengths

(V0) and speeds (v), accompanied by a specific example of the
condensate density profile for each regime. Changes in the
stirring phenomenology occur when the parameters v/c and
V0/µ are of order unity, corresponding respectively to the tran-
sition from subsonic to supersonic stirring speeds and froma
penetrable(V0 < µ) to an impenetrable(V0 > µ) obstacle
beam. Note that the boundaries between regions in Figure 1
do not correspond to abrupt transitions, as there is a gradual
cross-over between different regimes.

Dipole Regime: Above a minimum velocity, v≃ 0.3c, sin-
gle dipoles shed from the obstacle in a regular, periodic fash-
ion. The emission is associated with a density minimum that
drops to zero at the time of dipole shedding. The dipoles occa-
sionally interact with each other, sometimes exchanging con-
stituent vortices, and eventually disappear in vortex-antivortex
annihilations. The overall dynamics are very temporally reg-
ular, suggestive of a laminar regime. We do not observe any
clusters of vortices with the same circulation being emitted
from the obstacle in this regime. [Figure 1, panel A].

Cluster Regime: If we maintain a stirring velocity in the
range 0.3c . v . c, but increase the obstacle strength such
that it becomes impenetrable, we observe that the temporal
characteristics of vortex emission become increasingly irreg-
ular with increasing obstacle strength. Furthermore, we ob-
serve that some vortices which shed from the obstacle cluster
with like-charged vortices. As we further increase the strength
of the obstacle, the range of velocities for which we observe
this behavior extends, and clustering of like-charged vortices
becomes more prominent [Figure 1, panel B].

Oblique Soliton Regime: For both penetrable and impene-
trable obstacles, increasing the stir velocity into the supersonic
regime v> c causes the obstacle to shed oblique dark solitons
that are unstable to decay via the snake instability into chains
of vortex dipoles. A large compressional wave can also be
seen in front of the obstacle. The vortex dipoles that form due
to the snake instability have a small dipole length and rapidly
annihilate, generating bursts of acoustic energy. Numerically
we find that almost all vortices (at least∼ 89%) are bound into
vortex-antivortex pairs throughout the simulation, and thus we
do not observe significant clustering of like-charged vortices
in this regime [Figure 1, panel C].

Zero Emission Regime: The white regions of the param-
eter map in Figure 1 indicate the parameters for which we
observe no vortex emission. It is already known that for an
obstacle moving through the condensate there is a critical ve-
locity below which vortex emission does not occur [50, 57].
However, we also find that once the speed of a penetrable ob-
stacle is increased past an upper critical value, vortices no
longer nucleate inside the BEC. Instead, surface waves are
generated and vortices eventually nucleate at the condensate
boundary. The density minimum dragged behind the obstacle
falls further behind as its speed increases, eventually reach-
ing a trailing distance of order the system size. Note that for
sufficiently rapid stirring the BEC cannot respond to the ob-
stacle potential and will only see a time-averaged potential.
For smallerV0 this regime will be reached at lower stirring
speeds, a behavior that is consistent with the boundary seen
in Fig 1, where it approachesc in the regimeV0 ≪ µ. We
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have also verified that this behavior occurs in the absence of
dissipation.
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FIG. 2. (Color online) Density profiles produced within the (a)
Dipole regime, (b) Cluster regime and (c) Oblique soliton regime, in
the larger system that we have used for spectral analysis. The spectra
corresponding to each density profile are shown in Figures 3 and 4.
The field of view is (210ξ)2. The color bar represents atomic density
as a fraction of the peak density. The black bar in the bottom left
panel is∼ 30ξ long and indicates a forcing source of compressible
energy, as discussed in Sec. IV C.

