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We extract the leading effective range corrections to the equation of state of the unitary Fermi gas from ab
initio Fixed-Node Quantum Monte Carlo (QMC) (FNQMC) calculations in a periodic box using a Density
Functional Theory (DFT), and show them to be universal by considering several different two-body interactions.
Furthermore, we find that the DFT is consistent with the best available unbiased QMC calculations, analytic
results, and experimental measurements of the equation of state. We also discuss the asymptotic effective-range
corrections for trapped systems and present the first QMC results with the correct asymptotic scaling.
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The fermion many-body problem plays a fundamental role in a
vast array of physical systems, from dilute gases of cold atoms
to nuclear physics in nuclei and neutron stars. The universal
character of this problem – each system is governed by a sim-
ilar microscopic theory – coupled with direct experimental
access in cold atoms, has led to an explosion of recent interest
(see Refs. [1] for reviews). Despite this broad applicability,
we still do not fully understanding even the simplest system:
the “unitary gas” comprising equal numbers of two fermionic
species interacting with a resonant s-wave interaction of infi-
nite scattering length as→ ∞. Lacking any scale beyond the
total density n+ = na + nb, the unitary gas admits no pertur-
bative expansion and requires experimental measurement or
accurate numerical simulation for a quantitative description.
Typical Quantum Monte Carlo (QMC) calculations, however,
can access at most a few hundred particles, while experiments
can measure only a handful of properties. Density Functional
Theory (DFT) provides a complementary approach through
which one may extrapolate these results to large systems be-
yond the reach of direct simulation. The question of how the
unitary gas approaches the thermodynamic limit has also been
studied in [2–5].

In this paper, we consider the effects of a finite range re on
the unitary gas. Our motivation is two-fold. First, neutron mat-
ter – well approximated by a unitary gas [6] – differs primarily
due to a finite range. Characterizing the finite range effects
therefore have direct physical relevance. Second, we wish to
directly use a DFT – a finite-range version of the Superfluid Lo-
cal Density Approximation (SLDA) – to fit QMC simulations
and extract thermodynamic properties without having to first
extrapolate to zero range as was done in [3]. Directly fitting the
finite range QMC data provides a much more stringent test of
the SLDA. We use this finite-range DFT to extrapolate to the
thermodynamic limit the linear range dependence of the equa-
tion of state, and demonstrate its universality by simulating
three different potentials. Two of the potentials include a re-
pulsive core to address issues of contamination by deep bound
states. We also show that the SLDA fits all available unbiased
zero-range ab initio results for the symmetric unitary gas. Fi-
nally, we present the first QMC results for trapped systems that

demonstrate the correct asymptotic scaling as predicted by the
low energy effective theory for the unitary gas.

Here we consider symmetric T = 0 systems comprising
equal numbers of two neutral Fermi species with equal mass
interacting through a short-range interaction. These systems
are directly realized by two of the lowest lying hyperfine states
of 6Li in cold atomic systems, and approximately realized
in dilute neutron-rich matter in the crusts of neutron stars.
At sufficient dilution, the interaction can be characterized by
the two-body s-wave phase shifts through the effective range
expansion (see for example [7])

k cotδk =
−1
as

+
rek2

2
+O(k4) (1)

where as is the s-wave scattering length and re is the effective
range. The zero-range unitary limit is realized when the scat-
tering length is tuned as→ ∞ and the system is diluted such
that kre→ 0: this is referred to as the symmetric Unitary Fermi
Gas (UFG).

The lack of scales implies that the symmetric UFG is
fully characterized by the universal Bertsch parameter [8]
ξS = E /EFG, where EFG = 3/5n+EF is the energy density
of a free Fermi gas with the same total density n+ = k3

F/(3π2),
and EF = h̄2k2

F/2m is the Fermi energy.
In 6Li cold-atom experiments (see [9] for details), as ≈ ∞

can be tuned using the wide magnetic Feshbach resonance at
834.1(15)G [10] with an effective range of re ≈ 4.7nm, while
the gas can be cooled at densities of 1/kF ≈ 400nm so that
kF re ≈ 0.01. In dilute neutron matter ann ≈−18.9(4) fm [11]
and rnn ≈ 2.75(11) fm [12], while densities are on the order
of 1/kF ∼ 1fm: thus, kF re ≈ 3 is several orders of magnitude
larger than in cold-atom systems.

Although there are formal ways of dealing with the diver-
gences introduced by the zero-range limit (see [13] for an
interesting approach), most ab initio calculational techniques
require an explicit regulator in the form of a finite-range poten-
tial or a lattice cutoff. To extract the unitary parameters thus
requires an extrapolation to zero effective range. Range effects
in the UFG are also discussed in [14] (large re), [4] (Fixed-
Node QMC (FNQMC)), and in the Bogoliubov-de Gennes
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(BdG) approximation [15, 16].

