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Abstract

The extreme-ultraviolet (XUV) and strong-field valence ionization of cytosine and uracil is con-

sidered. We examine some simple estimates of the relative yields of the cation states populated

following ionization, and compare these to the results of a recently developed ab initio-type numer-

ical model designed to compute strong-field ionization of molecules, the so-called time-dependent

resolution in ionic states (TD-RIS) method. In analogy with one-photon XUV ionization, where

the photoionization matrix elements can be related to the Dyson orbitals, we construct estimates

for the yield of strong field ionization (SFI) to different cation states based on the Dyson orbitals

norms and the Keldysh tunneling ionization rate. In the case of XUV ionization, the Dyson norms

are shown to be good predictors of the relative cation yields when compared with the TD-RIS

yields. The Dyson- and Keldysh-based models underestimate the yield to excited cation states

in the case of SFI. The increased yield to the excited cation states in the TD-RIS results is at-

tributed to the inclusion of multielectron effects and continuum structure not present in the simple

models. The MO-ADK method of calculating SFI is also considered. This later method is seen

to agree more closely with the Dyson- and Keldysh-based estimates as it also fails to capture the

multielectron effects and continuum structure included in the TD-RIS approach.
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I. INTRODUCTION

The emergence of attosecond science [1], driven largely by advances in strong-field and

recollision physics [2] that lead to high-harmonic generation (HHG) and the realization of

attosecond XUV pulses, stimulated an interest in accurate descriptions of molecular strong-

field ionization (SFI) and attosecond XUV ionization. Pump-probe spectroscopies using

attosecond XUV pulses would likely involve attosecond XUV ionization as the probing step

[3], and attosecond probing techniques [4] that rely directly on the process of HHG necessarily

involve strong-field ionization as the first step in HHG. In addition to these attosecond

techniques, strong-field ionization itself is being explored as a probe of electronic [5] and

nuclear [6] dynamics in molecules.

In this study, we consider both attosecond XUV ionization and SFI of ground and excited

states of cytosine and uracil. The valence excited states of these molecules have been studied

extensively in the past, as they play an important role in the interaction of DNA/RNA with

UV radiation. Some of the techniques used for elucidating the excited state dynamics include

pump-probe techniques, with SFI as a probe. Even though this is not the focus of this paper,

the findings of our work may prove helpful in interpreting these experiments. Both cytosine

and uracil are heterocyclic organic molecules, and have multiple excited states in the UV

energy range. The first excited state (S1) in cytosine is a bright ππ∗ state, while in uracil S1

is a dark nπ∗ state and the second excited state (S2) is a bright ππ∗. So, in our calculations

we include ionization from S1 for cytosine, and S1 & S2 for uracil. The orbitals involved in

the excitation and the electronic configurations are shown in Appendix D.

The process of gas-phase molecular photoionization by ultrafast pulses of radiation would,

of course, be most accurately described by a full-dimensionality solution of the time-

dependent Schrödinger equation. However, such full-dimensionality solution is typically

impossible due to the exponential increase of the computation complexity with increasing

dimenstionality. Further, even if such a solution was routinely available, the desire for physi-

cally intuitive approximations that offer satisfying conceptual frameworks for thinking about

the problem would remain. Since the earliest days of quantum mechanics, a particularly use-

ful picture of one-photon XUV and X-ray photoionization follows from Koopmans’ theorem

[7]. Designed to predict ionization energies, Koopmans’ theorem (i) assumes a Hartree-Fock

molecular orbital description of the multielectronic states of the neutral and cation species,
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and (ii) ignores orbital relaxation in the cation following photoionization. The photoioniza-

tion process is then seen as the removal of an electron from specific single-particle orbitals of

the neutral. Predicting the relative probabilities of photoionization to different cation states

often requires going one step beyond the Koopmans’ picture. Standard approximations de-

veloped for XUV and X-ray photoionization that do not rely on the assumption inherent in

Koopmans’ theorem, like the sudden approximation and/or one-photon perturbation theory,

lead to the concept of Dyson orbitals [8, 9]. Dyson orbitals represent overlaps between the

neutral and cation multielectron wavefunctions, and are routinely used in theoretical studies

of XUV ionization in the perturbative regime [10]. The norms of the Dyson orbitals then

become good predictors of the relative yields of the possible ionizing transitions.