IV. KINETIC ENERGY SPECTRA AND ENERGY
COMPOSITION

We now consider a more detailed analysis of the points
A, B, and C shown in Figure 1, corresponding to v/c =
0.4, 0.6, 1.3 andV0/µ = 0.8, 1.3, 1.3 respectively. For the pur-
poses of spectral analysis it is desirable to consider a system
with a much greater spatial extent than that used for the previ-
ous investigation, as one typically wishes to characterizespec-
tra over at least a decade of wavenumbers. We therefore ex-
tend the spatial domain toL2 = (270ξ)2 and reduce the radial
trapping frequency toωr = 2π × 16 Hz and keepµ constant,
which results in a condensate containingN ≈ 7.9× 104 atoms
with a Thomas-Fermi radius ofRTF = 100ξ. We also increase

the grid resolution toM2 = 20482. The axial trapping fre-
quencyωz and the peak densityn0 are left unchanged, thus
preserving the interaction parameterg2D, and healing length
ξ. This ensures that the characterization of the previous sec-
tion remains valid for this system. For each set of parameters
we evolve the system according to the dGPE (3), for several
complete cycles of the stirring. In general the kinetic energy
spectra, which we present below, fluctuate with time. To il-
lustrate the degree of variability we choose two representative
times during the motion, for which the atomic densities are
shown in Figure 2. In the Supplemental Material we provide
movies of the dynamics in the three regimes, showing particle
density, compressible and incompressible energy spectra,and
the vortex distribution for the entire time evolution.

A. Incompressible Kinetic Energy Spectra

We decompose the system energy and calculate the incom-
pressible and compressible kinetic energy spectra according
to the method outlined in Refs. [44, 58]. The incompressible
kinetic energy spectrum is associated with quantum vortices,
and the compressible part is associated with acoustic waves.
The incompressible kinetic energy spectra corresponding to
the densities of Figure 2 are shown in Figure 3.

All three regimes clearly display ak−3 power law in the ul-
traviolet (UV) region (kξ ≫ 1) of the spectrum. This power
law is robust throughout the simulation in all regimes. This
is attributed solely to the internal structure of the vortexcore
and has no clear correspondence with a direct enstrophy cas-
cade [46]. We will hence focus on the infrared (IR) region
(kξ < 1), which is related to the spatial configuration of vor-
tices [46].

We observe that the spectrum of the dipole regime does re-
semble the Kolmogorovk−5/3 law in the infrared region, over
the scale range 2π/40 < kξ < 1, although some minor oscil-
lations are observed [Figure 3(a),t = 90ms]. This is surpris-
ing due to the regular periodic nature of the vortex emission
dynamics [see Supplemental Movie 1] and suggests caution
is necessary when interpreting spectra as signatures of turbu-
lence. The spectrum does at times lose much of this resem-
blance, as demonstrated by the spectrum att = 177ms, but
in general bears some comparison to the -5/3 law while not
being particularly linear in log-space.

Turning now to the cluster regime [Figure 3(b)], we find
that the spectrum shown in the Figure att = 137ms displays a
close resemblance to the Kolmogorovk−5/3 power law within
the range 2π/40 < kξ < 1. This spectral resemblance is
analyzed further in Sec. V. We note thatkξ = 2π/40 is the
wavenumber that corresponds to the radial obstacle location.
We do however find that the power law is highly temporally
intermittent, sustaining briefly but also undergoing significant
distortions several times throughout the course of the simula-
tion [see Supplemental Movie 2]. A qualitative indication of
the extent to which the spectrum deviates from the power law
is displayed by the spectrum att = 94ms of Figure 3(b).

Figure 3(c) displays example spectra for the oblique soliton
emission regime. This regime does not exhibit any significant
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FIG. 3. (Color online) Scaled incompressible kinetic energy spec-
tra produced in the (a) Dipole regime, (b) Cluster regime, and (c)
Oblique soliton regime. The spectra are presented for the times
shown in Figure 2. Lines proportional tok−5/3 (red) andk−3 (green)
are also shown. The vertical dashed lines are located atkξ = 2π/40
andkξ = 1. Movies displaying the temporal evolution of each spec-
trum are provided in the Supplemental Material.

clustering of like-sign vortices, and the spectrum clearlydoes
not conform to a power law in the infrared region. The exam-
ples presented are typical of what is observed throughout the
simulation. The time evolution of the power-law exponents of
the dipole and cluster regime is further analyzed in Sec. V.

