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Motivated by recent experiments measuring the spin transport in ultracold unitary atomic Fermi
gases [1, 2], we explore the theory of spin and heat transport in a three-dimensional spin-polarized
atomic Fermi gas. We develop estimates of spin and thermal diffusivities and discuss magnetocaloric
effects, namely the the spin Seebeck and spin Peltier effects. We estimate these transport coefficients
using a Boltzmann kinetic equation in the classical regime and present experimentally accessible
signatures of the spin Seebeck effect. We study an exactly solvable model that illustrates the role
of momentum-dependent scattering in the magnetocaloric effects.
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I. INTRODUCTION

The transport properties of condensed matter systems
are often measured by driving currents externally and
measuring the resulting voltages or temperature differ-
ences. In cold atomic gas clouds, on the other hand,
transport is more often measured by setting up transient
out-of-equilibrium initial conditions and measuring the
subsequent relaxation towards equilibrium [1–6]. In the
approximation that the cloud is isolated and has an in-
finite lifetime (no loss of atoms or exchange of energy
with any degrees of freedom outside of the gas cloud),
the conserved currents of interest include the energy cur-
rent and currents of each of the atomic species present.
In the absence of optical lattices or random potentials
that violate momentum conservation, one can also ask
about the transport of momentum (viscosity).

In this paper we consider the diffusive transport of
heat and of atoms. We mostly focus on the case of a
two-species Fermi gas with only inter-species contact in-
teractions, but start with a somewhat more general dis-
cussion here. The system may, in addition to diffusive
transport, also have underdamped or propagating sound
or other “collective” modes. A gas cloud in a smooth trap
will have such sound modes, with the longest-wavelength
sound modes being the often-discussed collective modes
of the cloud’s oscillations within the trap. Here we con-
sider a gas cloud in a smooth trap, with the cloud at
global mechanical equilibrium, so that any pressure gra-
dients in the cloud are sufficiently balanced by trapping
forces that no underdamped sound or collective modes
are excited. We also assume that the cloud is everywhere
near local thermodynamic equilibrium, so the local tem-
perature T (r) and local chemical potentials µi(r) can be
defined. However, the cloud may still have gradients in
the local temperature and in the local chemical potentials
of the various species of atoms. If the equilibrium equa-
tion of state of the system is known (for the unitary Fermi
gas, see [7, 8]) then measurements of the local densities
of each species allows these gradients of T and the µi’s to
be measured. Thus, for example, the local densities can
be used as local thermometers to allow a measurement
of the thermal diffusivity by an approach similar to that

used in [1, 2] to measure the spin diffusivity (but with
an initial temperature gradient instead of a composition
gradient).

The transport currents that we examine in this paper
are those that arise in linear response to these gradients.
In a trap, convection currents may also appear in linear
response, as temperature and/or composition gradients
may produce density inhomogeneities, and the “heavier”
regions of the gas cloud will sink towards the bottom
of the trap while the “lighter” regions rise. These con-
vection currents are damped by the viscosity. Convec-
tion will be strongest in wide clouds and should be much
weaker in high-aspect-ratio clouds with the gradients in
T and the µi’s oriented along the long axis of the cloud.
In most of this paper, for simplicity we consider a gas
in a spatially uniform potential, so such convection cur-
rents do not appear in linear response. Then mechanical
equilibrium is indeed a sufficient condition to have a con-
vectionless gas [9].

Quite generally, a temperature gradient drives a heat
current and a gradient of chemical potential difference
drives a composition (“spin”) current, consisting of op-
posing currents of the two (or more) atomic species. We
call these “direct” responses to a temperature gradient
and a gradient of chemical potential difference “primary
currents”. In addition to these “primary currents”, there
are the magnetocaloric currents, namely spin Seebeck
currents (spin currents induced by a temperature gradi-
ent) and spin Peltier currents (heat currents induced by
gradients of chemical potential difference). These mag-
netocaloric effects have been one of the central research
topics in the field of spintronics [10]. The spin Seebeck
effect [11, 12] and the spin Peltier effect [13] have already
been observed in condensed matter systems, while they
are yet to be detected in cold atomic clouds. In this pa-
per we discuss the origin and the physics of these effects
in a cold atomic Fermi gas, and estimate how large these
effects can be in realistic experiments.

Note that Ref. [14] discusses a rather different situa-
tion that they are also calling the “spin Seebeck effect”:
they consider an unpolarized gas with the two species at
different temperatures (thus not in local equilibrium) and
a gradient in this temperature difference. Also, Ref. [15]
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studies a different system, a “two terminal geometry”,
considering transport through a narrow constriction be-
tween two reservoirs held at different temperatures and
chemical potentials. For this constriction, they discuss
“off-diagonal” elements in the transport matrix which
they call effective Seebeck and Peltier effects.

This paper begins with a general discussion of the
two-species universal Fermi gas and an introduction of
transport coefficients, spin and thermal diffusivities, spin
Seebeck effect, and spin Peltier effect. Then we present
rough estimates of diffusivities and determine the signs
of the spin Seebeck and spin Peltier effects based on
physical arguments. In the following section, these qual-
itative descriptions are justified by approximate solu-
tions of the Boltzmann transport equation in the classical
regime. We then compute experimentally verifiable sig-
nals of the spin Seebeck effect. These results are tested
against an exactly solvable model, namely atoms with a
“Maxwellian” scattering cross section. We also use the
Kubo formula to derive various general relations among
the transport currents and coefficients.

The various effects discussed in this paper are probably
most accessible experimentally for the unitary Fermi gas
at temperatures of order the Fermi temperature, where
the diffusivities are at their smallest, so the diffusive re-
laxation towards equilibrium is slowest and most easily
studied.

We set Boltzmann’s constant kB = 1 but explicitly
keep Planck’s constant ~.

II. UNIVERSAL FERMI GAS

The universal Fermi gas is a two-species Fermi gas with
only contact (s-wave) inter-species interactions that is
realized to a very good approximation in recent experi-
ments with ultracold atoms [16, 17]. We consider such
a gas in three-dimensional space, with the two species
having equal mass m. There is no optical lattice, only a
possible smooth trap potential. The interaction is spec-
ified by the scattering length a, which can be set to any
value in experiments by tuning through a Feshbach res-
onance [18, 19]. For a = 0 this is the standard textbook
noninteracting Fermi gas, while for weakly attractive a
it is very close to the model used by Bardeen, Cooper
and Schrieffer (BCS) to explain superconductivity. In-
deed, this system shows paired-fermion superfluidity at
low temperatures. The limit of infinite |a| is the strongly-
interacting unitary Fermi gas.

As is standard, we call the majority species with num-
ber density n↑ “up”, and the minority species “down”,
n↓ ≤ n↑. The total number density n = n↑+n↓, together
with m and ~ set the characteristic length, time and en-
ergy scales. The scaled dimensionless properties of this
universal Fermi gas then depend on only three dimen-
sionless parameters, which can be chosen to be 1/(kFa),
T/TF and the polarization p = (n↑ − n↓)/n. We use a
convention that the Fermi wavenumber and temperature

kF and TF are defined by the total density, so that at high
polarization TF↓ � TF ≈ TF↑ and kF↓ � kF ≈ kF↑.
This universal Fermi gas has a variety of regimes of be-
havior : The polarization p can be low or zero so n↓ ∼= n↑
or it can be near one so n↓ � n↑. The temperature can
be higher, T > TF↑, or lower, T < TF↓, than both Fermi
temperatures or, for p > 0 it can be in between them,
TF↓ < T < TF↑. The scattering can be near unitarity so
|kFa| is of order one or more, or it can be far from unitar-
ity so |kFa| � 1. At high T it also matters whether |a| is
larger or smaller than the thermal de Broglie wavelength
λ ≡

√
2π~2/mT ∼ T−1/2. There are also important dif-

ferences between the a < 0 (BCS side of the Feshbach
resonance) and a > 0 (BEC side) regimes.

III. TRANSPORT

The conservation laws of this Fermi gas are: total en-
ergy (E), total momentum (Π), and the total number of
each of the species (N↑ and N↓). The viscosity measures
the transport of momentum, which we mostly do not con-
sider here. Thus we consider primarily the transport of
atoms and of heat. If there is a nonuniform pressure in
the system that is not balanced by a trapping potential,
the gas will accelerate and this will produce free motion
or propagating sound waves. Here we consider the dif-
fusive spin and heat transport in a gas with no trapping
potential and spatially uniform pressure P , so it is at
mechanical equilibrium. The gas is near local thermo-
dynamic equilibrium, but with possible weak gradients
in the local temperature and/or the spin polarization. A
smooth trap potential may be added via the local density
approximation (LDA).