I. SUMMARY

Here we present a summary of our results. We use a variational
FNQMC algorithm to find upper bounds on the energy for
systems of 4 to 66 particles in a periodic box for a variety of
effective ranges kF re / 0.3 and for different potentials with the
same scattering length as = ∞ and range. We fit these directly
with a modified DFT that models the range dependence in
order to extrapolate to the thermodynamic an upper bound
on the Bertsch parameter ξ , and the leading order universal
effective range dependence ζe:

ξ (kF re)/ ξ
∗+ζ

∗
e kF re +O(kF re)

2

ξ
∗ = 0.3897(4) ζ

∗
e = 0.127(4). (2a)

By comparing several potentials, we confirm that these are
indeed universal. The FNQMC results contain a systematic
error due to the variational nature of the method. To better un-
derstand this, we also fit with the DFT a collection of unbiased
exact, QMC, and experimental results for systems with 2 to
106 particles, obtaining a best fit of

ξS = 0.3742(5). (2b)

We also demonstrate for the first time, QMC results for trapped
systems that exhibit the correct asymptotic behavior in the
thermodynamic limit.

II. QMC MODEL

We use a FNQMC algorithm to simulate the Hamiltonian

H =
h̄2

2m

(
−

N+

∑
k=1

∇
2
k − ∑

i, j′
V (ri j′)

)
, (3)

where V (r) is an inter-species interaction (off-resonance intra-
species interactions are neglected). The FNQMC algorithm
projects out the state of lowest energy from the space of all
wave functions with fixed nodal structure as defined by an
initial many-body wave function (ansatz). By varying the
Ansatz, we obtain an upper bound on the ground-state energy.

We use the trial function introduced in [17]:

ΨT = A [φ(r11′)φ(r22′) · · ·φ(rnn′)]∏
i j′

f (ri j′),

where A antisymmetrizes over particles of the same spin (ei-
ther primed or unprimed) and f (r) is a nodeless Jastrow func-
tion introduced to reduce the statistical error. The antisym-
metrized product of s-wave pairing functions φ(ri j′) defines
the nodal structure:

φ(r) = ∑
n

α‖n‖e
ikn·r + β̃ (r).

The sum is truncated (we include ten coefficients) and the
omitted short-range tail is modelled by the phenomenological
function β̃ (r) chosen to ensure smooth behavior near zero
separation. We use the same form for β̃ (r) as in [18] and vary
the 10 coefficients α‖n‖ for each N+ and for each different two-
body potential to minimize the energy as described in Ref. [19].
The same ansatz suffices for different effective ranges, but an
independent optimization is required for each N+.

We compare the following potentials:

VPT (r) = 4µ
2 sech2(µr), (4a)

V2G(r) = 3.144µ
2
(

e−µ2r2/4−4e−µ2r2
)
, (4b)

V2E(r) = 4.764µ
2 (e−µr−2e−2µr) . (4c)

These potentials are all tuned to have infinite two-body s-wave
scattering length. The first potential (4a) is of the modified–
Pöschl-Teller type; the second (4b) and third (4c) potentials
have a repulsive core. When tuned to unitarity, the effective
range re is proportional to µ−1 as shown in figure 1.

One criticism of purely attractive potentials – including the
widely used modified–Pöschl-Teller potential (4a) – is that
they may contain deeply bound states where many particles lie
within the range of the potential. Formally, the ground state
is thus not the universal dilute UFG, but some tightly bound
state that is highly sensitive to the range. In principle, this
state may contaminate the variational QMC calculation, but in
practice, there is insufficient overlap between the variational
wave function and this deep bound state. (Simulations longer
by several orders of magnitude would be required to see the
influence of such low-energy states.)

The repulsive cores of (4b) and (4c) help allay these con-
cerns by reducing the possibility of contamination from deeply
bound states. We find agreement between the purely attractive
Pöschl-Teller potential and these repulsive potentials, demon-
strating that all three potentials may be used to calculate prop-
erties of the UFG, and verifying the model-independence of the
universal parameters. We show the upper bounds for the energy
of N+ = 66 particles at various effective ranges in figure 2. For
ranges less than kF re . 0.3 a three-parameter quadratic model
is sufficient to extrapolate to zero range without a systematic
bias. This fit is shown in table I for the three potentials, and the
magnitude of the quadratic parameter can be used to estimate
the linear regime.
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FIG. 1. (color online) Finite range potentials (4) used in the Hamilto-
nian (3) for our QMC bounds.
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FIG. 2. (color online) Effective range dependence of the ground-state
energy-density ξ (kF re) = E /EFG of N+ = 66 fermions in a periodic
cubic box in the unitary limit. The points with error-bars are the raw
QMC results and the bands are the 1σ error bands of polynomial fits.
The upper (blue) curve that extrapolates to ξ = 0.3898(5) is the new
quadratic fit to the modified–Pöschl-Teller potential (4a). The middle
(green) curve that extrapolates to ξ = 0.3885(5) is the quadratic fit
for the new double-Gaussian potential (4b). Finally, the lower (cyan)
curve that extrapolates to ξ = 0.3902(7) is the quadratic fit to the
double-exponential potential (4c).