B. Compressible Kinetic Energy Spectra

We now describe the compressible kinetic energy spectra
for our characteristic cases, shown in Figure 4. The dipole
regime [Figure 4(a)] can transiently resemble power-law be-
havior in the UV region of the spectrum (e.g. att = 177ms in
Figure 4). This behavior is clearest during dipole annihilation
events [see Supplemental Movie 1], but is seen only briefly as
individual sound pulses are emitted. The spectrum quickly re-

FIG. 4. (Color online) Scaled compressible kinetic energy spectra for
(a) the Dipole regime, (b) the Clustering regime and (c) the Oblique
soliton regime. The spectra are presented for the times shown in Fig-
ure 2. Lines proportional tok−3/2 (black) andk−7/2 (red) are provided
for comparison. The vertical dashed lines are located atkξ = 2π/40
andkξ = 1. Movies displaying the temporal evolution of each spec-
trum are provided in the Supplemental Material.

turns to non power-law behavior, such as that seen in Figure 4
at t = 90ms. The cluster regime [Figure 4(b),t = 94ms] can
display power-law exponents of approximately−3/2 in the IR
region and−7/2 in the UV region, but is also susceptible to
significant deviations (e.g. att = 137ms).

The oblique soliton regime displays very different behavior
to the other two cases. The spectrum produced in this regime
[Figure 4(c)] displays a clear bilinear form, again with power-
law exponents of−3/2 and−7/2. Thek−3/2 power law evident
across a decade of wavenumbers in the IR region is consistent
with an inertial range for three-wave WWT in 2D [48, 49].
The shape of the spectrum in the IR region is found to be ex-
tremely robust throughout the simulation, as shown here by
the two example spectra. The UV region exhibits larger fluc-
tuations than the IR region, but these fluctuations appear to
be closely centered about a−7/2 power law. The time evolu-
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FIG. 5. (Color online) (a) Forcing peak atkξ ≃ 2 in the incompress-
ible energy spectrum of the soliton regime att = 2.5 ms (b) Forcing
peak atkξ ≃ 0.5 in the compressible energy spectrum of the soli-
ton regime att = 0.7 ms. The vertical dashed lines are located at
kξ = 2π/40 andkξ = 1.

tion of the power-law exponents of the clustering and oblique
soliton regimes is further analyzed in Sec. V.

C. Forcing Scales

Here we identify possible sources of forcing from observ-
ing spectra at early evolution times. In the dipole and cluster
regimes the incompressible spectra show no indication of a
localized forcing peak. However, in the soliton regime we ob-
serve a peak localized atkξ ≃ 2 [Figure 5(a)]. This is consis-
tent with rapid nucleation of many regularly spaced vortices
in the early wake of the obstacle [see Supplemental movie 3].
In the other two regimes, the vortex emission is slower, and
may cause the appearance of a forcing peak to be washed out.

The compressible spectrum also shows a clear source of
forcing atkξ ≃ 0.5, as displayed in Figure 5(b). This feature
is observed in all regimes, although it is largest in the soli-
ton regime. We attribute this peak to the compression wave
that forms in front of the obstacle. As time progresses, we
observe that the peak drifts towards lower wavenumbers until
the compression wave has developed to its full spatial extent
of approximately 30ξ, as indicated by the scale bar in Figure 2
(c). We have also examined the compressible energy density
in position space and verified that there is a high concentration
of compressible energy in this region.