In this paper, we explore the strong-field ionization of the polyatomic molecules cytosine

and uracil, and attempt to answer the question whether Dyson orbitals and Dyson norms

alone can qualitatively capture the behavior of SFI. In parallel, we consider the XUV ion-

ization of the same species in order to provide a guiding example of the utility of Dyson

orbitals for one-photon ionization. Since our main interest is in SFI, we consider ionization

from the outer valence shell only—the dominant channel for SFI. We first outline the key

analytical approximations that relate one-photon ionization and SFI to the Dyson orbitals:

the sudden approximation and one-photon perturbation theory for XUV ionization, and

the strong-field approximation (SFA) for SFI. We then present the results of our numerical

calculations for the XUV ionization and SFI of these molecules using the recently developed

time-dependent ionization formalism of Ref. [11], herein called the time-dependent resolution

in ionic states (TD-RIS) method. We compare the results of the TD-RIS computations with

predictions based on the simple analytical treatments related to the Dyson norms, as well as

to predictions from the MO-ADK theory [12, 13], a popular quasistatic theory of molecular

ionization based on semiclassical tunneling models. As expected, the Dyson norms are seen

to be adequate predictors of total ionization yields in the case of one-photon XUV ionization.

Analogous simple analytical treatments involving the Dyson norms do not ultimately offer

a quantitatively accurate picture of SFI. Although Dyson norms alone do not fully capture

the behaviour of SFI, the analysis of where, and why, these ideas break down provides a

clear framework for discussing and understanding non-Dyson effects in molecular SFI.
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II. ANALYTICAL CONSIDERATIONS AND MOTIVATION

A. Dyson Orbitals

Given the neutral state |Nm〉 and ionic states |Il〉, a set of single-particle orbitals arise

naturally for the present problem, called Dyson orbitals [8, 9], defined as the overlap between

the neutral and ionic states

|φD
lm〉 =

√
n〈Il|Nm〉. (1)

The integral implied by the brackets in Eq. (1) is taken over the (n − 1) ionic electrons,

and the Dyson orbitals are thus one-electron functions. Unlike atomic or molecular orbitals

typically used in electronic structure theories, the Dyson orbitals do not in general have unit

norms. It is then convenient to write the Dyson orbitals as

|φD
lm〉 = ηlm|φ̃D

lm〉 (2)

where

|φ̃D
lm〉 =

|φD
lm〉√

〈φD
lm|φD

lm〉
(3)

are normalized Dyson orbitals, and the amplitudes ηlm are given by

ηlm = 〈φ̃D
lm|φD

lm〉. (4)

The Dyson norms are defined as

GD
lm = |ηlm|2 = 〈φD

lm|φD
lm〉. (5)

B. Continuum Functions

A number of different assumptions can be made for the continuum states. We work with

multielectron continuum-ion wave functions that, in principle, have the form

|Mm〉 = Â |Im(x1, ..., xn−1)〉|φ~k
m(xn)〉, (6)

where |φ~k
m(xn)〉 is a continuum state with momentum ~k, and Â is the appropriate antisym-

metrizer [14]. At this stage, the continuum function |φ~k
m(xn)〉 could be either a plane wave

or a distorted wave that takes effects of the ionic core on the continuum into account. In
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the following, which function is being used for |φ~k
m(xn)〉 will be specified when the particular

form of the continuum matters. Although the states |Mm〉 each include only a single cation

configuration, they can be used to construct multiconfigurational continuum-ion states

|Mj〉 =
∑

m

|Mm〉 =
∑

m

Â |Im〉|φ~k
m〉 (7)

Note that in Eq. (7) the |φ~k
m〉 need not be normalized to 1. Rather, the weight of each ionic

channel is carried by the normalization of the populated continuum functions |φ~k
m〉.

C. XUV Ionization

Sudden Approximation

As a starting point for the discussion, consider two simple treatments of relative yields of

one-photon XUV ionization [8]. The first treatment is offered by the sudden approximation

as applied to the Hamiltonian [8], which proceeds as follows. Before the ionization event, all

electron interact and the relevant multielectron Hamiltonian contains all electron-electron

interaction terms. After the ionization, one electron is free and no longer interacts with the

remaining bound electrons. The multielectron states then have the form of the |Mm〉 states.
Projecting the initial state of the system onto the final state then gives an estimate of the

transition probability for ionization

wsud
lm (~k) = |〈Ml|Nm〉|2

=
∣∣∣
(
〈φ~k

l |〈Il|Â
)
|Nm〉

∣∣∣
2

=
∣∣∣〈φ~k

m|φD
lm〉
∣∣∣
2

. (8)

In the notation of the normalized Dyson orbitals, wsud
lm becomes

wsud
lm (~k) =

∣∣∣〈φ~k
m|φ̃D

lm〉
∣∣∣
2

GD
lm, (9)

and integrating over all ~k gives the total yield

W sud
lm =

∫
d~k wsud

lm (~k) (10)

=

(∫
d~k
∣∣∣〈φ~k

m|φ̃D
lm〉
∣∣∣
2
)
GD

lm.
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Equations (9) and (10) show that, when little continuum structure is expected (i.e.
∫
d~k |〈φ~k

m|φ̃D
lm〉|2 ≈ constant), W sud

lm is expected to be proportional to the norm of the Dyson

orbitals GD
lm.