In general, an inhomogeneity of the Fermi gas consists
of gradients in the local temperature and of the local den-
sities of the two atomic species. Mechanical equilibrium
imposes a constraint on these gradients and thus there
are only two independent linear combinations of the three
gradients. One way of describing the diffusive dynamics
is in terms of the atomic densities ni and the currents
ji of each species i =↑,↓, leaving the temperature and
the heat current implicit, since they are dictated by the
equilibrium equation of state, e.g., T (P, n↑, n↓). This de-
scription of the transport has the virtue that it is in terms
of what appears to be the most accessible local observ-
ables in experiment, namely the local densities of each
species. Since the system in the absence of a trapping
potential is Galilean-invariant, we have a certain amount
of flexibility in what inertial frame we use to specify the
currents. For most of this work, we consider the frame
where the center of mass of the whole cloud is at rest
and let the gas have long-wavelength temperature, den-
sity and/or composition modulations, but always with
a spatially uniform pressure. The diffusive currents are
related to the density gradients as(

j↑
j↓

)
= −

(
D↑↑ D↑↓
D↓↑ D↓↓

)(
∇n↑
∇n↓

)
. (1)
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The diffusion matrix in (1) has two eigenmodes. At
zero polarization, the symmetry between ↑ and ↓ implies
D↑↑ = D↓↓ and D↑↓ = D↓↑. Therefore one eigenmode
is odd under exchanging species, 1√

2
(1,−1); the current

in this odd mode carries only spin and no net density or
energy. The other eigenmode is the even mode, 1√

2
(1, 1);

the current in this even mode carries both net density
and energy, but no spin. Away from zero polarization,
when n↑ 6= n↓, we no longer have this symmetry between
species. The diffusive eigenmodes are then no longer
purely spin or purely not spin, instead they are mixtures,
thus producing the spin Seebeck and Peltier effects. The
eigenmode where the currents of the two species are in
opposite directions we will call the “spin” mode with dif-
fusivity Ds, while the other mode where they are parallel
we will call the “thermal” (or heat) mode with diffusivity
DT .

Another standard representation of the transport ma-
trix in terms of the heat current jheat and spin current
jspin is the following:(

jheat
jspin

)
= −

(
κ Pe
Se σs

)(
∇T

∇(µ↑ − µ↓)

)
, (2)

where κ is the thermal conductivity and σs is the spin
conductivity. Se and Pe are the spin Seebeck and Peltier
coefficients, respectively, and they are related by the
Onsager relation, Pe = TSe. This matrix explicitly
shows the direct responses (diagonal elements) and mag-
netocaloric effects (off-diagonal elements), and is in the
form that is given by the Kubo formula, as we discuss
below.

The currents in (2) must be defined properly so that
they are the transport currents, namely the currents of
heat and spin relative to the average local motion of the
gas. Let the local current density of atoms be jn = j↑+j↓.
These atoms carry the average heat, sT , where s is the
average entropy per particle, and the average spin polar-
ization p. Therefore the local heat and spin transport
currents are

jheat = jε − µ↑j↑ − µ↓j↓ − sT jn (3)

jspin =
1

2

(
j↑ − j↓ −

(n↑ − n↓)
n

jn

)
=
n↓
n

j↑ −
n↑
n

j↓ , (4)

where jε is the local energy current. Since the above cur-
rents measure only the transport relative to the average
motion of the gas, they are reference frame independent.
For more details of definitions of currents, see e.g. Ref
[20].

If the full equation of state of the system is known,
then measurements of the pressure and the local densi-
ties can be converted to local temperatures and chemical
potentials. But the local density n and polarization p
are directly observable without requiring knowledge of
the equation of state, so yet another convenient form of
the transport equations is

(
jheat
jspin

)
= −

(
κ′ Pe′

Se′ Ds

)(
∇T
n∇p

)
. (5)

At p = 0, we have κ′ = κ and Ds = Ds, but when p 6= 0
these quantities in general differ due to the mixing be-
tween spin and heat transport. It is possible that Se′

is the most directly accessible version of the spin See-
beck coefficient: if one can set up an initial condition at
mechanical equilibrium and local thermodynamic equi-
librium with a temperature gradient but no polarization
gradient and then measure the resulting spin current, this
is a measurement of Se′ and does not require knowledge
of the equation of state.

Note that the three representations, Eq. (1), Eq. (2)
and Eq. (5) are related by the equation of state, the
mechanical equilibrium condition, and definitions of spin
and heat currents. Hence, they are equivalent.

IV. DIFFUSIVITIES

Let’s first present rough “power-counting” estimates
of the spin and thermal diffusivities, Ds and DT , respec-
tively. At the level of power-counting the differences be-
tween the various possible definitions of these diffusivities
are small and are ignored here. Previous work [1, 21] on
the unpolarized gas (p = 0) shows that Ds for T > TF

is the larger of ~
m ( T

TF
)3/2 and ~

mk2F a
2

√
T
TF

. In the re-

cent experiment, which was performed at unitarity [1],
this high-T behavior is observed, with significant devi-
ations apparently beginning between T = 2TF and TF
as TF is approached from above. Staying in this high-T
regime, as we move to high polarization (p near 1) at a
given n and T , the scattering time of species i is roughly
τi ∼ 1

njσvr
where i 6= j and vr = |v↑ − v↓| and σ is the

s−wave scattering cross section (see Eq. (12)) evaluated
at a typical value of momentum. Thus, the scattering
time of the down atoms τ↓ decreases by only a factor of
two due to the increase of the density n↑ of the up atoms
that they scatter from. The up atom scattering time τ↑,
on the other hand, increases by a factor of n↑/n↓ as the
down atoms that they scatter from become dilute. At
high polarization, the spin current consists of the down
atoms moving with respect to the up atoms at typical
speed v↓ ∼

√
T/m, so Ds ∼ v2

↓τ↓ is not strongly polar-
ization dependent for T > TF↓; the experimental results
[1, 2] are consistent with this. The heat, on the other
hand, is mostly carried by the up atoms at high polar-
ization, resulting in DT ∼ Dsn↑/n↓, a relation between
the two diffusivities that appears to remain true at high
polarization for all T away from the superfluid phases.
At p = 0 and high T the two diffusivities are compa-
rable, but DT remains larger than Ds because a single
s-wave scattering event completely randomizes the total
spin current carried by the two atoms, while the compo-
nent of the heat current carried by their center of mass
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is preserved. Thus it appears that the heat mode always
diffuses faster than the spin mode.

Moving towards lower T , let’s next pause at T = TF↑,

noting that here v↑ ∼ v↓ ∼
√
T/m, and τ↓ is the larger

of ~
T and ~

Tk2F a
2 . For the polarized gas τ↑ ∼ τ↓n↑/n↓.

We next (still just power-counting) look at the polar-
ized gas in the intermediate temperature regime TF↓ <
T < TF↑ where the majority atoms are degenerate

(v↑ ∼
√
TF↑/m), while the minority atoms are not

(v↓ ∼
√
T/m). Some changes from the high-T regime

are: only up atoms with energy within ∼ T of TF↑ are
involved in the scattering and all but a fraction T/TF↑
of the final states of the scattering are Pauli-blocked due
to the degeneracy of the up atoms. This increases τ↓
by a factor of (TF↑/T )2, and τ↑ by a factor of TF↑/T ,
compared to their values at T = TF↑. Thus, τ↓ is the

larger of ~
TF↑

(
TF↑
T

)2

and ~
TF↑k2F↑a

2

(
TF↑
T

)2

. As a result,

Ds ∼ v2
↓τ↓ is the larger of

~TF↑
mT and

~TF↑
mTk2F↑a

2 , while DT is

again larger than Ds by a factor n↑/n↓. This estimate of
Ds is consistent with a previous quantitative calculation
[22, 23]. Note that the temperature dependence of Ds

crosses over from a decreasing function of T at low T to
an increasing function at high T . The recent measure-
ments [2] of the spin drag in a polarized unitary gas show
this crossover occurring at roughly T = 0.4TF↑. On the
BEC side of the Feshbach resonance, the minority atoms
bind in to bosonic Feshbach molecules at low enough T .
But as long as these molecules remain nondegenerate and
thus not superfluid, the above estimates of the diffusivi-
ties should hold.

For T < TF↓, the minority atoms become degenerate.
This leads to superfluidity on the BEC side of the Fesh-
bach resonance as well as at low polarization near unitar-
ity. But there are regimes on the BCS side of the reso-
nance as well as near unitarity at high polarization where
the minority atoms (near unitarity strongly “dressed” as
polarons) form a degenerate Fermi gas. Here the impor-
tant change from the intermediate temperature regime
at the level of “power-counting” is that only minority
atoms with energy within ∼ T of TF↓ are involved in
the scattering and they have momentum kF↓ instead of
a thermal momentum. This increases the diffusivities by
a factor of TF↓/T , so the spin diffusivity in these degen-

erate Fermi liquid regimes is the larger of
~TF↑TF↓
mT 2 and

~TF↑TF↓
mT 2k2F↑a

2 . We expect that DT is still greater than Ds by

a factor of n↑/n↓ but this question should be examined
more carefully within Fermi liquid theory.

At low temperature, the polarized Fermi liquid may be-
come a p-wave superfluid, with pairing within one species
mediated by the attraction to the other species [24]. Or
it may have a FFLO phase with Cooper pairs of nonzero
total momentum [25–27]. In the superfluid phases, the
thermal diffusivity should diverge to infinity, as heat is
carried ballistically by second sound modes. The spin
diffusivity presumably remains finite in the superfluid

phases, although, as we discuss below, the spin Seebeck
effect appears to generally be divergent in a polarized
superfluid.