The distinct kink in Figure 4(c) atkξ ≃ 2 suggests there
may be a second forcing peak at this scale. There is some
indication of a feature at this scale in the compressible spec-
trum between 2− 6 ms [see Supplemental Movie 3], but the
peak is not as prominent as those shown in Figure 5. Exam-
ining the position-space compressible energy density at these
times, we find that the sound pulses which shed behind the
obstacle produce a signal higher than any other compressible
energy source. These features are approximately 1− 3 ξ in
size, consistent with the location of the kink point atkξ ≃ 2.
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FIG. 6. (Color online) Fractional energy composition as a function
of time for the (a) Dipole regime, (b) Cluster regime and (c) Oblique
soliton regime. The vertical dashed lines indicate the times at which
we have presented the density profiles in Figure 2 and the spectra in
Figures 3 and 4. One orbital stirring period takes 88 ms for v= 0.4c,
52 ms for v= 0.7c, and 27 ms for v= 1.3c.

D. Energy Composition

In each stirring regime the system reaches an approximate
steady state due to the balance of forcing and damping. How-
ever, due to the cyclic nature of the stirring, the total en-
ergy continues to exhibit significant fluctuations (of order10-
20%). In Figure 6 we show the fractional kinetic energies
E/Etot where E is either the total incompressible (Ei

kin) or
compressible (Ec

kin) kinetic energy, or the total quantum pres-
sure (Eqnt) [41]. The quantum pressure arises due to sharp
variations in the atom density, such as near a vortex core,
and signals a departure from hydrodynamics. We find that the
fractional energies stabilize relatively quickly to steady-state
values.

We note some global observations. First, the vertical
dashed lines, which indicate the times at which we have pre-
sented the spectra, all lie within the steady-state regime of the
fractional energy. These times are also longer than one fullpe-
riod of the stirring orbits of each case, given in Figure 6. Fluc-
tuations observed in spectra are therefore not a consequence
of calculating spectra prior to the steady state being reached.
Also, all cases exhibit a short initial stage in which the com-
pressible energy dominates over the incompressible. This is
due to the initial compression of the fluid in front of the obsta-
cle when stirring begins. Figure 6(a) clearly demonstratesthe
predictable and periodic nature of vortex emission within the
dipole regime, evident as periodic oscillations in the incom-
pressible energy. One can also see that the energy is largely
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FIG. 7. (Color online) (a) The exponentα (Ei (k) ∝ k−α) obtained
from a least-squares-fit of the infrared spectrum in the dipole regime
(A), presented as a function of time. The horizontal dashed line
shows the Kolmogorov law (α = 5/3) for comparison. (b)R2 value
for the linear fit defined by exponentα. The vertical dashed lines
indicate each time the stirrer completes a 2π radian cycle.

incompressible, and that the compressible contribution isneg-
ligible. Similarly, in the cluster regime the incompressible
energy accounts for the overwhelming majority of the total
energy, although there is a slightly larger compressible contri-
bution than in the dipole regime. This suggests that the cluster
regime is well approximated as incompressible, and may be
regarded as a kind of ideal quantum turbulence regime.

There is a clear difference in energy distribution between
the oblique soliton regime [Figure 6(c)] and the other two
cases. The compressible energy remains dominant in the ini-
tial stages for a significantly longer period in this regime (ap-
proximately 20ms). The compressible energy accounts for a
much greater proportion of the total energy, so that it is in
fact greater than the quantum pressure contribution, in con-
trast with the other two cases. However, the incompressible
energy is still the major contributor in the steady-state regime.

V. CHARACTERIZATION OF POWER LAWS AND
INTERMITTENCY

Some of the spectra we have presented in the previous sec-
tion exhibit intermittent power law behavior. Intermittency is
likely to be an irreducible aspect of a trapped system, due to
finite size effects. In this section we conduct further, quantita-
tive spectral analysis in order to gain a deeper understanding
of this behavior.