One-photon Perturbation Theory

A second (and more accurate) treatment of XUV ionization uses first-order time-

dependent perturbation theory to calculate the one-photon ionization probability. The

first-order ionization probability is given by

w1st
lm (~k) = |F(ωk)|2|〈Ml|

∑

j

~ǫF · ~rj |Nm〉|2 (11)

= |F(ωk)|2|〈φ~k
l |~ǫF · ~rn|φD

lm〉+ 〈φ~k
l |φC

lm〉|2

where F(ω) is the frequency spectrum of the laser pulse

F(ω) =
1√
2π

∫
dt eiωtF (t), (12)

ωk = |~k|2/2 + EI − EN
m is the energy of the photon absorbed in order to eject an electron

with momentum ~k, and the orbitals |φC
lm〉 are given by

|φC
lm〉 = 〈Im|

n−1∑

j=1

~ǫF · ~rj|Nm〉. (13)

Within the assumption of strong orthogonality, where the continuum functions |φ~k
l 〉 are

assumed to be orthogonal to all the bound orbitals contained in |Nm〉 and |Im〉, the 〈φ~k
l |φC

lm〉
term would be zero, and w1st

lm (~k) becomes [8]

w1st
lm (~k) = |F(ωk)|2|〈φ~k

l |~ǫF · ~rn|φ̃D
lm〉|2GD

lm, (14)

and the total yield becomes

W 1st
lm =

(∫
d~k |F(ωk)|2|〈φ~k

l |~ǫF · ~rn|φ̃D
lm〉|2

)
GD

lm. (15)

These terms are kept in the time-dependent numerical simulations presented below.

Eqs. (14) and (15) show that the Dyson norms GD
lm again appear in the 1st order expres-

sion for the transition probability, and one could still expect that the GD
lm could act as

rough predictors of the relative ionization probability to the available ionic states, with the

assumption that the matrix elements |〈φ~k
l |~ǫF · ~rn|φ̃D

lm〉|2 are slowly-varying and carry little

structure.
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D. Strong-field Ionization

Consider now low-frequency strong-field ionization (SFI). The standard model of SFI

is the strong field approximation (SFA), which calculates the ionization amplitudes within

an S-matrix formalism. The continuum states are taken as free electrons solutions in the

laser field alone, ignoring the effects of the ionic electrostatic potential on these states.

This treatment of the continuum is qualitatively similar to the first Born approximation of

scattering states with the addition that the action of the laser is taken fully into account.

Allowing the laser field to act on one electron only (the single-active electron approximation,

almost universally invoked in SFA treatments of strong-field effects), the SFA probability

for ionization of a multielectron target, leading to a continuum electron with momentum ~k,

can be written as

wSFA
lm (~k) =

∣∣∣〈φ~k
l |USFA|φ̃D

lm〉
∣∣∣
2

GD
lm (16)

where the SFA propagator is given by

USFA = −i

∫
dt′
∫

d~k |φ~k
l 〉 (17)

× exp

[
− i

2

∫ t

t′
|~k + ~A(τ)|2dτ

]

×eiIp,lmt′〈φ~k
l |V (t′)

where

V (t) =

n∑

j=1

F (t) ~ǫF · ~rj, (18)

F (t) is the time-dependent electric field of the laser, ~ǫF is the polarization direction, and

Ip,lm = El
I −Em

N is the ionization potential. The integral in Eq. (17) can be solved using ap-

proaches based on stationary phase and/or semiclassical approximations [15–17]. Following

integration, the total yield can be written as

W SFA
lm = Clm K(Ip,lm, F0)G

D
lm (19)

where

K(Ip,lm, F0) = exp

[
−2

3

(2Ip,lm)
3/2

|F0|

]
(20)

is the dominant exponential factor of the Keldysh tunnel ionization rate [15]. The prefactor

Clm depends weakly (i.e. not exponentially) on F0 and Ip,lm as well as on the specific state

(or Dyson orbital) being ionized.
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In analogy with the above arguments for one-photon XUV ionization, which showed that

the Dyson norms GD
lm could be used as rough approximations to the relative ionization

probabilities, Eq. (19) suggests that a good predictor of SFI probabilities might be given by

WDK
lm = K(Ip,lm, F0)G

D
lm (21)

where only the exponential Keldysh rate is retained. This approximation, which we call

the Dyson-Keldysh estimate, assumes that the Clm factors do not greatly affect the relative

ionization probabilities, in analogy with the assumption that the |〈φ~k
l |φ̃D

lm〉|2 and |〈φ~k
l |~ǫF ·

~rn|φ̃D
lm〉|2 can be neglected for one-photon XUV ionization.