In [3], each N+ was independently extrapolated to zero ef-
fective range, then the unitary SLDA DFT was fit to the extrap-
olated results. It was claimed that a cubic fit was required to
extrapolate the results for kF re < 0.35 to zero range, however,
the smallest ranges kF re < 0.1 had a small systematic bias in
the energy due to the Trotter decomposition of the many-body
propagator e−Ĥδτ ≈ e−V̂ δτ/2e−K̂δτ e−V̂ δτ/2 +O(V̂ δτ)3 where
δτ/h̄ is the imaginary time-step. Since the potentials (4) scale
roughly as V̂ ∝ µ2 ∝ r−2

e , for small ranges, one needs a very
small imaginary time-step, which is computationally expen-
sive. The extrapolated values of ξ were only underestimated
for the larger systems (by ∼ 3%), but extracting the slope of
ξ (kF re) requires higher accuracy. Here we have carefully sim-
ulated with smaller time-steps (for the ranges considered here,
δτEF ≈ 5×10−6 is sufficient to avoid any bias) to find that,

ξ66 (= a0) ζe(66) (= a1) a2 χ2
r

VPT 0.3898(4) 0.14(1) −0.07 0.20
V2G 0.3885(4) 0.14(1) −0.08 0.40
V2E 0.3902(5) 0.12(1) −0.03 0.30

TABLE I. Comparison of the zero-range extrapolations of
E (kF re)/EFG = ξ66 +ζe(66)kF re +a2(kF re)

2 +O(r3
e ) for quadratic

fits of the N+ = 66 QMC results. These values are higher than, but
consistent with the value ζe(66) = 0.11(3) reported in [20]. The ex-
trapolations of these parameters to the thermodynamic limit N+ = ∞

are listed as ξ = a0 and ζe = a1 in the ξ block of table II. We include
the quadratic coefficient simply to show that the QMC can be fit using
a linear form for kF re < εabs|a1/a2| to an absolute accuracy of about
εabs: we do not have any a priori reason to believe that this parameter
is universal. The systematic error due to neglecting the cubic terms is
on the same order as the quoted 1σ statistical errors.

for kF re / 0.3, a quadratic (but not linear) fit is sufficient. We
also no longer use an independent zero-range extrapolation for
each N+. Instead, we use a generalized finite-range–SLDA to
fit all of the finite-range–QMC results with a common set of
parameters. This requires simultaneous consistency over all
ranges and all particle numbers, providing a more rigorous test
than independently extrapolating each N+.

III. SLDA DFT WITH FINITE RANGE

As was shown in [3], the finite-size (“shell”) effects in
ξS(N+) can be well modelled by a simple local DFT for the
unitary Fermi gas. It was also argued that adding only gradient
or kinetic corrections [21–23] were unable to even qualitatively
characterize the finite-size effects. In this paper we retain the
same three-parameter form originally introduced in Ref. [24]
(called the SLDA), but present a simple generalization that
accounts for finite-range effects. With this generalized form,
we can directly fit the QMC results without the need to first
extrapolate to zero range. We first briefly review the form of
the SLDA DFT, then discuss the finite-range generalization.

The SLDA DFT is formulated in terms of three local den-
sities (see [25] for a review): the total density n+, the total
kinetic density τ+, and an anomalous ν :

n+ = 2∑
n
|vn|2 ∼ 〈â†â〉+ 〈b̂†b̂〉,

τ+ = 2∑
n
|∇vn|2 ∼ 〈~∇â† ·~∇â〉+ 〈~∇b̂† ·~∇b̂〉,

ν = ∑
n

unv∗n ∼ 〈âb̂〉.

These are expressed in terms of the Bogoliubov quasiparticle
wave functions un(r) and vn(r) – sometimes called “coherence
factors”.

The three-parameter SLDA may then be expressed as

ESLDA =
h̄2

m

(
α

2
τ++β

3
10

(3π
2)2/3n5/3

+

)
+gν

†
ν ,

where α = m/meff parametrizes the inverse effective mass; β

parametrizes the self-energy; and g parametrizes the pairing
interaction. In the presence of pairing, the local kinetic and
anomalous densities are divergent

lim
δ→0

ν(~x,~x+~δ )→ Aν

δ
+νr(~x)+O(δ ),

lim
δ→0

τ(~x,~x+~δ )→ Aτ

δ
+ τr(~x)+O(δ ),

where Aν , Aτ , νr and τr are finite. One must regulate the theory
if one wishes to maintain a local formulation, which greatly
simplifies the computational aspects of the DFT. The most gen-
eral form of a local functional involving these three densities
is a function of these four finite quantities, but restricting the
form to bounded functionals is somewhat non-trivial [26], and
we shall not consider these generalizations here.

We note that the 1/r divergence corresponds to a long 1/k2

momentum tail in the Fourier transform of the anomalous and
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kinetic densities. This follows from the short-range nature
of the potential as has been emphasized by Tan [13]. The
most straightforward route is to simply introduce a momentum
cutoff k < kc and then define the theory in the limit of large
cutoff. The local densities then behave as

τ+ = Aτ Λ+ τr +O(Λ−1), νr = Aν Λ+νr +O(Λ−1),

where Λ =
∫

k−2d3k/(2π)3 = kc/2π2. Within the single-
particle framework of the DFT, these are related to the gap
∆: Aτ = 2m|∆|2/α2, and Aν = ∆/α . Similar short-range be-
havior is expected in the physical density distributions where
the coefficients Aτ and Aν are related to the Tan’s “contact”
C – for example, Aν =

√
2C/2m – and it is tempting to in-

terpret
√

2C ≈ 2m∆/α as a prediction of the DFT, especially
at unitarity where they seem to be related numerically. This
cannot hold in general: in particular, the contact C is related
to the short-range nature of the interaction and persists in the
normal phase (either meta-stable or above the critical tempera-
ture T > Tc) where the order parameter ∆ vanishes [27]. The
inverse coupling constant may be expressed

g−1 = n1/3
+ /γ−Λ/α,

where γ is the third dimensionless parameter characterizing the
SLDA.