V. SPIN SEEBECK AND SPIN PELTIER
EFFECTS

More challenging to estimate than these spin and ther-
mal diffusivities are the effects that mix spin and heat
transport, namely the spin Seebeck and the spin Peltier
effects. Here we present “simple” arguments for the signs
of these effects in two regimes: (1) far away from uni-
tarity for all temperature ranges, and (2) at unitarity
in the classical regime. Here we always consider a spin-
polarized gas, since these “magnetocaloric” effects vanish
by symmetry in the case of an unpolarized gas where the
two species also have equal mass.

(1) Well away from unitarity (|kFa| �
min{1,

√
TF /T}), the scattering cross section is es-

sentially a2 and independent of momentum for all
temperatures, since the interaction is weak and the
atoms are not thermally excited to λ < |a|. Generally,
the scattering rate is proportional to the cross section
× relative speed. Thus, in this (low energy) regime, the
scattering rate is ∼ a2|v↑ − v↓|. This implies minority
atoms will scatter more frequently with the majority
atoms of higher energy than majority atoms of lower
energy since higher-energy majority atoms have higher
relative speed. Consequently, the direction of the mi-
nority current is along the flow of higher-energy (“hot”)
majority atoms and thus parallel to the heat current.
For a uniformly spin-polarized gas with a temperature
gradient, where the spin Seebeck effect occurs, the
primary current is the heat current transporting “hot”
majority atoms from the hot region to the cold region
and transporting “cold” majority atoms from the cold
region to the hot region. The fact that the minority
current is aligned with that of the “hot” majority atoms
means the direction of the net spin current (spin Seebeck
current) is opposite from that of the heat current. Thus,
the initially cold region becomes less polarized due to
minority atoms transported by the spin Seebeck current.

For a polarized gas with a polarization gradient but
zero temperature gradient, where the spin Peltier effect
occurs, the primary current is the spin current which
transports minority atoms from the less-polarized region
to the more-polarized region. Since again these minor-
ity atoms scatter more often with “hot” majority atoms,
the resulting heat current is towards the more-polarized
region, resulting in a spin Peltier (heat) current whose
direction is opposite to the primary spin current. In sum-
mary, for a gas far from unitarity, the primary currents
and the magnetocaloric currents are in opposite direc-
tions. In other words, the off-diagonal elements in Eq.
(5) are negative while the diagonal elements are positive.

(2) At high temperatures (T � TF↑) and near uni-
tarity (|kFa| � kFλ > 1), the s-wave scattering cross



5

FIG. 1: (Color online) Illustration of the spin Seebeck effect.
(a) Far away from unitarity, the scattering rate is proportional
to the relative speed. Thus, “hot” majority (↑) atoms (top)
collide more often with minority (↓) atoms than do “cold”
majority atoms (bottom), giving the spin Seebeck current and
the heat current opposite directions. (b) At unitarity, the
scattering rate is inversely proportional to the relative speed.
Therefore, the direction of the spin Seebeck current is reversed
relative to (a).

section is 1/(kr/2)2 and thus is momentum-dependent,
where kr = |k↑ − k↓| is the relative momentum. There-
fore, the scattering rate is roughly ∼ 1

k2r
× vr ∼ 1

kr
. As

a result, now minority atoms scatter more often with
“cold” majority atoms. Since this is exactly the oppo-
site from the case of far away from unitarity, the spin
Seebeck and spin Peltier currents are reversed relative to
the above discussion in (1). Therefore, at high tempera-
ture and unitarity, the primary currents and the magne-
tocaloric currents are in the same directions, giving Se′ in
Eq. (5) positive sign. As we will see in the next section,
the spin Peltier coefficient Pe′ in Eq. (5) is negative for

low polarization and becomes positive for high polariza-
tion. This sign change in Pe′ comes from the definition
of currents and choice of driving forces and this will be
clarified in the section VII where we discuss the Kubo
approach. Directions of the spin Seebeck effect in both
limiting regimes are illustrated in figure 1.

At low temperatures and unitarity, it is not straight-
forward to apply the above argument to predict the di-
rection of spin Seebeck and/or spin Peltier currents since
the many body effects may significantly modify the scat-
tering cross section [28, 29], which begins to depend on
the center of mass momentum as well as the relative mo-
mentum. There is, however, a different line of argument
that indicates that the sign of the spin Seebeck effect near
unitarity remains the same as the temperature is lowered.
Consider low enough temperatures and polarization less
than the Chandrasekhar-Clogston limit [30, 31], in the
superfluid phase [32, 33]. When there is a temperature
gradient in the system, heat flows “ballistically” from the
hot region to the cold region by flow of the normal fluid
with respect to the superfluid (in the usual two-fluid de-
scription of the superfluid phase). In the reference frame
where the total particle density current vanishes (center
of mass frame), the superfluid flows in the opposite di-
rection to counterbalance the mass current of the normal
fluid. Since the s-wave superfluid consists of equal num-
bers of majority and minority atoms, both the spin cur-
rent and the heat current are carried only by the normal
fluid. As a result, the spin Seebeck current and the heat
current are in the same directions at low temperature in
and, presumably, near the superfluid phase. Therefore,
we expect the sign of the spin Seebeck effect to remain the
same for all temperatures at unitarity. Both the thermal
conductivity and the spin Seebeck coefficient will diverge
at the transition to the superfluid phase.

As another approach to these questions, there is an
interesting artificial interaction, namely the Maxwellian
interaction where the scattering cross section is pro-
portional to 1/vr and the Boltzmann equation can be
solved exactly in the high temperature limit. Since
the scattering rate does not depend on relative veloc-
ity ((1/vr) × vr = constant), there are no spin Seebeck
or spin Peltier currents in this case. Then, if we perturb
the scattering cross section around the Maxwellian case,
putting in an additional relative-velocity dependence to
the scattering rate “by hand”, we can perturbatively cal-
culate the spin Seebeck and spin Peltier currents and
manipulate the direction of these currents by changing
the sign of the perturbation. This allows us to explicitly
show how the magnetocaloric currents are generated from
a relative-velocity-dependent cross section. This will be
discussed in the following section in detail.
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VI. QUANTITATIVE APPROACH 1 - THE
BOLTZMANN EQUATION

A. Linearized Boltzmann equation and its scaling

In the limit of high temperature T � TF , the gas
is effectively classical, and its dynamics obey the Boltz-
mann equation. In the absence of external forces but
with gradients in local temperature and local densities,
the steady-state Boltzmann equation for species i (i =↑
or ↓) is the following (i 6= j):

~
m

ki · ∇fi

=

∫
d3kj
(2π)3

dσ
~|k↑ − k↓|

m
(f(k′↑)f(k′↓)− f(k↑)f(k↓)),

(6)

where f(ki) is the momentum distribution of species i,
and the velocity is vi = ~ki/m. k′↑ and k′↓ are mo-
menta after collision and satisfy the energy momentum
conservation. Working near equilibrium, we linearize the
Boltzmann equation by introducing a small deviation ψi:

fi = f0
i (1 + ψi), (7)

where f0
i is the equilibrium distribution. In this high

temperature regime, the equilibrium distribution is the
Boltzmann distribution, f0

i (k) = niλ
3 exp(−E(k)/T )

and E(k) = ~2k2

2m . Since the most relevant length scale in
the classical regime is the thermal de Broglie wavelength
λ, it is convenient to scale the wave vector k with λ; k

= q/λ. Then, E(q)/T = q2

4π .
Let’s impose the mechanical equilibrium condition. In

this classical limit, it is enough to use the ideal gas pres-
sure at equilibrium; P = nT = (n↑ + n↓)T . From the
spatially uniform pressure condition we can relate the
density gradients and the temperature gradient via

∇n
n

= −∇T
T
, (8)

to linear order in the gradients. This relation enables
us to express the currents in terms of any two linearly-
independent “driving” terms such as (∇n↑,∇n↓),
(∇T, n∇p), (∇T,∇(µ↑ − µ↓)) or any other convenient
combinations. It is convenient to work with (∇n↑, ∇n↓)
in intermediate stages of the calculation and then trans-
form it to the desired combination of driving forces using
the equilibrium equation of state. Then the λ scaled lin-
earized Boltzmann equations we need to solve become

1

ni
∇ni · qi −

1

n

(
q2
i

4π
− 3

2

)
∇n · qi

= nj

∫
d3qj
(2π)3

dσe−q
2
j/4π(ψ′↑ + ψ′↓ − ψ↑ − ψ↓)|q↑ − q↓| ,

(9)

with i 6= j. ψ′i takes q′i as an argument.

We follow the standard definitions of the particle and
energy currents of each species [34],

ji =

∫
d3ki
(2π)3

fivi = ni

∫
d3qi
(2π)3

e−q
2
i /4πψi

~
m

qi
λ

(10)

jεi =

∫
d3ki
(2π)3

fiviEi = ni
T

4π

∫
d3qi
(2π)3

e−q
2
i /4πψi

~
m

q2
i qi
λ

.

(11)

Because of Galilean invariance, we need to specify an
inertial frame. Except when specified otherwise, we work
in the frame where the local particle current is zero: jn =
0.