E. TD-RIS

The construction and final equations of the TD-RIS formalism are outlined in the Ap-

pendix. The two central approximations are that the continuum electron is not antisym-

metrized with the remaining bound electron upon ionization, and only a finite number of

cationic states are included. The method includes a number of effects typically neglected

in semi-analytical approaches to strong field ionization like Keldysh- or SFA-based meth-

ods, including the MO-ADK approach considered below. For example, TD-RIS includes

the effects of the ionic binding potential on the continuum wavepacket during ionization,

and also includes correctly the influence of orbital symmetries and structure of the initial

Dyson orbital. Further, TD-RIS includes multichannel coupling where ionic transitions are

possible during the ionization event due to Coulomb interaction between the outgoing elec-

tron and the ionic core—the outgoing electron can cause transition in the ionic core due to

Coulomb interactions. The Coulomb interactions are found to be important in the context

of low-frequency strong-field ionization and will be discussed further in Section IIIB. In

principle, effects of laser-driven dipole coupling between the neutral and ionic states could

also be included. These latter couplings are neglected in the present study. However, we do

briefly consider their potential influence in the Appendix.
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FIG. 1: Comparison of the Dyson norms (left column) with the TD-RIS XUV ionization yields

(right column) for ionization from the lowest two singlet states of cytosine (top row - S0, bottom

row - S1).

III. COMPUTATIONAL RESULTS

A. One-Photon XUV Ionization

The connection between the Dyson norms and the one-photon XUV ionization yields is

computationally demonstrated in Figs. 1 and 2, which show the Dyson norms (left columns)

and TD-RIS ionization yields (right columns) for the lowest few neutral states of cytosine

and uracil. The numerical XUV ionization yields were calculated using the TD-RIS method.

The XUV pulse had the form

F (t) = F0f(t) sin(ωX(t− τon)) (22)

with a sin2 envelope

f(t) =





0 , t < 0

sin2

(
πt

2τon

)
, 0 ≤ t ≤ 2τon

0 , t > (2τon)

(23)

The frequency and pulse width were ωX = 4 a.u. (108.8 eV) and τon = 20 a.u. (0.48 fs)

respectively. The peak electric field strength was F0 = 0.0378 a.u. (I0 = 5× 1013 W/cm2) for
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FIG. 2: Comparison of the Dyson norms (left column) with the TD-RIS XUV ionization yields

(right column) for ionization from the lowest three singlet states of uracil (top row - S0, middle

row - S1, bottom row - S2).

cytosine, and F0 = 0.0293 a.u. (I0 = 3× 1013 W/cm2) for uracil. Although these intensities

are quite high, the ionization response is still within the perturbative one-photon regime at

XUV frequencies.

Comparing the Dyson norms with the corresponding numerical ionization yields for Figs.1

and 2 shows that the Dyson normsGD
lm are indeed good predictors of the relative probabilities

of one-photon XUV ionization. Although the GD
lm are not strictly quantitative predictors

of the relative ionization yields to the various cation states, the patterns of ionic-channel

resolved ionization probabilities seen in the right columns is clearly reflected in the Dyson

norms in the left columns. Differences between the GD
lm and the numerically-calculated

ionization probabilities are due to the presence of
∫
d~k |〈φ~k

l |φ̃D
lm〉|2 and

∫
d~k |F(ωk)|2|〈φ~k

l |~ǫF ·
~rn|φ̃D

lm〉|2 in the expressions forW sud
lm andW 1st

lm , as well as the |φC
lm〉 term used in the numerical
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FIG. 3: Comparison of the Dyson-Keldysh estimate (left column) with the half-cycle strong field

ionization yields (right column) for ionization from the lowest two singlet states of cytosine (top

row - S0, bottom row - S1).

simulations. However, these differences are relatively small and the general behavior of the

ionic-channel-resolved yields are well characterized by the GD
lm alone.