The equations of motion follow by minimizing the total
energy E =

∫
d3x ESLDA with respect to the occupation factors u

and v subject to the constraints of fixed total particle number N+

and normalization. This leads to the following single-particle
Hamiltonian for the Bogoliubov quasiparticle wavefunctions:(

K ∆†

∆ −K

)(
un
vn

)
= En

(
un
vn

)
, K = h̄2−~∇α~∇

2m
−µ +U

where U = ∂E /∂n+, and ∆ = −gν . These must be solved
self-consistently to find the stationary configurations. With
infinite cutoff, the self-consistency equations become

U = βEF −
|∆|2

3n3/2
+ γ

, ∆ =−γ
νr

n1/3
+

.

The mean-field BdG equations may be recovered by setting
α = 1, β = 0, and replacing n1/3

+ /γ = 4π/a. The resulting
functional contains no explicit density dependence, and so
contains no self-energy U = 0. The SLDA differs from the
BdG equations by the inclusion of an effective mass and a
self-energy.

The SLDA functional is defined by the three dimensionless
constants α , β , and γ . In practice, we use the homogeneous
solution to the gap equation in the thermodynamic limit to
replace β and γ with the more physically relevant parameters

α ≡ m
meff

, ξ ≡ E

EFG
, η ≡ ∆

EF

as discussed in detail in appendix A (see Eq. A4).
To extend the functional to finite range, we simply let the

three parameters α , ξ , and η depend on the dimensionless

combination kF re. This introduces an additional explicit den-
sity dependence in the functional through kF ∝ n1/3

+ and the
self-energy must be modified accordingly. The use of the
nonlinear relationships (A4) between the polynomial form for
α(kF re), η(kF re), and ξ (kF re) and the parameters of the func-
tion makes this complicated to write down, but numerically it
is straightforward to propagate these derivatives using, for ex-
ample, automatic differentiation tools such as THEANO [28].

For the small ranges considered in this paper, we find that a
quadratic parametrization suffices:

α,ξ ,η = a0 +a1kF re +a2(kF re)
2.

(Including higher order terms leads to no significant improve-
ment in the quality of the fits.) This finite-range–SLDA thus
has 9 independent parameters – the three coefficients an for
each of the parameters α , ξ , and η . In comparison, the pro-
cedure of independently extrapolating each N+ to zero range
introduces 3 new parameters for each N+ in addition to the
three SLDA parameters, effecting a significant increase in the
total number of fitting parameters. Note also that the new fits
directly use the QMC results – including their sub-percent
statistical errors – rather than the extrapolated error bar from
zero-range extrapolation: thus the new fitting procedure places
the SLDA under a significantly more stringent test.

We only expect this extension to model the effective-range
dependence in universal regions. In particular, a true finite-
range interaction would naturally regulate the system, eschew-
ing the need for regulating the DFT. For example, in the
mean-filed approximation, the use of a finite-range separa-
ble potential gvkvq with decaying form-factors gives rise to a
momentum-dependent gap ∆k ∝ vk regulating the anomalous
density at large momenta. Introducing such a natural regulation
into the DFT, however, will likely require the introduction of
some form of non-locality, which significantly complicates the
computational aspects of the theory.

In principle, one could also introduce a dependence on the
scattering length a and temperature T in a similar manner, mak-
ing the coefficients functions of kF a and T/EF respectively.
Unlike the case with the effective range, however, the depen-
dence on these parameters must be modelled for all values
since the unitary limit corresponds to kF a=±∞ and T/EF = 0,
while for finite a and T , the zero-density limit (at the edge of
a trapped cloud for example) is described by kF a = 0 and
T/EF = ∞: hence any physical system close to unitarity ex-
plores virtually all values of these functions, requiring a careful
and complete characterization.

IV. RESULTS

A. Box

The results of this 9-parameter fit to the QMC data-points
with effective ranges 0.03 < kF re ≤ 0.33 are shown in table II.
The fit to 60 points with 4 ≤ N+ ≤ 130 for the V2G potential
has a reduced chi squared χ2

r = 5. The fit to 70 points for
4≤ N+ ≤ 130 to the VPT potential has χ2

r = 7. We suspect that
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this is due to approximating the effective range dependence
with a purely local functional as discussed earlier.

Linear a0 a1 χ2
r

ξPT 0.3911(4) 0.111(3) 8
ξ2G 0.3900(3) 0.111(2) 6

ηPT 0.90(1) −0.85(7)
η2G 0.875(8) −0.82(4)

αPT 1.303(10) −0.71(8)
α2G 1.289(7) −0.69(3)

Quadratic a0 a1 a2 χ2
r

ξPT 0.3903(7) 0.121(10) 0.00(3) 7
ξ2G 0.3890(4) 0.128(4) −0.06(1) 5

ηPT 0.99(3) −2.1(4) 3(1)
η2G 0.879(7) −0.84(3) 0.00(3)

αPT 1.34(2) −1.6(4) 5(2)
α2G 1.292(7) −0.73(6) 0.1(2)

TABLE II. Best fit SLDA parameters for linear (quadratic) 6-
parameter (9-parameter) models: coefficients a0, a1, (and a2) for
each parameter ξ , η , and α . Note that the parameters α and η should
be positive, requiring positive higher-order terms that are not properly
constrained by our QMC which only simulates kF re . 0.3: larger
ranges require higher-order polynomials (or a different model).