For the spectra that exhibit power-law behavior, we perform
a linear least-squares-fit in logarithmic space. From this we
obtain a best-fit value for the power law exponent, and also
an indication of the goodness of fit (given by theR2 value) as
functions of time. For a data set{yi}Ni=1 with meanȳ, and a set
of fitted valuesfi , theR2 value is given by

R2 = 1− Serr

Stot
, (6)

FIG. 8. (Color online) (a) The exponentα (Ei (k) ∝ k−α) obtained
from a least-squares-fit of the infrared spectrum in the cluster regime
(B), presented as a function of time. The horizontal dashed line
shows the Kolmogorov law (α = 5/3) for comparison. (b)R2 value
for the linear fit defined by exponentα. (c) Vortex clustered fraction
Nc/Ntot as a function of time. The vertical dashed lines indicate each
time the stirrer completes a 2π radian cycle. Time intervals where
R2 > 0.95 are shaded grey.

whereSerr =
∑N

i=1(yi − fi)2 andStot =
∑N

i=1(yi − ȳ)2. An R2

value close to 1 indicates the data closely conform to a straight
line [59].

A. Incompressible Spectra

In the case of the incompressible spectrum, we are only
interested in the IR-region (due to universality of the UV re-
gion [46]). We fit within the range 2π/30 ≤ kξ ≤ 1, and
analyze the dipole and cluster regimes. The incompressible
spectrum of the soliton regime does not conform to a power
law (as seen in Figure 3) and we do not consider it further.

Figure 7 displays the results from this analysis of the dipole
regime. Consistent with our observations in Section IV A, we
see that the power-law exponentα (Ei ∝ k−α) for the fit to
the data sits near the Kolmogorov value 5/3 for most of the
simulation. However, as previously noted, the spectrum is not
particularly linear in log-space compared to the other regimes.
TheR2 value in the steady state (t > 90ms) has a mean of 0.9
and is always less than 0.95. As discussed in Section III B, the
temporal characteristics of the dipole regime are regular and
periodic, suggestive of laminar flow. Since we do not expect
power-law behavior in the dipole regime, we takeR2 = 0.95
as a benchmark value, such that anR2 > 0.95 demonstrates a
goodness of fit exceeding that of the dipole regime.

The results from the cluster regime are presented in Fig-
ure 8. From Figure 8(a) we can see that in the early stages,
∼ 25ms, the exponentα fluctuates about 5/3 andR2 ≈ 0.95.
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FIG. 9. (Color online) (a) The exponentsβ (Ec(k) ∝ k−β, kξ . 1)
andλ (Ec(k) ∝ k−λ, kξ & 1) obtained from least-squares-fit of the
compressible spectrum in the cluster regime (B), presentedas func-
tions of time. The horizontal dashed line shows the WWT prediction
(β = 3/2) for comparison. Also shown for comparison is the dash-
dot lineλ = 7/2. (b) R2 value for the best fit analysis as a function
of time. The vertical dashed lines indicate each time the stirrer com-
pletes a 2π radian cycle.

At later times there are points at whichα deviates significantly
from the Kolmogorovk−5/3 law, to values as low as 1. How-
ever, the points at whichα deviates the most from 5/3 also
coincide with decreases in theR2 value of roughly 10% [Fig-
ure 6(b)], indicating that the spectrum is poorly describedby a
power law at these times. One also observes several short time
spans whereα returns approximately to 5/3, andR2 > 0.95, as
indicated in Figure 8 by the shaded regions.

To quantify the relation between the spectral linearity in
log space and the approach ofα to 5/3, we make use of the
correlation between two parametersX andY, defined as

C(X,Y) =
〈XY〉 − 〈X〉〈Y〉

σXσY
(7)

with σ2
X ≡ 〈X2〉 − 〈X〉2, and for our purposes〈X〉 =

N−1
s
∑Ns

i=1 X(ti) denotes an average overNs time samples. We
compute the correlation between|α − 5/3| and R2 in the
steady state (averaging data for timesti > 50ms) and find
C(|α− 5/3|,R2) = −0.63, indicating a correlation between the
approach ofα to 5/3 observed in Figure 8 (a) and the approach
of the spectrum to a power-law form.