B. Strong-Field Ionization

In order to test Eq. (21), we calculated the strong-field ionization probability for the lowest

few states of cytosine and uracil, integrating the time-dependent equations-of-motion over

one half-cycle of an 800 nm driving laser field. The peak electric field strength was again F0 =

0.0378 a.u. (I0 = 5×1013 W/cm2) for cytosine, and F0 = 0.0293 a.u. (I0 = 3×1013 W/cm2)

for uracil. Unlike the XUV case, at 800 nm such intensities induce a strong nonlinear

ionization response, and low-order perturbation theory is no longer applicable. Possible

concerns regarding the use of a half-cycle pulse for low-frequency ionization are addressed in

the Appendix. The results of both the Dyson-Keldysh estimate and the numerical yields are

shown in Figs. 3 and 4. In contrast to the comparison between the Dyson norms and the XUV

ionization yields, here we see that the Dyson-Keldysh estimate, which takes into account the

dominant exponential dependence of SFI and the Dyson norms, is no longer a good predictor
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FIG. 4: Comparison of the Dyson-Keldysh estimate (left column) with the half-cycle strong field

ionization yields (right column) for ionization from the lowest three singlet states of uracil (top

row - S0, middle row - S1, bottom row - S2).

of the relative probabilities of SFI to different cation states. The numerical simulations show

much more population in excited cation states then would be expected from Eq. (21), the

latter showing a very strong suppression of the excited cation populations, particularly for

ionization from excited states. The failure of the Dyson-Keldysh estimate as compared to

the numerical results has two main sources: omission of the Clm pre-exponential factor, and

Coulomb-mediated interchannel coupling.

Pre-exponential Factor Clm

Unlike the case for one-photon XUV ionization, where the matrix elements |〈φ~k
l |φ̃D

lm〉|2 and
|〈φ~k

l |~ǫ · ~rn|φ̃D
lm〉|2 could be neglected without detrimental effects, the factor Clm is no longer
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weakly-dependent on the final ionic state populated. This difference between XUV and

low-frequency ionization can be qualitatively understood as follows. In XUV ionization, the

liberated electron makes a transition from the neutral directly to a high-lying continuum

state. In the absence of strong continuum resonances, the high-lying continuum states

depend weakly on the ionic core. Further, the bound-continuum matrix elements |〈φ~k
l |φ̃D

lm〉|2

and |〈φ~k
l |~ǫ · ~rn|φ̃D

lm(xn)〉|2 from XUV ionization in a sense ’pick out’ the large-momentum

Fourier components from the Dyson orbitals. For large momentum, the Fourier spectrum

of the different Dyson orbitals is smooth and shows little structure. In SFI, the continuum

electron first slowly leaks out of the neutral into a low-lying continuum state and is then

accelerated away from the core by the laser field once in the continuum. In this case, the

process qualitatively involves a transition from the initial Dyson orbital into a low-lying

field-distorted continuum state. This is the part of the process captured by the factor Clm.

Low-lying continuum states depend strongly on the structure of the ionic core, and thus on

the particular final ion state accessed following ionization, leading to a large dependence of

Clm on the final ion state. This strong dependence, entering SFI qualitatively through the

initial population of low-lying continuum states, is the main reason for the poor predictive

power of Eq. (21).

Coulomb-mediated Interchannel Coupling

The SFA model introduced above is a single active electron (SAE) model. Although

this is a standard assumption in strong-field literature, it is of course not strictly valid. In

fact, it is only very recently that theoretical efforts within the strong field community have

been focused on exploring non-SAE effects within the context of SFA models [18–20]. The

computational model of Ref. [11], which we use for the numerical ionization yields, allows us

to go beyond the SAE approximation. Of interest to the present discussion is the effect of the

Coulomb force exerted by the continuum electron on the remaining bound ionic electrons: as

the liberated electron is released and accelerated away from the parent molecule it can cause

transitions in the ionic core through Coulomb interaction with the bound ionic electrons.

Qualitatively, these are the same couplings responsible for autoionizing states. The couplings

can be turned on or off at will in the simulations. Thus far, all simulations in Figs.1 to 4

have left the couplings turned on. Fig.5 shows the effect of turning off the couplings in the

13



0 1 2 3 4 5 6
0

0.2

0.4

0.6

Final Ionic Doublet State

X
U

V
 Y

ie
ld

Cytosine S
2

TD−RIS: XUV×10−5

0 1 2 3 4 5 6
0

0.2

0.4

0.6

Final Ionic Doublet State

S
F

I Y
ie

ld

Cytosine S
2

TD−RIS: IR
×10−2

 

 

No interchannel

With interchannel

FIG. 5: Comparison of the ionization calculations with (empty circle) and without (solid circles)

the Coulomb-mediated interchannel couplings for ionization from the S1 of cytosine.