As before [3], the best fit gap parameter η and inverse effec-
tive mass α are inconsistent with the values η = 0.50(5) and
α = 1.09(2) obtained from the N+ = 66 QMC quasiparticle
dispersion relation [29, 30], and the values η = 0.45(5) [31]
and η = 0.44(3) [32] extracted from experimental data. As we
shall see below (see Eq. 7), this is likely due to the fixed-node
approximation.

Werner and Castin [33] showed that the many-body energy
density depends linearly on the effective range in the zero-
range limit

E

EFG
= ξS +ζekF re +O((kF re)

2) (6)

where the coefficient ζe is a universal constant within Galilean
invariant continuous space models. The value for this coeffi-
cient was first estimated ζe = 0.046(7) [34] by fitting (6) to
the exact two-particle solution in a trap.

The value for this coefficient for N = 66 particles ζe(66) =
0.11(3) was calculated using Auxiliary Field QMC (AFQMC)
in [20] (see table I for comparison) and is likely independent
of other universal parameters such as ξ or the contact C [27].
The finite-range–SLDA allows us to extrapolate this result
to the thermodynamic limit (see table II) where we find S =
0.127(4) by averaging the linear ξ coefficient a1 for both VPT
(ζe = 0.121(10)) and V2G (ζe = 0.128(4)) results. Note that
these are consistent, demonstrating the universality of this
coefficient.

Unfortunately, since the FNQMC can only provide an upper
bound on the energy, ξ is systematically overestimated due to
the nodal constraint. An improved nodal structure would lower

all energies, however, and there is no a priori reason to suspect
as large a bias for ζe.

To address the potential systematic error introduced by the
fixed-node approximation, we apply the same analysis to the re-
cent unbiased calculations and measurements shown in table III.
These include zero-range extrapolations of two exact diagonal-
izations for N+ = 4 [35], zero-range extrapolations of AFQMC
results for N+ = 4 [35] and for N+ ∈ {4,14,38,48,66} [20],
and experimental measurements of 6Li for N+ ≈ 106 [9]. (Al-
though not strictly at zero-range, the error induced by the non-
zero range in the 6Li experiments should be less than 0.003
(see also section IV B).)

We use these points to fit our three-parameter zero-range
SLDA, finding:

ξS = 0.3742(5), α = 1.104(8), η = 0.651(9). (7)

These error estimates must be taken with a grain of salt since
not all of the error bars quoted in table III are 1σ normal
standard deviations. This is reflected in the rather small χ2

r =
0.2 of the fit. The results of this full fit are shown in figure 3.

This addresses the suspiciously large value of η found by
fitting FNQMC results (see table II). It appears that a large part
of the previous discrepancy is due to the fixed-node approxi-
mation which works well for small systems, but systematically
overestimates the energy of large systems. (The variational
wavefunction has the same number of parameters for all system
sizes, we therefore expect it to better match the simpler nodal
structure of small systems than the more complicated nodal
structure of larger systems.) The gap η still appears to be too
large, but without more data, we cannot conclude that this is a
failing of the SLDA.

N+ ξN+ Method

2 −0.415332919 · · · exact (see section B)
4 0.288(3), 0.286(3) exact diagonalization [35]
” 0.28(1) AFQMC [35]
” 0.280(4) AFQMC [20]

14 0.39(1) AFQMC [20]
38 0.370(5), 0.372(2), 0.380(5) AFQMC [20]
48 0.372(3), 0.367(5) AFQMC [20]
66 0.374(5), 0.372(3), 0.375(5) AFQMC [20]
106 0.376(5) experiment [9]

TABLE III. Unbiased zero-range box energies. Most are extrapolated
AFQMC results except as noted. The ξ4 values are consistent with our
upper bounds 0.2839(3) (VPT ), and 0.2829(3) (V2G). This agreement
indicates that the systematic error due to the fixed-node constraint is
sub-percent for N+ = 4.

The results shown in Fig. 2 may help understand the finite-
size effects seen in neutron matter and neutron drops. In neu-
tron matter at kF a =−10 the difference between the energies
of N+ = 20 and N+ = 44 particles is roughly 12% [36]. The
range of kF re values shown in Fig. 2 is too limited too allow an
accurate extrapolation to nuclear ranges. Even so, simple ex-
trapolations of the energies of N+ = 14 and N+ = 38 particles
to kF re = 1.45 using linear and quadratic forms lead to shell
effects on the order of 10-20%, which is consistent with the
(finite scattering-length) results seen in neutron drops [37].
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FIG. 3. (color online) Comparison of SLDA fits at zero range with zero-range extrapolated QMC upper bounds (blue) with all unbiased
zero-range extrapolations (green) from [20, 35] listed in table III. The light (yellow) band is the experimental value of ξS [9]. In addition, we fit
the exact ξ2 =−0.4153 · · · value discussed in appendix B (not shown in the plot). Note that this comparison allows one to assess the FNQMC
bound, which is tight for N+ ≤ 6.