In Figure 8(c) we have plotted the clustered vortex frac-
tion Nc/Ntot, whereNc is the number of vortices which have
nearest neighbors of the same circulation, andNtot is the total
number of vortices. Vortices detected outside the high density
region (farther than 0.8RTF from the trap center) are excluded
from the calculation. Notice that in the early stages (t ∼ 15ms)
whereα fluctuates about 5/3, the clustered fraction is rela-
tively largeNc/Ntot ∼ 0.55. Further comparison betweenα
and the clustered fraction shows that the greatest departures
of α from 5/3 occur when the clustered fraction is reduced
to ∼ 0.2, indicating that vortex dipoles are dominating the
flow characteristics. Inspection of the figure shows that when
α closely approaches 5/3, the clustered fraction approaches
∼ 0.5. In the steady state we findC(|α−5/3|,Nc/Ntot) = −0.48,

FIG. 10. (Color online) (a) The exponentsβ (Ec(k) ∝ k−β, kξ . 1)
andλ (Ec(k) ∝ k−λ, kξ & 1) obtained from least-squares fit of the
compressible spectrum in the soliton regime (C), presentedas func-
tions of time. The horizontal dashed line shows the WWT prediction
(β = 3/2) for comparison. Also shown for comparison is the dash-
dot lineλ = 7/2. (b) R2 value for the best fit analysis as a function
of time. The vertical dashed lines indicate each time the stirrer com-
pletes a 2π radian cycle.

indicating a notable correlation between the approach ofα to
5/3, and the size of the clustered fraction. Note that the shaded
regions in figure 8(c) which indicate thatR2 > 0.95 also ap-
proximately coincide with the peaks in the clustered fraction.

B. Compressible Spectra

We also perform a least-squares fit on the compressible
spectrum. We perform this analysis on all three regimes for
the UV-region, as all exhibit some indication of power law
with exponent−7/2. Additionally the IR regions of the clus-
ter and soliton regimes are analyzed, as these regimes exhibit
a −3/2 power law within this scale range. We fit within the
ranges 2π/40≤ kξ ≤ 1.5 (IR) and 2≤ kξ ≤ 10 (UV).

We note that, in the dipole regime, whenever a dipole re-
combination event occurs (e.g., att ≃ 118 ms, see Supple-
mental Movie 1), the best fit value forλ (Ec(k) ∝ k−λ) tran-
siently passes through 7/2, with R2

λ > 0.99 indicating a high
degree of linearity. Soon after the event (t ≃ 125ms),λ ≈ 1.5
and linearity is greatly degraded (R2 ≈ 0.67).

The cluster regime results are displayed in Figure 9. Hereβ

(Ec(k) ∝ k−β) quickly approaches 3/2, within approximately
8ms, and thereafter fluctuates near 3/2, with fluctuations of or-
der 10−20% of this value.R2

β exhibits significant fluctuations,
between values of 0.97 and 0.8, indicating intermittency. In
the UV-regionλ (Ec(k) ∝ k−λ) exhibits similar behavior, sit-
ting near 7/2 with fluctuations also of order 10-20%.R2

λ
is

comparatively high: largely above 0.99, and always greater
than 0.95.

In the soliton regime, one again sees thatβ quickly ap-
proaches 3/2, within t ∼ 15ms [Figure 10(a)]. By this time
R2
β > 0.95, indicating that the spectrum is well described by a

power law. Thereafterβ exhibits relatively minor fluctuations
from the value 3/2 (< 10%), andR2

β nearly always exceeds
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Regimeα (Ei , IR-region) R2
α β (Ec,IR-region) R2

β λ (Ec, UV-region) R2
λ

Dipole ∼ 5/3 < 0.95 (always) – – – –
Cluster ∼ 5/3 > 0.95 (intermittently) ∼ 3/2 > 0.95 (intermittently) ∼ 7/2 > 0.99 (intermittently)
Soliton – – ∼ 3/2 > 0.93 (always,R̄2

β
= 0.96) ∼ 7/2 > 0.99 (always)

TABLE I. Stirring regimes and approximate power-law exponents observed in the energy spectrum. Dashes denote the absence of power-law
behavior.