XUV (left panel) and strong-field ionization (right panel), using the S1 state of cytosine as

an example. The interchannel coupling has very little effect in the XUV ionization. In this

case, the liberated electron is ejected directly into a high-lying continuum states and quickly

moves away from the parent leaving little time for the Coulomb interaction to accumulate

an appreciable effect [21]. In SFI, where the electron more slowly leaks out of the parent

to be subsequently accelerated in the field, there is now comparatively more time for the

Coulomb interactions to influence the ionization dynamics [19], and a sizable change in the

ionization yields with and without the interchannel coupling is now seen for SFI, with the

yield of states D1 and D2 increasing by almost a factor of 2.

MO-ADK

As a final consideration, we explore the results of the MO-ADK approach [12, 13]. MO-

ADK is a method for calculating strong-field ionization rates of molecules based on qua-

sistatic and semiclassical tunneling formulas. It has become a popular technique in studies

of small molecules, largely due to the ease of computation of the final formulas. Building on

previous results of Keldysh [15] and ADK [17] approaches, MO-ADK first decomposes the

ionizing orbitals (in our case the Dyson orbital) into a spherical harmonic expansion at a

large radius. It then applies the known tunneling formulas to each of the spherical compo-

nents, within the approximation that the tunneling occurs through a long range Coulomb

barrier, Thus, the detailed structure of the nuclear binding potential is neglected for ioniza-

tion step. MO-ADK is intrinsically a single-active-electron method—ionization for each ionic

channel is computed independently. Multielectron effects, such as the Coulomb-mediated
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FIG. 6: Ionic-state-resolved ionization rates for cytosine and uracil computed using the MO-ADK

[12, 13] method.

interchannel couplings, are not included in the existing formulations. Fig. 6 compares the

MO-ADK ionization rates with the Dyson-Keldysh estimates for the case of uracil. We ap-

plied the spherical expansion at a radius of 9 a.u. about the center-of-mass of the molecules.

Note that while MO-ADK calculates ionization rates, for short pulses and in the absence

of complete neutral depletion the rates are proportional to the ionization yields. It is seen

that MO-ADK mirrors the predictions of the Dyson-Keldysh estimates. Due to the fact that

MO-ADK is not expected to be as rigorous a method as the TD-RIS, we do not investigate

further the detailed behavior of the MO-ADK results.
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IV. DISCUSSION AND SUMMARY

In this study, we investigated one-photon XUV and strong-field IR ionization of cytosine

and uracil, with emphasis on which final valence cation states are populated following the

ionization. One-photon XUV ionization is well understood [8], and it is included in the

present study as a background upon which we can discuss the strong-field ionization. Dyson

norms are confirmed to act as good predictors of the population distribution across the

valence cation states for XUV ionization. The analogous predictor for strong-field ionization,

namely the Dyson-Keldysh estimate, is shown to be inadequate; the Dyson-Keldysh estimate

consistently underestimates the ionization yield to excited cation states when compared

against the more elaborate TD-RIS results. In addition, we have also evaluated the MO-

ADK ionization theory for comparison. The MO-ADK largely mirrors the results of the

Dyson-Keldysh estimate.

Two sources of the breakdown of the Dyson-Keldysh estimate are captured and high-

lighted by the TD-RIS calculations. The first is the fact the strong-field IR ionization

couples initially to near-threshold continuum states where much continuum structure exists.

Therefore, approximations that ignore low-lying continuum structure perform poorly. The

second cause is the Coulomb-mediated interchannel coupling. It accounts for the Coulomb

interaction between the excited/continuum electron and the ionic core, which is again ne-

glected in simple estimates such as the Dyson-Keldysh and MO-ADK. Not considered in the

present study are the effects of laser-driven coupling of the neutral and/or the ionic bound

states, which can lead to further deviations from the Dyson-Keldysh picture. Bound state

dynamics are briefly considered in the Appendix, and those results suggest that while laser-

driven coupling between the neutral bound states are not important in Cytosine and Uracil

at the intensities used in the calculations, laser driven coupling between ionic states can

play a role in Cytosine. Certainly any laser-driven resonances between the bound states will

alter the yields, and further, off-resonant non-adiabatic excitations can become important

in polyatomic molecules [5, 22] at intensities typical of many strong field experiments.
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Appendix A: Hamiltonians and States

Within the non-relativistic regime, the neutral HN and ionic HI Hamiltonians are

HN = −
n∑

j=1

∇2

2
+

n∑

j=1

Vnuc(~rj) +
n∑

j=1

n∑

k=j+1

1

|~rj − ~rk|
(A1)

and

HI = −
n−1∑

j=1

∇2

2
+

n−1∑

j=1

Vnuc(~rj) +

n−1∑

j=1

n−1∑

k=j+1

1

|~rj − ~rk|
(A2)

where Vnuc(~r) is the electrostatic potential of the nuclei. Hartree atomic units (h̄ = me =

e = 1) are used throughout. These Hamiltonians give a set of neutral |Nj〉 and ionic |Ij〉
states

HN |Nj〉 = EN
j |Nj〉 (A3a)

HI |Ij〉 = EI
j |Ij〉 (A3b)

The laser-matter interaction is included in the (length gauge) dipole approximation,

HF (t) = HN + V (t) (A4)

where

V (t) =

n∑

j=1

F (t) ~ǫF · ~rj, (A5)

F (t) is the time-dependent electric field of the laser, and ~ǫF is the polarization direction.