B. Approximate Solution

The s-wave scattering cross section that captures most
physics of a short-range interaction is

dσ

dΩ
=

a2

1 +
(
kra
2

)2 = λ2 (a/λ)2

1 +
(
qra
2λ

)2 , (12)

where we scaled the scattering length a with λ. An ex-
act solution of the Boltzmann equation for such a cross
section is not known and thus we need to resort to ap-
proximation methods. One of the standard ways to find
an approximate solution of a linearized Boltzmann equa-
tion is the moment expansion method (for example, see
[35]). Considering all symmetries and assuming the true
solution is analytic near small q, we take the following
ansatz for ψi (i =↑, ↓):

ψi = −λ
∑
j=↑,↓

L∑
`=0

C`ijq
2`
i

∇nj · qi
nj

. (13)

We only consider the case where ∇n↑ and ∇n↓ are both
parallel to the z axis. We need to determine the dimen-
sionless coefficients {C`ij}.

The procedure to obtain an approximate solution of
the Boltzmann equation is the following: First, insert the
above ansatz into the right hand side of Eq. (9). Then
multiply both sides of Eq. (9) by q2`

i qiz
1

(2π)3 exp[−q2
i /4π]

(` = 0, 1, 2, ...L) and integrate out all momenta. Match-
ing coefficients of density gradients gives 4(L + 1) lin-
ear equations for the {C`ij}, all of which, however, are
not linearly independent due to Galilean invariance. We
need to fix the reference frame to uniquely determine a
solution. Once we choose an appropriate reference frame
(usually j↑ + j↓ = 0), we have 4(L+ 1) linearly indepen-
dent equations for the {C`ij}. Determining the {C`ij},
we have an approximate solution to the Boltzmann equa-
tion, i.e. an approximate momentum distribution from
which we can calculate all currents of interest. Here we
present results of two limiting cases, far away from uni-
tarity ( dσdΩ = a2) and at unitarity ( dσdΩ = 4

k2r
), which al-

low an analytic solution (of this approximation) without
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special functions. These correspond to the two limits
λ/|a| � 1 and λ/|a| � 1, respectively. For a general
scattering length a, it is still possible to find a closed
form expression in terms of exponential integrals and in-
complete Gamma functions whose arguments depend on
λ/|a|.

Obtaining C`ij from a straightforward calculation in
the j↑ + j↓ = 0 frame, we can express the heat current
and spin current in terms of ∇n↑ and ∇n↓. Here we
choose to express final results in the format of Eq. (5)
since we want to study the spin Seebeck coefficient Se′ in
detail, which could be the most directly accessible signa-
ture of the spin Seebeck effect in experiments. Therefore,
we transform these two gradients to ∇T and n∇p, us-
ing the equilibrium equation of state and the mechanical
equilibrium condition. The transformation matrix is(

∇n↑
∇n↓

)
=

(
−Tn −Tn
2n↓
n − 2n↑

n

)−1(∇T
n∇p

)
. (14)

Since the left hand side of Eq. (9) is a third-order poly-
nomial in q, the simplest ansatz is with L = 1. In princi-
ple, we can go up to any order in L we want, but an L ≥ 2
ansatz complicates the computation, while the simplest
ansatz already exhibits nontrivial results. Furthermore,
we find that the change in Se′ on moving from the L = 1
to the L = 2 approximation is quite small: about a 1%
change near unitarity and in the value of λ/|a| at the zero
crossing, growing to near 7% far from unitarity. There-
fore, here we only present results of L = 1.

We present our results in the conventional format (without λ scaling): Near unitarity (|a| � λ),(
jheat
jspin

)
= −45π3/2

608
√

2

(
~
m

(
T

TF

)3/2
)(

κ′u
1
2

(n↑−n↓)Tn
n↑n↓

− 39
10T ln

(
n↑
n↓

)
(n↑−n↓)

T
39
10

)(
∇T
n∇p

)
, (15)

where κ′u (proportional to the thermal conductivity at unitarity) is

κ′u =
5

16
n

(
(73n2

↑ + 82n↑n↓ + 73n2
↓)

n↑n↓

)
− (n↑ − n↓) ln

(
n↑
n↓

)
. (16)

Far away from unitarity (|a| � λ),(
jheat
jspin

)
= −15π3/2

224
√

2

(
~

m(kFa)2

√
T

TF

)(
κ′a − 1

2
(n↑−n↓)Tn

n↑n↓
− 43

10T ln
(
n↑
n↓

)
− (n↑−n↓)

T
43
10

)(
∇T
n∇p

)
, (17)

where κ′a (proportional to the thermal conductivity far away from unitarity) is

κ′a =
5

8
n

(
(29n2

↑ + 26n↑n↓ + 29n2
↓)

n↑n↓

)
+ (n↑ − n↓) ln

(
n↑
n↓

)
. (18)

The above matrices clearly exhibit the existence of the
spin Seebeck and spin Peltier effects (non-vanishing off
diagonal terms) only for nonzero polarization. We will
mostly focus now on the spin Seebeck coefficient Se′,
which gives the spin current due to a temperature gradi-
ent in the absence of a spin polarization gradient.

As argued in the previous section, the spin See-
beck coefficient changes sign as a function of interaction
strength. Near unitarity (Eq. 15), it is positive so the
spin Seebeck current and the heat current are in the same
direction. Far away from unitarity (Eq. 17), it is nega-
tive so the spin Seebeck current and the heat current are
in the opposite direction.

Next let’s consider the polarization dependence of the
transport coefficients. The heat current and the temper-
ature gradient are even under spin index exchange while
the spin current and the polarization gradient are odd.
Therefore, thermal conductivity and spin diffusivity are
even functions of polarization while magnetocaloric ef-
fects are odd functions of polarization. The above matri-
ces satisfy these polarization parity constraints and the
form of the polarization dependence of the transport co-
efficients is the same in both limits of large and small
λ/|a|. In fact, we can show that the polarization de-
pendence (thus n↑ and n↓ dependence) of the transport
coefficients maintains this form for all values of λ/|a| and
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FIG. 2: Normalized Seebeck coefficient Se′ as a function of
λ/|a| in the classical regime. The normalization is by a fac-

tor of 15

608
√
2

(
~
m

1
Tλ3

1+4π(a/λ)2

(a/λ)2

)
(n↑−n↓)

n
. This choice of nor-

malization, which is inversely proportional to a typical value
of scattering cross section with scaled scattering length a/λ,
gives finite values at both limits and gives the Seebeck coeffi-
cient 1 at unitarity (Eq. (15)). We can see that Se′ changes
sign near λ/|a| ' 3.62. Since we factored out all explicit tem-
perature and polarization dependence in the normalization
choice and scaled the scattering length, this plot remains the
same for all temperature and polarization ranges at this order
of approximation (L = 1).

to all orders of approximation. The proof is given in Ap-
pendix A. Here we study the Seebeck coefficient Se′ in
detail, which is our prime interest.

Although it is conventional to scale the scattering
length a with kF (as we did in the above matrices), it
is easier to see the structure of the Seebeck coefficient
in terms of λ/|a| in classical regime. Once we obtain an
approximate solution of the Boltzmann equation with a
general λ/|a| and L = 1, we can explicitly show that

Se′ =
~
m

n↑ − n↓
nλ3

1

T
h1(λ/|a|) , (19)

where h1(x) is a dimensionless function that contains
Ei(x), the exponential integral, and diverges as λ/|a| →
∞ (see Eq. (17)). Since it contains no explicit temper-
ature or polarization dependence, h1(x) is independent
of polarization and temperature at this order of approx-
imation (L = 1). Therefore, once we scale the scatter-
ing length by λ and factor out dimensionful parameters
and polarization, the dependence of Se′ on the scatter-
ing length is determined by h1(x) and the value of λ/|a|
at which Se′ crosses zero is solely determined by the
equation h1(x) = 0, which is independent of tempera-
ture and polarization. In the L = 1 approximation, the
zero-crossing value is λ/|a| ' 3.62. Figure 2 is a plot of
the normalized Se′ as a function of λ/|a|. In the L = 2
approximation, we find that the scaling function h1(x)
slightly changes to h2(x) and the zero-crossing point re-
mains at λ/|a| ' 3.62. In Appendix A, we show that the

structure of Eq. (19) (and other transport coefficients in
a similar manner) remains to all orders of approximation.
Therefore, we may conclude that in this classical regime
the Seebeck coefficient is linearly proportional to the po-
larization p and inversely proportional to Tλ3, once we
scale the scattering length by λ.

Note that Eqs. (15) and (17) do not explicitly satisfy
the Onsager relation and the spin Peltier coefficient Pe′

is still negative for low polarization even near unitarity.
These come from the definition of diffusive currents and
choice of representation and will be discussed in detail
in the next section in terms of the Kubo formula. For
now, we will focus on the spin Seebeck coefficient Se′

which appears to be the most promising candidate of the
magnetocaloric effects to be detected in experiments.

From the Einstein relation, we obtain the thermal dif-
fusivity DT after dividing κ′u and κ′a by CP = 5n/2,
the heat capacity per volume at fixed pressure and po-
larization. These results confirm the “power-counting”
estimates of diffusivities: In case of an unpolarized gas

(n↑ = n↓), Ds at unitarity is ∼= 1.1 ~
m

(
T
TF

)3/2

, which

is consistent with previous work [1, 21]. Also, the ther-
mal diffusivity does satisfy the inequality, DT > Ds at
zero polarization. Furthermore, for a highly polarized

gas (n↑ � n↓), DT ∼ n2

n↑n↓
Ds ∼ n↑

n↓
Ds, which is also as

expected from the “power-counting” estimates.