B. Harmonic Traps

As an application, we show here how the universal effective
range dependence (6) affects the energy of particles in an
isotropic harmonic trapping potential V (r) = mω2r2/2 using
the Thomas-Fermi (TF) approximation. The local chemical
potential is µ(r) = µ0−V (r), and the equation of state

µ(r)
EF

= ξS +
9
5

ζekF re + · · ·

thereby establishes the local density and energy-density within
the TF approximation out to the maximum TF radius of R =√

2µ0/m/ω . Including these first two terms we thus obtain

N+ =
ω3R6

24ξ 3/2 −ζere
32ω4R7

175πξ 3 + . . . ,

E
h̄ω

=
ω4R8

64ξ 3/2 −ζere
16ω5R9

225πξ 3 + . . . .

In the zero-range limit, the energy of a trapped unitary gas may
be calculated using the low-energy effective theory [38] and

has the form

E = h̄ω
1
4
(3N+)

4/3
(√

ξ+

−6
√

2π
2
ξ (2c1−9c2)(3N+)

−2/3 +O(N−7/9
+ )

)
where the leading order term is the well-known TF expression
(see for example [42]). The next-to-leading order term is di-
rectly related to the q2 coefficient of the static-response and the
coefficients have been estimated using the ε-expansion [22].
The asymptotic corrections are due to boundary effects beyond
the validity of the effective theory.

This naturally suggests the introduction of the parameter
x = (3N+)

−2/3 so that the asymptotic behavior of E is linear in
x. The square of the energy E2 also exhibits linear asymptotic
behavior,

16E2

h̄2
ω2(3N+)8/3

= ξ + cx+O(x7/6), (9)

where c =−12
√

2π2ξ 3/2(2c1−9c2). We prefer this form as
ξ appears as the intercept and note that the relationship is
remarkably linear, as can be seen in figure 4.
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FIG. 4. (color online) Ground-state energy of the harmonically
trapped unitary Fermi gas (in units where h̄ω = 1) scaled to demon-
strate the asymptotic form (9) predicted by the low-energy effective
theory of Ref. [38]. The SLDA with quadratic fit in table II (dashed
blue line) and unbiased fit (7) (dotted blue line) is compared with zero-
range results for N+ ∈ {4,6} from Ref. [39] (black xs), and finite-
range QMC results from Ref. [40] (upper red dots) and Ref. [41]
(middle green pluses). The latter have significantly lower energy,
despite having a slightly larger effective range, suggesting that the
wave functions in Ref. [40] were not fully optimized. A more thor-
ough optimization and extrapolation to zero effective-range yields the
lowest points (cyan dots) which exhibit the correct scaling at large
N+, approaching the thermodynamic value of ξ . We also include at
x = 0 the fit ξ from Eq. (7) (cyan diamond) and the light (yellow)
experimental band [9].

It is interesting that, in the non-interacting system, shell-
effects appear at the same linear order x, leading to a fundamen-
tal uncertainty in the coefficient 0.67 < c < 1.7. Pairing sup-
presses these shell effects, and they are virtually non-existent
in the unitary gas leading to a well-defined value of c. Note
that the TF approximation contains only the leading order term:
i.e. c = 0.

In the TF approximation, the leading-order effective-range
correction ζekF re leads to a super-leading order (in N+) correc-
tion to (9):

16E2

h̄2
ω2(3N+)8/3

= ξ +1.17
ζere

ξ 1/4

√
ωx−1/4 +O(r2

e). (10)

(The coefficient is 1.17 = 225/2/1575π .) The singular x−1/4

demonstrates that, as N+ gets large, the central density becomes
large and kF re corrections play an increasingly significant role.
The analysis is therefore only valid in a limited regime where
the system is sufficiently large that the TF approximation is
valid, but where the central density is small enough that kF re
remains small. It illustrates how a finite effective range will
alter the linear asymptotic behavior expected in figure 4.

In figure 4 we show new fixed-node QMC results that have
been extrapolated to zero-range using a quadratic polynomial
in kF re. These results represent the first ab initio calculations to

demonstrate the correct linear asymptotic scaling as predicted
by the effective theory. In particular, all previous results start to
“turn up” as they approach the thermodynamic limit. While this
is qualitatively consistent with the expected divergent x−1/4

behavior expected of a finite-range, the effect does not agree
quantitatively: eq. 10 predicts the divergence to set in at a
larger N+ than seen in figure 4. We suspect that the incorrect
scaling of previous trapped results indicates the presence of
spurious length scales (but in principle, could also signify
spurious breaking of another symmetry).

Allowing a more flexible variational wavefunction (green
pluses [41]) improves the bound compared with the red dots
of [40]. This seems sufficient for small systems as witnessed
by the agreement with the N+ ∈ {4,6} results of [39], but does
not provide the correct asymptotic behavior in larger traps
where the density and pairing correlations differ substantially
between the center and edges of the trap. To obtain the correct
asymptotic behavior here, we include an explicit dependence
on the center-of-mass coordinate of each pair in the variational
pairing wavefunction (cyan dots).

The linear scaling of our new results indicates that this nodal
approximation does not introduce any spurious length scales,
however, even with this extra freedom, the variational bound
provided for trapped systems is not as tight as it is for homo-
geneous matter, and the cyan dots extrapolate to a somewhat
higher bound for the value of ξ ≈ 0.4. As with the homo-
geneous systems, we find the same trend that the variational
bound is tight for small systems, but is less accurate for larger
systems where pairing correlations become more significant.