0.95. Similarly, in the UV regionλ rapidly conforms to 7/2,
and remains within 10% of this value. Fort > 10msR2

λ
is

always above 0.99. We summarize our results on power law
spectra for the dipole, cluster and soliton regimes in TableI.

VI. DISCUSSION AND CONCLUSIONS

A. Dipole Spectra

Our numerical investigation has uncovered several surpris-
ing results that require further discussion. One such result is
the resemblance of the incompressible spectrum to the Kol-
mogorovk−5/3 law in the dipole regime. It appears, however,
that this has little to do with turbulent phenomena. The tem-
poral emission and spatial vortex distribution characteristics
of the system are highly ordered and regular and there is no
significant clustering. These features are clearly shown by
Figure 6(a) and Figure 2(a) respectively (and in Supplemental
Movie 1). However, particular configurations of dipoles may
produce an approximate power law over a short spectral range,
via interference [46]. A dipole produces an incompressible
spectrum that is oscillatory in the IR region, with thek-space
oscillation frequency inversely dependent on the dipole sep-
aration scale. A range of dipole scales could smooth out the
spectral oscillations. We note also that the range of dipole
scales is much larger in the dipole regime than in the soliton
regime. Furthermore, during the time interval where thek−5/3

region develops, the spacing of positive and negative vortices
is actuallyincreasing[see Supplemental Movie 1,t ∼ 50−100
ms]. This is caused by dissipative motion carrying the dipoles
toward the condensate boundary.

The lack of incompressible energy at smallk in the soli-
ton regime is consistent with a system dominated by a single
small dipole scale. Furthermore, although the exponent for
the IR region of the dipole spectrum approximates−5/3, the
spectra show a relatively low level of linearity (as measured
by theR2 value) in log space, compared with the intermittent
results of the clustering regime [Figure 8]. It is clear thatthe
resemblance to a Kolmogorov law indicates the need for cau-
tion when interpreting spectra, and the danger of relying ona
single measure for identifying turbulent states.

B. Clustering and Intermittency

We also observe strong intermittency of the Kolmogorov
k−5/3 power-law within the cluster regime. It is evident from
Figure 6(b) that compressible energy, which largely originates

from dipole recombination, is not a major contributor within
this regime. However, dipole recombination can potentially
disrupt an inverse cascade [11]. It may also be the case that
the clusters that are produced do not have sufficient spatial
and temporal extent to support a stable power law. Indeed, the
stirring obstacle significantly disrupts freely developing vor-
tex flow, inhibiting clusters of size comparable to the stirring
radius from forming. This is consistent with our observation
that thek−5/3 law does not extend to wavenumbers lower than
k = 2π/(40ξ), where 40ξ is the radial obstacle location. In
addition, our stirring procedure usually produces clusters of
only two, and at most four vortices, whereas the synthetically
generated clusters in [46] that produce a very clear power law
over a decade of wavenumbers contain more than 10 vortices.
It is also evident from Figure 8(c) that, despite the continu-
ous forcing mechanism, dipoles are still the dominant vortex
structures as the clustered fraction is below 0.5 for the major-
ity of the simulation.

C. Weak-Wave Spectra

The power-law behavior observed in the compressible spec-
trum of the clustering and soliton regimes is indicative of
weak-wave turbulence in the IR-region. We observe ak−3/2

compressible energy spectrum; in the presence of a conden-
sate this spectrum indicates a direct cascade of acoustic en-
ergy, driven by three-wave interactions [37].