C. Estimate of the Spin Seebeck Effect

The spin Seebeck effect seems to be more accessible
to experiment than the spin Peltier effect, since the mea-
surement of spin currents has already been done [1, 2] and
seems more straightforward than measuring heat cur-
rents. Also, the spin mode diffuses slower than the heat
mode, so the change in spin polarization produced by the
spin Seebeck effect will relax slowly, enhancing its de-
tectability. An initially fully equilibrated spin-polarized
gas could be heated at one end, producing a tempera-
ture gradient, and then the resulting spin current could
be measured if it is large enough.

Let’s make quantitative estimates of signatures of the
spin Seebeck effect that are relevant to such a proposed
experiment. We will make our estimates for a gas in a
uniform potential, but the results should be roughly cor-
rect for a gas cloud in a trap if one compares points at
opposite ends of the cloud that are at the same potential
so will have the same local densities and polarization at
equilibrium. First, apply a small, long wavelength tem-
perature inhomogeneity along the z axis. In mechanical
equilibrium, nonuniform temperature implies nonuniform
total density (by Eq. (8)), thus temperature modulation
implies density modulation. This enables us to write the
initial total density as

n(t = 0, z) = n0 + δn0 coswz, (20)

where w (= π/L) is the wavenumber of the modulation,
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FIG. 3: (Color online) δni(t, 0) normalized by initial deviation
δni0 as a function of time near unitarity. (a) Majority density
deviation relaxes monotonically for any polarization. (b) Mi-
nority density deviation shows nonmonotonic relaxation for
p > 0 due to the spin Seebeck effect. Here we assume 6Li
atoms with T/TF = 4 and the longitudinal length of the trap
L = 200µm to set the time scale.

L is the length of the system over which the full temper-
ature difference is applied, and δn0 is the small deviation
of total density from the mean value n0 due to this tem-
perature difference (at uniform pressure). Eq. (8) implies
that if we initially locally heat z = L relative to z = 0,
then this location initially has lower density because of
thermal expansion. From the initial condition of uniform
polarization, the density of each spin component at t = 0
is

ni(t = 0, z) = ni0 + δni0 coswz (21)

δni0 =
ni0
n0

δn0. (22)

Then, we write a diffusion matrix in the form of Eq.(1),
assuming that there are only these diffusive currents (no
initial other motion of the gas).

As mentioned above in Section III, the diffusion matrix
has two eigenmodes, the spin mode with the eigenvalue
Ds and the thermal mode with the eigenvalue DT . Ap-
plying the continuity equation to the diffusion matrix, we
obtain a coupled set of heat equations with appropriate

FIG. 4: (Color online) δni(t, 0) normalized by initial deviation
δni0 as a function of time far away from unitarity. (a) Ma-
jority density deviation relaxes nonmonotonically for p > 0
due to the spin Seebeck effect. Inset figure magnifies the non-
monotonic part of majority density deviations which are very
weak compared to the minority density deviations at unitarity
shown in Fig. 3. (b) Minority density deviation relaxes mono-
tonically for any polarization. Here we assume 6Li atoms with
T/TF = 4 and λ/|a| = 4 and the longitudinal length of the
trap L = 200µm to set the time scale.

initial conditions, which can be solved immediately for
t > 0 in terms of the two eigenmodes. The solution of
the heat equation gives us the space-time dependence of
density of each species:(

n↑(t, z)
n↓(t, z)

)
=

(
n↑0
n↓0

)
+ αe−Dsw

2tδn↓0

(
γ
1

)
coswz

+ βe−DTw
2tδn↓0

(
ζ
1

)
coswz , (23)

where α, β, γ, and ζ are determined by initial conditions.
See Appendix B for details. Since DT > Ds > 0, the two
diffusive modes relax to global equilibrium at different
rates. At nonzero polarization, |γ|, |ζ| 6= 1. From these
two properties, the density deviations of each species
have different time evolution from one another: the den-
sity deviation of one species relaxes nonmonotonically
while the density of the other species relaxes monoton-
ically. This nonmonotonic relaxation of density devia-
tion is a qualitative signature of the spin Seebeck effect.
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Near unitarity, we already know that the heat current
and the spin current due to a temperature gradient are
in the same direction. Therefore, the initially colder re-
gion (z < π/2w) becomes more polarized due to the spin
Seebeck current. It turns out that the minority density
deviation changes sign as it relaxes towards equilibrium.
Far from unitarity, on the other hand, the initially cold
region becomes less polarized, since the direction of the
spin current is reversed, resulting in nonmonotonic relax-
ation of the majority density deviation. Figures 3 and 4
are plots of relaxation of the density deviations of each
species as a function of time for the two cases of near
unitarity and of far away from unitarity.

Another consequence of the spin Seebeck effect is the
change in polarization. As argued, the sign of the local
polarization change depends on the direction of the spin
Seebeck current. Figure 5 shows the (normalized) devia-
tion of polarization from the average value as a function
of time at z = 0. As expected, deviation is positive near
unitarity and is negative far away from unitarity.

Perhaps one of the most easily accessible quantities in
experiment is the density deviation of the species that
shows nonmonotonic relaxation vs. time. A dimension-

less measure of the extremum deviation is
∣∣∣ δni(ti,ext,0)

δni0

∣∣∣,
where i =↑ away from unitarity and i =↓ near unitarity
and ti,ext is the time when density deviation of species
i is its extremum of opposite sign from the initial con-
dition. Figure 6 shows the dimensionless measure of the
extremum density deviation as a function of polarization.
Near unitarity (solid line), it is a monotonically increas-
ing function of polarization for p < 1 (at p = 1, n↓ is zero
so the deviation of n↓ is undefined). Around p ≈ 0.8, the
strength of the spin Seebeck effect by this measure is
about 5 %. Far from unitarity (dashed line), this signal
is much weaker. This is expected since the spin Seebeck
effect is a consequence of interaction and does not exist
in the non-interacting gas. Thus, the spin Seebeck effect
should be strongest near unitarity. Note that in both
limits, the spin Seebeck effect disappears when the gas is
unpolarized, p = 0.

The spin Seebeck effect is a small effect. In the regimes
where we have been able to estimate it and using the mea-
sures we have been able to devise, it is less than a 10%
effect. However, it is worth emphasizing that these com-
putations are done in the classical regime, so the spin See-
beck effect does not demand extremely low temperatures
to detect it. We expect it to be most readily detected
at temperatures of order TF , where the diffusivities are
minimized so the resulting time scales are longest. In
addition, the procedure to detect it discussed in this sec-
tion does not require knowledge of the system’s equation
of state. Importantly, we propose a type of experiment
where the the spin Seebeck effect is a qualitative effect,
namely a nonmonotonicity of the system’s relaxation to
global equilibrium.

FIG. 5: (Color online)Normalized polarization deviation as
a function of time for three global polarization values, p =
0.9, 0.6, and 0.3. Near unitarity (solid lines) the polarization
deviation is positive while far away from unitarity (dashed
lines) it is negative. We found that the polarization deviation
is the largest near p = 0.6 in both limits. Same physical
parameters as Figures 3 and 4 were used to fix the time scale.
The polarization deviation δp(t, 0) at the initially cold end of
the cloud is normalized by the initial total density deviation,
δn0/n0.

FIG. 6: Extremum density deviation normalized by initial

deviation,
∣∣∣ δni(ti,ext,0)

δni0

∣∣∣ as a function of polarization. Near

unitarity (solid line), i =↓; far from unitarity (dashed line),
i =↑. ti,ext is the time when the density deviation of species
i reaches its extremum. Far from unitarity (dashed line), the
normalized extremum density deviation vanishes in the high
polarization limit since there are no minority atoms to scatter
from.

D. Exactly Solvable Model

So far, our approach was based on an approximation
method. Therefore, it is worthwhile to compare the
main findings to a different approach, namely perturbing
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around the Maxwellian model, where the scattering cross
section is inversely proportional of the relative speed [9].
The linearized Boltzmann equation can be exactly solved
for the classical Maxwellian model.

Let’s recall the argument from which we determined
directions of the magnetocaloric effects. Since the scat-
tering rate is proportional to the product of the cross
section and relative speed, the scattering rate is inde-
pendent of momentum for the Maxwellian interaction.
Therefore, we expect that Se′ = 0 for any polarization.
It is straightforward to exactly solve the Boltzmann equa-
tion using the ansatz Eq. (13) with L = 1 to confirm this.

The next step is to perturb the Maxwellian scattering
cross section to generate magnetocaloric currents. One
simple way to perturb the cross section is to add a small
term which depends linearly on relative momentum to
the original cross section:

dσ

dΩ
= S0

(
1

kr
+ εkr

)
, (24)

where S0 is a constant of the dimension of length and
ε is a small expansion parameter. For a positive ε, the
momentum dependence of the scattering rate is similar
to the case away from unitarity, higher scattering rate for
higher relative momentum. Thus we expect the resulting
spin Seebeck current is in the opposite direction from the
primary heat current. For a negative ε, the momentum
dependence resembles the case near unitarity and there-
fore we expect the resulting spin Seebeck current is in
the same direction as the primary heat current.