Finally, we have included the SLDA predictions in the fig-
ure 4 (blue curves) but do not use the SLDA to fit the results
since we have not included any gradient corrections. By con-
struction, the SLDA extrapolates to the thermodynamic value
of ξ used in the parametrization, but the slope is sensitive to
the leading order gradient corrections that we have neglected in
this paper since they do not contribute to homogeneous matter.
This plot contains within it hints as to the nature of the gradient
corrections to the SLDA, but quantitative statements require
further analysis beyond the scope of this paper.

V. SUMMARY AND CONCLUSIONS

In this work we have extensively analyzed the ground-state
energy of strongly interacting atoms for finite effective ranges.
We present new Fixed-Node QMC results for inter-atomic po-
tentials that also contain repulsive cores: these new potentials
yield results that are statistically consistent with the purely
attractive (modified Pöschl-Teller) potential used in earlier
works, demonstrating the universality of the leading finite–
effective-range dependence, and addressing concerns about
contamination of the FNQMC energies by deeply bound many-
body states.

To model these results in a common framework, we have
minimally extended the Superfluid Local Density Approxima-
tion Density Functional Theory to directly fit the finite-range
FNQMC results. Although this simple generalization of the
SLDA is not completely consistent with the FNQMC results,
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it still proves to be a useful tool for extrapolating finite-size
results to the thermodynamic limit. To assess the accuracy of
the variational upper bound provided by the FNQMC results,
we have also fit the SLDA to unbiased (non-variational) exact,
QMC, and experimental results from the literature to produce a
working SLDA for modeling physical systems. This fit demon-
strates that the three-parameter zero-range SLDA is consistent
with the unbiased results.

Finally, we have presented new QMC results for zero-range
trapped systems. These results demonstrate, for the first time,
the correct asymptotic behavior in the thermodynamic limit as
predicted by the low-energy effective theory.
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Appendix A: Homogeneous solutions of the Superfluid Local
Density Approximation

In this appendix, we describe some properties of homogeneous
solutions to the SLDA functional, both in the periodic box, and
in the thermodynamic limit of infinite matter. (When these
equations are applied locally at each point in a slowly varying
external potential, one obtains the TF approximation.) As
discussed in the text, we use the thermodynamic solutions to
express the parameters β and γ in terms of the more physically
relevant quantities ξ and η .

We start by rotating away the phase, taking ∆ = |∆| to be
real. We also note that the self-energy U plays no role in the
solution of the homogeneous equations: all effects are absorbed
into the effective chemical potential µeff. One only needs to
compute the self energy U to relate the effective chemical to the
thermodynamic chemical potential. Thus, the homogeneous
Hamiltonian is completely parametrized by α , µeff, and ∆. In
momentum space, the Hamiltonian is easily diagonalized,

H =

(
εk ∆

∆ −εk

)
=

(
uk vk
vk −uk

)(
Ek
−Ek

)(
uk vk
vk −uk

)
,

εk =
α h̄2k2

2m
−µeff, Ek =

√
ε2

k +∆2,

uk =

√
1+ ε+

E+

2
, vk =

√
1− ε+

E+

2
.

In this diagonal form, ρ = fβ (H) can be computed in a straight-
forward matter. For reference, the zero-temperature results are:

n+(α,µeff,∆) = ∑

∫ d3~k
(2π)3

(
1− εk

Ek

)
,

τ(α,µeff,∆)

2m
= ∑

∫ d3~k
(2π)3

k2

2m

(
1− εk

Ek

)
,

ν(α,µeff,∆) = ∑

∫ d3~k
(2π)3

∆

2Ek
.

The notation ∑
∫ d3~k

(2π)3 represents either a discrete summation
over box momenta ki = 2πni/Li or the continuous integral∫

d3~k /(2π)3 in the thermodynamic limit. The regulated quan-
tities τr and νr follow from these by subtracting the power-law
divergences (this is equivalent to using dimensional regulariza-
tion [43]):

τr

2m
= ∑

∫ d3~k
(2π)3

k2

2m

(
1− εk

Ek

)
−
∫ d3~k

(3π)3
m∆2

α2k2 ,

νr = ∑

∫ d3~k
(2π)3

∆

2Ek
−
∫ d3~k

(3π)3
m∆

αk2 .

Note that the subtraction integrals are continuous. In order to
implement this regularization scheme in the periodic box, one
must use a simultaneous spherical cutoff on both the discrete
and continuous momenta. The partial sums as a function of cut-
off will fluctuate as various lattice points enter the sphere, but
the magnitude of the fluctuations will reduce and the resulting

limit converges. Numerically, it is favorable to sum over cubic
shells so that the sequence of partial sums behaves smoothly,
allowing one to accelerate the convergence. However, the
location of the cutoff between shells must be fine tuned to
reproduce the correct result because – unlike the spherical case
– the fluctuations never die away with a cubic cutoff.

From the integrals one can see that the effective mass can
be scaled out to define the following finite functions:

n+

(
∆

α
,

µeff

α

)
= n+(α,µeff,∆),

C̃
(

∆

α
,

µeff

α

)
=−α

∆
νr(α,µeff,∆),

D̃
(

∆

α
,

µeff

α

)
=

α2

∆2 τr(α,µeff,∆).

One can thus deduce that, if the volume V = LxLyLz and shape
of the box~L are held fixed, then the TF equations exhibit an
additional invariance under scaling α , µeff, and ∆ by the same
factor

dα

α
=

dµeff

µeff
=

d∆

∆
.