Appendix B: Time-Dependent Resolution in Ionic States (TD-RIS) Approach

In the numerical approach of Ref. [11], referred to herein as the time-dependent reso-

lution in ionic states (TD-RIS) approach, the wave function ansatz uses a time-dependent

unsymmetrized version of |Mj〉 to represent the continuum-ion space,

|M′(t)〉 =
∑

m

|Xm(t)〉, (B1)
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where

|Xm(t)〉 = |Im〉|χm(t)〉, (B2)

and the |χm(t)〉 are time-dependent continuum wave packets (i.e. not continuum energy

eigenstates). Neglecting Â is presently necessary in the numerical simulations in order to

yield equations of motion that can be numerically solved in a reasonable time. Although an-

tisymmetrization is not fully included in the numerical codes, we can still use the simulations

to investigate a number of effects not uniquely related to antisymmetrization.

The TD-RIS method of Ref. [11] proceeds to derive the equations of motion for the |χm(t)〉
states coupled to a neutral initial state |Nj〉. To this end, a set of ‘Dyson-ion’ states |Slm〉
are introduced

|Slm〉 = |φ̃D
lm〉|Ilm〉. (B3)

Next we introduce the component of the neutral ground state that is orthogonal to the set

of |Slm〉 states

|Ñm〉 = NÑ

(
Î −

∑

l

|Slm〉〈Slm|
)
|Nm〉 (B4)

= Nm

[
|Nm〉 −

∑

l

ηlm|Slm〉
]

where Nm is the normalization factor of the state |Ñm〉. The full ansatz underlying the

method of Ref.[11] can now be written as

|Ψ(t)〉 = b(t)|Ñm〉+
∑

l

[
al(t)|Slm〉+ |Xl(t)〉

]
(B5)

where al(t) and b(t) are presently unknown time-dependent amplitudes of the |Slm〉 and

|Ñm〉 states. By inserting this ansatz into the Schrödinger equation (where ∂t = ∂/∂t)

i∂t|Ψ(t)〉 = HF (t)|Ψ(t)〉, (B6)

a coupled set of Schrödinger equations for al(t), b(t) and |χlm(t)〉 is obtained

i∂tb(t) = 〈Ñ |HF (t)|Ñ〉b(t) +
∑

k

〈Ñ |HF (t)|Sk〉ak(t) +
∑

k

〈Ñ |HF (t)|Xk(t)〉 (B7)

i∂tam(t) = 〈Sm|HF (t)|Ñ〉b(t) +
∑

k

〈Sm|HF (t)|Sk〉ak(t) +
∑

k

〈Sm|HF (t)|Xk(t)〉

i∂t|χm(t)〉 = R̂S
m〈Im|HF (t)|Ñ〉b(t) +

∑

k

R̂S
m〈Im|HF (t)|Sk〉ak(t) +

∑

k

R̂S
m〈Im|HF (t)|Xk(t)〉.
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where R̂S
m = (1 − |φ̃S

m〉〈φ̃S
m|). All the required matrix elements of HF (t) are given in the

Appendix of Ref. [11]. This is the set of coupled equations that our computational method

implements.

Appendix C: Details of Implementation

In the numerical TD-RIS results, Eqs. (B7) are numerically integrated in time using the

leap-frog algorithm, which is low-order but easily parallelizable. The continuum functions

|χm(t)〉 are represented on Cartesian grids with grid-point spacing of 0.2 au. The grids

extended to ± 15 au in all three spatial directions. The time step was dt = 0.0026666 au;

such a small time step is required for the leap-frog algorithm to ensure numerical stability.

Absorbing boundaries [23] of width 4.5 au are used at the grid edges to absorb the out-

going free-electron flux, and the total ionization yields were calculated by monitoring the

absorbed flux. Angular averaging over the relative angle between the molecular axis and the

polarization direction of the laser is carried out using Lebedev angular grids of the 9th order

[24], which can accurately represent angular structures up to about the 5th order spherical

harmonics.