To find the solution of the Boltzmann equation up to
linear order in ε, we need L = 2 in the ansatz of Eq.
(13). After a straightforward calculation, we obtain the
following results:

(
jheat
jspin

)
= −D0

(
κ′M −πε(n↑−n↓)Tn

2n↑n↓λ2 − T
10

(
1− 20πε

λ2

)
ln
(
n↑
n↓

)
−πε(n↑−n↓)

λ2T
1
10

(
1− 20πε

λ2

)
)(
∇T
n∇p

)
, (25)

where κ′M (proportional to the thermal conductivity of the Maxwellian Model) is

κ′M =
1

2
n

(
(n2
↑ + n↑n↓ + n2

↓)

n↑n↓
− 3πε

λ2

(9n2
↑ + 10n↑n↓ + 9n2

↓)

n↑n↓

)
+
πε(n↑ − n↓)

λ2
ln

(
n↑
n↓

)
. (26)

D0 is 5~
mS0nλ2 , with units of a diffusivity.

We immediately see that all off-diagonal elements van-
ish for zero polarization. When ε = 0, we see that Se′ = 0
and thus we conclude that the spin Seebeck effect is a
consequence of momentum dependence of the scattering
rate. The sign of the spin Seebeck current at nonzero ε is
as expected. For Pe′, we again see the logarithmic term
which will be discussed in the following section. Perturb-
ing the Maxwellian scattering cross section re-confirms
the sign argument for the spin Seebeck effect that we
presented in the previous Section.

VII. STRUCTURE OF TRANSPORT
COEFFICIENTS - KUBO FORMULA

The Kubo formula gives a formally exact expression
for the transport coefficients in the linear response regime
(see e.g. [36, 37]). For irreversible processes in the lin-
ear response regime, what the the Kubo formula gives
are the transport coefficients for the dissipative forces
and currents associated with the entropy production. At
mechanical equilibrium for our two-species gas, the dis-
sipative forces are ∇T and ∇(µ↑ − µ↓) [20], thus what

we obtain from the Kubo formula is the diffusion matrix
in the form of Eq. (2), whose off-diagonal terms always
satisfy the Onsager relation. Thus, the diffusion matrix
in the form of Eq. (5), in which we summarized the re-
sults in the previous section, does not generally satisfy
the Onsager relation, although it is possibly easier to ob-
serve experimentally. In Appendix C, we summarize the
results in the form of Eq. (2) and explicitly show both
our approximate solutions and the perturbative solution
from the exactly solvable Maxwellian model indeed sat-
isfy the Onsager relation.

Following Ref. [36] and from Eq. (2), the spin Seebeck
coefficient Se and Peltier coefficient Pe can be expressed
via the Kubo formula as

TSe =
1

3V T

∫ ∞
0

dt〈Jheat(0) · Jspin(t)〉 (27)

=
1

3V T

∫ ∞
0

dt〈Jheat(t) · Jspin(0)〉 = Pe, (28)

where V is the total volume of the system and the current
J is the volume integral of local current density,

J(t) =

∫
d3x j(x, t). (29)
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The average is taken over the equilibrium distribution,
which is just the Boltzmann distribution of each species
in the high-temperature classical regime.

Since we assume Galilean invariance, the total momen-
tum of the entire gas is conserved. Therefore, any physi-
cal quantity which is transported with the total particle
current Jn remains finite for all time t and gives a di-
vergent contribution in the Kubo formula, meaning that
quantity moves “ballistically” rather than diffusively.
Therefore, it is crucial to use the frame-independent def-
inition of the local diffusive currents from Eq. (3) and
Eq. (4). Let’s write them again and slightly manipulate
the heat current:

jspin =
n↓
n

j↑ −
n↑
n

j↓ (30)

jheat = jε − µ↑j↑ − µ↓j↓ − sT jn

= jε −
5

2
T jn − (µ↑ − µ↓)jspin, (31)

where sT = 5
2T−

n↑
n µ↑−

n↓
n µ↓ and jε = jε↑+jε↓. Defining

j̃heat ≡ jε− (5T/2)jn [38], the Kubo formula gives us the
following spin Seebeck coefficient:

TSe = Pe =
1

3V T

∫ ∞
0

dt[〈J̃heat(0) · Jspin(t)〉

− (µ↑ − µ↓)〈Jspin(0) · Jspin(t)〉] (32)

=
1

3V T

∫ ∞
0

dt〈J̃heat(0) · Jspin(t)〉

− T ln

(
n↑
n↓

)
σs, (33)

where σs is the spin conductivity given in Eq. (2) and
µ↑ − µ↓ = T ln(n↑/n↓). Therefore, in this representa-
tion, the spin Seebeck coefficient (and thus also the spin
Peltier coefficient) always carries an additional term of
the spin conductivity σs multiplied by − ln(n↑/n↓). This
is the origin of that term in Pe′ in Eqs. (15), (17), and
(25). We can understand the reason why the spin Seebeck
coefficient Se′ does not include such a term from the fol-
lowing observation: At mechanical equilibrium and high
temperature, we have

∇(µ↑ − µ↓) = ln

(
n↑
n↓

)
∇T + T

n2

2n↑n↓
∇p . (34)

Therefore, that ∇p = 0 implies ∇(µ↑ − µ↓) =
ln(n↑/n↓)∇T . The spin current now becomes

jspin = −σs∇(µ↑ − µ↓)− Se∇T (35)

= −Dsn∇p− (σs ln(n↑/n↓) + Se)∇T (36)

= −Dsn∇p− Se′∇T . (37)

Thus the additional ∼ ln(n↑/n↓) term from Eq. (34)
exactly cancels the similar term from Eq. (33). Conse-
quently, what we have computed for Se′ in the previous
section is the first term in Eq. (33) to which the sign
argument in section IV should be applied.

We can extract more information from Eq. (31).
In jn = 0 frame, the heat current is jheat = jε −
T ln(n↑/n↓)jspin. Thus, heat conductivity and spin
Peltier coefficient always have contributions coming from
spin current. Therefore, in the format of Eq. (5) we can
write

κ′ = κ′1 − T ln(n↑/n↓)Se
′ (38)

Pe′ = Pe′1 − T ln(n↑/n↓)Ds , (39)

where κ′1 and Pe′1 are first terms which do not originate
from spin current. Results in the previous section clearly
show this.

Lastly, we study the thermal conductivity, κ, in Eq.
(2).

κ =
1

3V T 2

∫ ∞
0

dt < Jheat(t) · Jheat(0) > (40)

=
1

3V T 2

∫ ∞
0

dt < J̃heat(t) · J̃heat(0) >

− 2T ln

(
n↑
n↓

)
Se′ + T

(
ln

(
n↑
n↓

))2

σs . (41)

The above structure of thermal conductivity is explicitly
shown in Appendix C.

VIII. CONCLUSION AND OUTLOOK

We have studied diffusive spin and heat transport in
a two-species atomic Fermi gas with short-range inter-
action at general polarization, temperature and scatter-
ing length. Using “power-counting”, we first estimated
the spin and thermal diffusivities in all regimes. We
suggested a method to measure the thermal diffusivity,
which has not yet been experimentally measured.

Our main focus was on the magnetocaloric effects,
namely the spin Seebeck and spin Peltier effects. Ob-
serving the connection between the interaction strength
and the dependence of the scattering rate on the rela-
tive momentum of two atoms, we were able to develop
a qualitative argument for the signs of magnetocaloric
effects. Near unitarity, magnetocaloric currents are in
the same direction as the “primary” spin and heat cur-
rents, while their directions are reversed as we move to far
away from unitarity. We then quantitatively estimated
diffusivities and magnetocaloric effects in the classical
regime using approximate solutions of the Boltzmann ki-
netic equation, thereby confirming the “power-counting”
estimates of diffusivities and the sign argument for the
magnetocaloric effects. We also proved the scaling of the
transport coefficients is robust to all orders of approxi-
mation, in Appendix A.

Remaining in the classical regime, we proposed an ex-
perimental procedure to detect the spin Seebeck effect as
a qualitative effect: a nonmonotonic relaxation towards
equilibrium. This method is nice in that it does not re-
quire knowledge of the equation of state of the gas. In
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order to confirm these results and obtain a better under-
standing of the origin of these magnetocaloric effects, we
also performed a controlled perturbation to the exactly
solvable Maxwellian model. This approach agrees well
with the approximate solutions of the Boltzmann equa-
tion.

To obtain the corresponding transport behavior quan-
titatively in the quantum degenerate (but normal)
regime, we need spin-polarized Fermi liquid theory. We
hope to report on this soon in a forthcoming paper.
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Appendix A: Approximate solution of Boltzmann
equation to all orders

1. κ′ and Se′

First let’s consider κ′ and Se′ when ∇p = 0.