Note that this does not follow from dimensional analysis (α
is already dimensionless) and expresses a non-trivial prop-
erty of the TF equations. These scaling relationships allow us
to express everything in terms of two dimensionless parame-
ters – ℵ = η/α , and the total (dimensionless) particle number
N+ = V n+ – through the dimensionless functions c(ℵ,N+)
and d(ℵ,N+):

ℵ≡ η

α
, N+ ≡ n+V,

c(ℵ,N+) = C̃
E2

F
EFG

, d(ℵ,N+) = D̃
E2

F
EFG

,

νr =−
3ℵ

5
c(ℵ,N+)n+, τr = ℵ

2d(ℵ,N+)
EFG

E2
F
.

In the T = 0 thermodynamic limit L→ ∞ (N+ → ∞), the
integrals can be performed analytically (see [43]). We start by
defining:

k0 =

√
2m|µeff|

α h̄2 , y0 =
µeff√

∆2 +µ2
eff

.

We may then express our previous results as

n+ =
k3

0
3π2 hn, C̃ =

mk0

4π h̄2 hc, D̃ =
−α2h̄2k5

0
8mπ2∆2 hd ,

where the functions hn, hc, and hd depend only on y0,

hn(y0) =
3
4

y0 f1/2(y0)− f3/2(y0)

|y0|3/2 , hc(y0) =
f1/2(y0)

π|y0|1/2 ,

hd(y0) =
f5/2(y0)− y0 f3/2(y0)

|y0|5/2 , fα(a) =
−π Pα(−a)

sin(πα)
,



10

through the Legendre function Pα(x) which satisfies

0 = (1− x2)P′′α −2xP′α +α(α +1)Pα ,

Pα(x) =
1

2πi

∮
ω
−α−1

√
1−2xω +ω2 dω.

Noting that n+ = k3
F/3π2 we can identify k3

F = k3
0hn and EF =

h̄2k2
F/2m = h2/3

n k2
0/2m = h2/3

n |µeff|/α . We can then relate ℵ

directly to y0 through the monotonic function:

ℵ(y0) =
∆

αEF
=

∆

|µeff|h2/3
n (y0)

=

√
y−2

0 −1

h2/3
n (y0)

.

This function has the limiting behavior:

ℵ =


(

4
1+y0

)1/6
where y0 ≈−1,√

2(1− y0) where y0 ≈ 1,

and an application of five steps of Newton’s method using this
as a guess (splitting the input at the point ℵ ≈ 1.211292490
where these asymptotic forms meet) solves the inverse problem
y0(ℵ) to machine precision. With this conversion we can
directly express

c(ℵ) = cN+=∞(ℵ) =
5π

8
hc(y0)

h1/3
n (y0)

,

d(ℵ) = dN+=∞(ℵ) =
−5
4ℵ2

hd(y0)

h5/3
n (y0)

,

allowing the parameters α , β , and γ to be computed from the
thermodynamic values of α , ξ , and η :

γ =
5α(3π2)2/3

6c(η/α)
, (A4a)

β = ξ − d(η/α)η2

α
− 6η2γ

5(3π2)2/3 . (A4b)

We use these equations to express all of our results in terms
of the thermodynamic values of α , ξ , and η , even though the
functional is expressed in terms of fixed parameters α , β , and
γ .

Appendix B: Particles in a Box

Here we present some details about computing the energies
E of N+ = Na +Nb particles in a cubic box of size L3. There
are two conventions for expressing the energy of a box. We
use ξN+ = E (N+)/EFG where E (N+) = E(N+)/L3. All val-
ues of ξ reported in this paper have been converted to this
normalization. The other convention ξ box = E(N+)/EFG(N+)
normalizes the energy with respect to the energy of N+ non-
interacting fermions in the same box (see [3] for conversion
factors).

To further constrain our fits, we include the results for N+ =
2. By solving the Schrödinger equation for two particles in a
periodic box of size L3 with the short-range boundary condition

lim
r→0

Ψ(~x,~x+~r) ∝
1
r
+ k cotδk +O(r),

one obtains

k cotδk =
1

πL
S

((
Lk
2π

)2
)
,

S(η) = lim
Λ→∞

Λ

∑
~n

1
‖~n‖2−η

−4πΛ.

where E = k2/2mr is the energy in the center-of-mass–frame
and mr = m/2 is the reduced mass of the system (see for exam-
ple [44] and references therein). Note that for non-interacting
particles, EFG(N+) = 0, thus for all attractive interactions,
E ∝ k2 < 0. This poses no problems since only k2 enters the
formulation: for example, k cotδk is a series in k2 (1).

As before, the summation may be performed with par-
tial sums over cubic shells: these behave smoothly and are
amenable to series acceleration techniques (see [45] for exam-
ple) such as the Levin transformation.

The energies ξ2(kF r) are shown in figure 5 for the poten-
tials (4) used in this paper. Over the ranges considered in this
paper, the results are virtually identical. Finally, we note that
the N+ = 2 solution to the SLDA has only the normal solution
∆ = 0. Both particles energy the k = 0 ground state which has
zero energy, hence we can identify β (kF r) = ξ2(kF r).

0.00 0.05 0.10 0.15 0.20 0.25 0.30
kF re

−0.435

−0.430

−0.425

−0.420

−0.415

ξ 2

VPT

V2G

V2E

FIG. 5. (color online) Exact ground-state energy ξ2(kF re) for the
N+ = 2 system in a box for each of the potentials (4).
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