In the UV-region, the origin of the observed−7/2 power
law is less clear. We note that the dispersion relation is ap-
proximately quadratic at high wavenumber; hence the three-
wave kinetic equation that yields the−3/2 law in the IR-
region is not relevant in the UV-region [37]. The cross over
to the−7/2 power law occurs atkξ ≃ 2, suggesting that four-
wave interactions are responsible for the transport of energy
at larger wavenumbers [48]. Further analysis is required to
identify the origin of this power law in the presence of a BEC.

D. Forcing Scales and Cascades

We have no direct evidence of energy cascades, largely due
to the difficulty in computing unambiguous fluxes of incom-
pressible and compressible components in a compressible su-
perfluid [41]. Furthermore, we do not observe any evidence
for spontaneous vortex clustering either spatially or tempo-
rally [60]. The approximatek−5/3 incompressible spectrum
observed in the clustering regime suggests an inertial range
for vortex energy, but the direction of any associated cascade
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is not clear. It has also been noted that dipole recombination
can provide a mechanism for a direct energy cascade [41].
However, as observed in Ref. [46], if the forcing scale is near
kξ = 1 and dipole recombination is suppressed, an inverse
cascade of energy to larger scales might occur. This is a con-
sequence of the shape of the incompressible spectrum in the
UV-region, which has a universalk−3 form due to the structure
of the vortex core in 2D, and thus is unavailable for dynami-
cal energy transport. The scale of forcing due to vortex dipole
creation behind a stirring obstacle is of orderkξ = 1, as in-
dicated in Figure 5(a). The correlation between the clustered
fraction and the approach of the incompressible spectrum to
a k−5/3 power law is consistent with an intermittent inverse-
energy cascade.

The WWT power laws are most clearly observed in the
soliton regime. Thek−3/2 spectrum corresponds to a direct
cascade [37], suggesting acoustic forcing at small wave num-
bers. The large peak shown in Figure 5(b) that drifts towards
small k in the compressible spectrum is consistent with this
interpretation.

E. Conclusions and Outlook

To summarize, we have investigated two-dimensional
quantum turbulence in Bose-Einstein condensates using
damped Gross-Pitaevskii theory. The range of stirring param-
eters we have explored exhibits a variety of vortex emission
regimes, with different temporal characteristics. A penetra-
ble obstacle (V0 . µ) moving at sufficient subsonic speeds
(0.3c . v . c) results in the smooth, periodic emission of vor-
tex dipoles. Maintaining a subsonic stirring velocity but in-
creasing the obstacle strength so that it becomes impenetrable
results in increasingly sporadic emission of vortices and the
production of like-charged vortex clusters. Increasing the stir-
ring speed into the supersonic regime results in the shedding
of dark solitons, which decay into chains of vortex dipoles.

Analysis of the incompressible kinetic energy spectra
shows that the cluster regime intermittently exhibits a Kol-
mogorovk−5/3 power law within the scale range 2π/40< kξ <
1 [Figure 3(b)]. The size of the clustered fraction is negatively
correlated with the deviation of the power-law exponent from
−5/3. This regime simultaneously exhibits two intermittent
power laws in the compressible energy spectrum with expo-
nents−3/2 and−7/2. In contrast, the oblique soliton regime
does not exhibit power-law behavior within the IR region of
the incompressible spectrum but instead exhibits strong and
temporally robust−3/2 and−7/2 power laws in the compress-
ible spectrum. The infrared power-law (−3/2) is consistent
with weak-wave turbulence [37], whereas the origin of the
−7/2 UV power law presents an intriguing avenue for future
work

The intermittency of the Kolmogorovk−5/3 law in the clus-
ter regime raises questions as to how one can experimentally
produce a state of vortex turbulence that is closer to being
fully developed than that which we have produced in this
work. Identifying forcing that leads to larger clustered frac-
tions would provide a way to further suppress dipole decay.
Additionally, the cyclic nature of the stirring mechanism ap-
pears to limit the range over which a power law can be ob-
served, and to disrupt clusters at large scales, introducing
intermittency. Identifying experimentally realizable stirring
schemes that avoid these issues remains a future challenge.
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