Observe that ∇p = 0 and mechanical equilibrium con-
dition imply

∇n↑
n↑

=
∇n↓
n↓

=
∇n
n

= −∇T
T

. (A1)

Therefore, Eq. (13) simplifies to

ψi = λ
L∑
`=0

C`iq
2`
i

qi · ∇T
T

, (A2)

where we abbreviated C`ii + C`ij ≡ C`i. Following
the procedure explained in the main text, we can ob-
tain the following set of linearly independent equations
(m = 1, 2, · · · , L).

n↑λ
3 [β0C0↑ + β1C1↑ + · · ·βLCL↑] + n↓λ

3 [β0C0↓ + β1C1↓ + · · ·βLCL↓] = 0 (A3)

α00 (C0↑ − C0↓) + α01 (C1↑ − C1↓) + · · ·+ α0L (CL↑ − CL↓) = A0 (A4)

n↓λ
3 [αm0 (C0↑ − C0↓) + (αm1↑C1↑ + αm1↓C1↓) + · · ·+ (αmL↑CL↑ + αmL↓CL↓)] = Am (A5)

n↑λ
3 [−αm0 (C0↑ − C0↓) + (αm1↓C1↑ + αm1↑C1↓) + · · ·+ (αmL↓CL↑ + αmL↑CL↓)] = Am . (A6)

Here, {α00, α0n, αm0, αmnσ} (m,n = 1, 2, . . . , L and σ =↑
, ↓) are dimensionless numbers which may depend on
(λ/a)2 through the exponential integral and incomplete
Gamma functions and implicitly depend on the order of
approximation L but do not explicitly depend on temper-
ature and densities. {A`, β`} are determined by Gaussian
integrals as following:

A` =

∫
d3q

(2π)3

(
q2

4π
− 5

2

)
q2`q2

ze
−q2/4π

=
1

3
23+2`π

1
2 +``Γ

[
5

2
+ `

]
(A7)

β` =

∫
d3q

(2π)3
q2`q2

ze
−q2/4π =

1

3
23+2`π

1
2 +`Γ

[
5

2
+ `

]
,

(A8)

where Γ[x] is the Gamma function and A` and β` are

purely numerical numbers independent of physical pa-
rameters. Note that the first equation, Eq. (A3) fixes
the frame to be j↑ + j↓ = 0. From dimensional anal-
ysis and the symmetry under ↑↔↓, we may write an
ansatz solution of the above equations in the following
form (m = 1, 2, . . . , L):

C0↑ = − 1

λ3

(
a0

n↑
+
b0
n↓

+
c0
n

)
(A9)

C0↓ = − 1

λ3

(
b0
n↑

+
a0

n↓
+
c0
n

)
(A10)

Cm↑ = − 1

λ3

(
am
n↑

+
bm
n↓

)
(A11)

Cm↓ = − 1

λ3

(
bm
n↑

+
am
n↓

)
, (A12)
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where {a`, b`, c0} (` = 0, 1, 2, . . . , L) are 2L + 3 un-
known dimensionless numbers which may depend only
on (λ/a)2. Since the above set of equations should hold
for any values of n↑ and n↓, once we insert the ansatz to
the above equations, we obtain 2L + 3 linear equations
in terms of {a`, b`, c0}. Since we are still using the same
set of coefficients {α00, α0n, αm0, αmnσ} and {β`}, it is
easy to see that once the original set of equations is lin-
early independent (which is a necessary condition to have
an approximate solution of the Boltzmann equation), the
set of descendent equations is also linearly independent.
Therefore, once we determine all {a`, b`, c0}, the above
ansatz is the (L’th order) approximate solution of the
Boltzmann equation.

When ∇p = 0, we know that jspin = −Se′∇T . It is
straightforward to show that

Se′ = − ~
m

n↑
T

(
L∑
`=0

β`C`↑

)
(A13)

=
~
m

1

T

1

λ3

(
L∑
`=0

β`a` +
n↑
n↓

L∑
`=0

β`b` +
n↑
n
β0c0

)
.

(A14)

Since {a`, b`, c0} satisfies Eq. (A3), we have two identi-
ties:

L∑
`=0

β`a` = −1

2
β0c0 (A15)

L∑
`=0

β`b` = 0 . (A16)

Inserting these identities to Eq. (A14), we finally obtain
the full polarization and temperature dependence of the
Seebeck coefficient (β0 = 2π).

Se′ =
~
m

n↑ − n↓
nλ3

π

T
c0 . (A17)

This proves that the scaling of Eq. (19) is indeed true
at all orders of approximation. Furthermore, we see that
the dimensionless scaled function hL(x) (L is the order
of approximation) is

hL((λ/a)2) = πc0 . (A18)

It should be noted that c0 implicitly depends on the order
of approximation.

For the thermal conductivity κ′, we are only interested
in the first term, κ′1, which directly comes from the energy
current jε.

κ′1 = − 1

4π

~
m

L∑
`=0

(B`(n↑C`↑ + n↓C`↓)) , (A19)

where B` = 4π(5/2 + `)β`. Plugging in ansatz solution
and using Eq. (A3), we obtain κ′1.

κ′1 =
~
m

1

λ3

L∑
`=1

(
n2
↑b` + 2n↑n↓a` + n2

↓b`

n↑n↓

)
`β` (A20)

Again, we emphasize that a` and b` are function of (λ/a)2

and implicitly depend on the order of approximation.
This proves that the algebraic form of the polarization
dependence of the thermal conductivity obtained in the
main text remains to all orders of approximation.

2. Ds and Pe′

Now we study Ds and Pe′ when ∇T = 0 (thus ∇n =
0). As we did in the previous subsection, we want to
express ∇n↑ and ∇n↓ in terms of n∇p.

∇ni
ni

= εi
n∇p
2ni

, (A21)

where ε↑ = 1 and ε↓ = −1. Then, the ansatz, Eq. (13),
takes the following form (i 6= j):

ψi = −εiλn
2

L∑
`=0

(
C`ii
ni
− C`ij

nj

)
q2`
i qi · ∇p (A22)

(A23)

Once we define

C̃`i ≡ −
n

2

(
C`ii
ni
− C`ij

nj

)
, (A24)

we reduce the system similar to the previous case.
The 2(L + 1) linearly independent equations are (m =
1, 2, · · ·L)
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n↑λ
3
[
β0C̃0↑ + β1C̃1↑ + . . . βLC̃L↑

]
− n↓λ3

[
β0C̃0↓ + β1C̃1↓ + . . . βLC̃L↓

]
= 0 (A25)

α00

(
C̃0↑ + C̃0↓

)
+ α01

(
C̃1↑ + C̃1↓

)
+ · · ·+ α0L

(
C̃L↑ + C̃L↓

)
= Ã0 (A26)

n↑n↓λ
3

n

[
αm0

(
C̃0↑ + C̃0↓

)
+
(
αm1↑C̃1↑ − αm1↓C̃1↓

)
+ · · ·+

(
αmL↑C̃L↑ − αmL↓C̃L↓

)]
= Ãm (A27)

n↑n↓λ
3

n

[
−αm0

(
C̃0↑ + C̃0↓

)
+
(
αm1↓C̃1↑ − αm1↑C̃1↓

)
+ · · ·+

(
αmL↓C̃L↑ − αmL↑C̃L↓

)]
= −Ãm . (A28)

α′s and β` are same as in the previous subsection and
Ã` = β`.

Although coefficients of Eqs. (A27) and (A28) are lin-
early dependent, once we combine them, we obtain an-
other L linearly independent equations.

L∑
n=1

(αmn↑ − αmn↓)(C̃n↑ − C̃n↓) = 0 . (A29)

Together with Eq. (A29), we have 2(L + 1) linearly in-

dependent equations that uniquely determine all C̃`i.
First observe that the solution of Eq. (A29) is trivial;

C̃m↑ = C̃m↓. Then, we use the following ansatz [39]:

C̃0↑ = − 1

λ3

(
ã0

n↑
+
b̃0
n↓

)
(A30)

C̃0↑ = − 1

λ3

(
b̃0
n↑

+
ã0

n↓

)
(A31)

C̃m↑ = − 1

λ3

nc̃m
n↑n↓

= C̃m↓ . (A32)

{ã0, b̃0, c̃m} are dimensionless numbers that may only de-
pend on (λ/a)2. Substituting the above into original lin-
ear equations, we obtain the same linearly independent
equations in terms of {ã0, b̃0, c̃m}. Therefore, once we de-
termine them, we have the approximate solution of the
Boltzmann equation.

Following the same procedure when we obtained Se′

and κ′1, we can show that

Ds =
~
m

2π

λ3
(ã0 − b̃0) (A33)

Pe′1 =
~
m

T

nλ3

L∑
`=1

(
n2
↑ − n2

↓

n↑n↓

)
c̃``β` , (A34)

where Pe′1 is the first term in the Peltier coefficient. Once
we scale the scattering length with λ, the polarization

and temperature dependence of Ds and Pe′1 at an arbi-
trary L remains the same as for L = 1. This proves that
the scaling structure of the transport coefficients remains
the same to all orders of approximation.
Appendix B: Calculation of the spin Seebeck effect

Here we present derivations of signatures of the spin
Seebeck effect in detail. First, apply a long wavelength
temperature modulation to the system. The mechanical
equilibrium condition implies that a temperature modu-
lation is equivalent to a total density modulation. Ini-
tially the gas is uniformly polarized so that the density
of each spin component is

ni(t = 0, z) = ni0 + δni0 coswz (B1)

δni0 =
ni0
n0

δn0 , (B2)

where δn0 is the maximum value of total density devia-
tion from the average density. In order to calculate the
change of densities of each species, which is directly mea-
surable in experiment and contains the signature of the
spin Seebeck effect, we need the space-time dependence of
the density of each species. We will use the diffusion ma-
trix and the continuity equation to derive the space-time
dependence of densities. Since the continuity equation
for the particle number density is ∂tni + ∇ · ji = 0, it
is practical to write diffusion equation in the format of
Eq. (1). With this initial condition, a nonuniform par-
ticle current flows, but in this classical limit, there is no
net energy current. Thus we work in the reference frame
where the local energy current vanishes (jε↑ + jε↓ = 0).
Thanks to Galilean invariance, this choice of a reference
frame does not affect the physics.