The ionization calculations are carried out at the neutral ground state (S0) geometry,

calculated in previous studies [6]. For the present study, the low-lying neutral and cation

states (S0-S1 and D0-D6 for cytosine, S0-S2 and D0-D7 for uracil) were calculated at the

MCSCF level using GAMESS-US [25]. The neutral(cation) active space included 14(13)

electrons in 10 orbitals, and the aug-cc-pVDZ basis set (as implemented in GAMESS-US)

was used. The MCSCF calculations used state-averaging over the neutral and cation states

independently.

Appendix D: Electronic Configurations and Molecular Orbitals

Figure 7 shows the dominant electronic configurations and participating orbitals for the

neutral and ionic states of uracil and cytosine. These configurations illustrate why there

is a large Dyson norm between the bright excited states of cytosine and uracil (S1 and S2

respectively) and their ground ionic states (D0), while the Dyson norms for these neutral

states and the first few ionic states (D1-D3) are very low. The configuration for the ground
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FIG. 7: Dominant electronic configurations for relevant states of the neutral and the ion for cyto-

sine(top panel) and uracil (bottom panel). The participating orbitals are shown as well. Whenever

there is an approximately equal contribution from more than one configuration both of them are

shown in the figure. The orbitals shown are taken from the MCSCF calculation on the neutral

molecule, and are only qualitative for the ions.

ionic states differ from the excited neutral state configurations only by the removal of one

electron, whereas the exited ionic states involve removal of an electron in conjunction with

further rearrangement.

Appendix E: Boundstate Dynamics

In order to estimate the importance of laser driven coupling between the neutral or cation

bound states, we performed explicit calculations of the laser-coupled boundstate systems.

In these calculations, all population was initialized in the corresponding groundstate (S0 for
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FIG. 8: (Color online) Non-adiabatic boundstate dynamics.

the neutrals, D0 for the cations). We then solved the time-dependent Schrödinger matrix

equation in the basis of boundstates, in the absence of ionization:

i
∂

∂t




cI0(t)

cI1(t)

cI2(t)
...



=




E0 + µI
00(t) µI

01(t)

µI
10(t) E1 + µI

11(t) · · ·
...

. . .







cI0(t)

cI1(t)

cI2(t)
...




(E1)

where En are the field-free energies of the bound states, the cIm(t) are the amplitudes of the

bound states and the µI
nm(t) =

~F (t) · 〈Ψn|
∑

i ~ri|Ψm〉 account for the laser interaction with

the permanent and transition dipoles of the field-free states. We solve the matrix equation

for the system of bound states interacting with a 30 fs sin2 pulse at 800 nm, where we take

30 fs to be a typical ultrafast pulse duration. The final populations of the bound states

are shown in Fig. 8. For most cases, there is no significant post-pulse population left in

any excited bound states for intensities below 1014 W/cm2, indicating that non-adiabatic

laser driven coupling between the bound states is not significant at these intensities, thus
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FIG. 9: Ionization of the S2 state of uracil for a full pulse (4.8 fs FWHM envelope) and a half-cycle

pulse.

justifying the exclusion of the laser-driven coupling in the TD-RIS calculations. The case of

the cytosine cation shows a lower intensity threshold than the other cases for the laser-driven

coupling. Investigation of the effects of laser-driven coupling on the TD-RIS calculations is

left for future studies.

Appendix F: Half-Cycle vs. Full Pulse

Strong-field ionization for the low frequency regime is calculated using a half-cycle pulse.

This is done due to the computational workload involved with the TD-RIS method. It is

simply not feasible with present implementations to calculate the range of results covered in

this paper using a full pulse at 800 nm wavelengths. Since the XUV pulse is much shorter

in total duration, full-pulse calculation are feasible for the attosecond XUV pulses.

At first glance, this may cause some concern, since a half-cycle pulse is not consistent

with the free-space Maxwell wave equations. Here we justify the use of the half-cycle pulse.

First, it should be noted that for low-frequency fields, the tunneling process occurs largely

by quasistatic tunneling ionization in the combined potential of the cation plus the laser

field; the strong laser tilts the binding potential of the cation and the liberated electron

escapes through the suppressed barrier. Indeed, traditional analytical treatments of low-

frequency ionization, like the ADK theory [17], calculate the static-field ionization rate and

then average the static-field result over the single cycle. In addition to analogy with the

traditional analytical treatments, we included a single test case where we compare the half-

cycle against a full pulse (4.8 fs full width at half maximum) for the IR ionization, shown in

Fig 9. As can be seen, there are small variations between the two results, but qualitatively
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the half-cycle pulse capture the general features of the full-pulse simulation. Importantly,

the failure of the Dyson-Keldysh estimate is not caused by half-cycle artifacts.
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