Following a similar procedure as described in the main
text, but in this zero energy current frame, we can deter-
mine all coefficients C`ij (` = 0, 1) and express the par-
ticle current of each species in terms of ∇n↑ and ∇n↓.
Then, we can write currents in the diffusion matrix for-
mat as in Eq. (1):

Near unitarity,(
j↑
j↓

)
= − 9π3/2

9728
√

2

(
~
m

(
T

TF

)3/2
) 365n2

↑+354n↑n↓+733n2
↓

nn↓

381n2
↑+42n↑n↓+405n2

↓
nn↓

405n2
↑+42n↑n↓+381n2

↓
nn↑

733n2
↑+354n↑n↓+365n2

↓
nn↑

(∇n↑
∇n↓

)
. (B3)
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Far from unitarity,

(
j↑
j↓

)
= − 3π3/2

896
√

2

(
~

m(kFa)2

√
T

TF

) 145n2
↑+158n↑n↓+289n2

↓
nn↓

137n2
↑−14n↑n↓+125n2

↓
nn↓

125n2
↑−14n↑n↓+137n2

↓
nn↑

289n2
↑+158n↑n↓+145n2

↓
nn↑

(∇n↑
∇n↓

)
. (B4)

These matrix equations contain two eigenmodes, one is the thermal mode with eigenvalue DT (j↑ and j↓ are in the
same directions) and the other is the spin mode with eigenvalue Ds (j↑ and j↓ are in opposite directions). As expected,
DT > Ds for all polarizations in both of these limits. Applying continuity equations to the above diffusion matrix
equations while keeping all differential operators linear (we restrict ourselves in a linear response theory), we obtain
two-component diffusion equations:

∂

∂t

(
n↑
n↓

)
= −

(
D↑↑ D↑↓
D↓↑ D↓↓

)(
∇2n↑
∇2n↓

)
. (B5)

Therefore, we can immediately write the time evolution of each species in terms of the eigenmodes as(
n↑(t, z)
n↓(t, z)

)
=

(
n↑0
n↓0

)
+ αe−Dsw

2tδn↓0

(
γ
1

)
coswz + βe−DTw

2tδn↓0

(
ζ
1

)
coswz. (B6)

(γ, 1) and (ζ, 1) are the eigenvectors of the spin mode and
the thermal mode, respectively. γ is negative while ζ is
positive. α and β are determined by the initial condition,(

δn↑0
δn↓0

)
= αδn↓0

(
γ
1

)
+ βδn↓0

(
ζ
1

)
. (B7)

It is straightforward to derive γ, ζ, α, β, Ds and DT . For
example,

α =
1

γ − ζ

(
n0↑

n0↓
− ζ
)

(B8)

β = 1− α . (B9)

Explicit expressions for γ, ζ, Ds and DT are fairly lengthy
so they are omitted here.

The spin Seebeck effect is most apparent when observ-
ing the densities at the edges of the system (wz = 0 or
wz = π) so we choose to focus on the cold edge, z = 0.
The uniform pressure condition implies that both major-
ity and minority densities are initially higher than aver-
age at the cold side. Thus, initially δn↓(t = 0, z = 0) > 0.
Even though the initial condition can be chosen to be
the same for both unitarity and far away from unitarity,
the time evolution of density of each species is qualita-
tively different for these two limiting cases. As argued
in the main text, the minority density deviation has an
extremum before it relaxes to zero at unitarity whereas
the majority density deviation has an extremum far away
from unitarity. Therefore, a change in the sign of a cer-
tain species is a unique signature of the spin Seebeck ef-
fect. We can express the magnitude of the spin Seebeck

signal in dimensionless form by δni(t,0)
δni0

. This quantity

is plotted in figures 3 and 4. At time ti,ext (i =↓ near
unitarity and i =↑ away from unitarity), the density of
the species i reaches an extremum. It is easy to derive
formal expressions of ti,ext and a dimensionless measure,∣∣∣ δni(ti,ext,0)

δni0

∣∣∣.

Near unitarity,

t↓,ext =
1

(DT −Ds)w2
ln

∣∣∣∣DTβ

Dsα

∣∣∣∣ (B10)∣∣∣∣δn↓(t↓,ext, 0)

δn↓0

∣∣∣∣ = α exp

[
− Ds

DT −Ds
ln

∣∣∣∣DTβ

Dsα

∣∣∣∣]
+ β exp

[
− DT

DT −Ds
ln

∣∣∣∣DTβ

Dsα

∣∣∣∣] . (B11)

Away from unitarity,

t↑,ext =
1

(DT −Ds)w2
ln

∣∣∣∣DTβζ

Dsαγ

∣∣∣∣ (B12)∣∣∣∣δn↑(t↑,ext, 0)

δn↑0

∣∣∣∣ =
αγ

αγ + βζ
exp

[
− Ds

DT −Ds
ln

∣∣∣∣DTβζ

Dsαγ

∣∣∣∣]
+

βζ

αγ + βζ
exp

[
− DT

DT −Ds
ln

∣∣∣∣DTβζ

Dsαγ

∣∣∣∣] .

(B13)∣∣∣ δni(ti,ext,0)
δni0

∣∣∣ is plotted in figure 6. As expected, the

unitarity limit shows a stronger signal of the spin Seebeck
effect than far away from unitarity.

Another consequence of the spin Seebeck effect is the
change of polarization. From Eqs. (B2) and (B6), we can
express the polarization as a function of time. Keeping
only linear term of δn0, we obtain

δp(t, 0) = p(t, 0)− p0

=
δn0

n0

[
n↓0
n0

(
α(γ − 1)e−Dsw

2t + β(ζ − 1)e−DTw
2t
)

− p0
n↓0
n0

(
α(γ + 1)e−Dsw

2t + β(ζ + 1)e−DTw
2t
)]

,

(B14)

where p0 = (n↑0−n↓0)/n0. Figure 5 is the plot of δp(t, 0)
normalized by δn0/n0.
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Appendix C: Manifestation of the Onsager relation

For completeness, we present diffusion matrices of ap-
proximate solutions and the solution of the first order
perturbation of the Maxwellian model in the form of Eq.

(2) where the Onsager relation should be explicit. We
simply transform the set of driving forces (∇T, n∇p) to
another set of driving forces (∇T,∇(µ↑−µ↓)) associated
with the entropy production.

For approximate solutions we have the following:
At unitarity (|a| � λ),

(
jheat
jspin

)
= −45π3/2

608
√

2

(
~
m

(
T

TF

)3/2
) κu (n↑ − n↓)− 39n↑n↓

5n ln
(
n↑
n↓

)
(n↑−n↓)

T − 39n↑n↓
5nT ln

(
n↑
n↓

)
39n↑n↓

5nT

( ∇T
∇(µ↑ − µ↓)

)
,

(C1)
where κu is

κu =
5

16
n

(
(73n2

↑ + 82n↑n↓ + 73n2
↓)

n↑n↓

)
− ln

(
n↑
n↓

)(
10(n2

↑ − n2
↓)− 39n↑n↓ ln(n↑/n↓)

5n

)
. (C2)

Far away from unitarity (|a| � λ),

(
jheat
jspin

)
= −15π3/2

224
√

2

(
~

m(kFa)2

√
T

TF

) κa −(n↑ − n↓)− 43n↑n↓
5n ln

(
n↑
n↓

)
− (n↑−n↓)

T − 43n↑n↓
5nT ln

(
n↑
n↓

)
43n↑n↓

5nT

( ∇T
∇(µ↑ − µ↓)

)
,

(C3)
where κa is

κa =
5

8
n

(
(29n2

↑ + 26n↑n↓ + 29n2
↓)

n↑n↓

)
+ ln

(
n↑
n↓

)(
10(n2

↑ − n2
↓) + 43n↑n↓ ln(n↑/n↓)

5n

)
. (C4)

For the first order perturbation of the Maxwellian model, we have the following:

(
jheat
jspin

)
= −D0

 κM −πε(n↑−n↓)
λ2 − n↑n↓

5n

(
1− 20πε

λ2

)
ln
(
n↑
n↓

)
−πε(n↑−n↓)

λ2T − n↑n↓
5nT

(
1− 20πε

λ2

)
ln
(
n↑
n↓

)
n↑n↓
5nT

(
1− 20πε

λ2

)
( ∇T
∇(µ↑ − µ↓)

)
,

(C5)

where κM is

κM =
1

2
n

(
(n2
↑ + n↑n↓ + n2

↓)

n↑n↓
− 3πε

λ2

(9n2
↑ + 10n↑n↓ + 9n2

↓)

n↑n↓

)
+

2πε ln
(
n↑
n↓

)
nλ2

(
(n2
↑ − n2

↓) + n↑n↓

(
λ2

10πε
− 2

)
ln

(
n↑
n↓

))
(C6)

The above matrices clearly exhibit the Onsager rela-
tion. Also each off-diagonal element carries a term pro-
portional to −σs ln(n↑/n↓) as mentioned in Eq. (33) in

section VI. Lastly, the structure of thermal conductivity
(Eq. (41)) is evident.
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