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In this paper we study the performance of the quantum adiabatic algorithm on random instances
of two combinatorial optimization problems, 3-regular 3-XORSAT and 3-regular Max-Cut. The
cost functions associated with these two clause-based optimization problems are similar as they are
both defined on 3-regular hypergraphs. For 3-regular 3-XORSAT the clauses contain three variables
and for 3-regular Max-Cut the clauses contain two variables. The quantum adiabatic algorithms
we study for these two problems use interpolating Hamiltonians which are stoquastic and therefore
amenable to sign-problem free quantum Monte Carlo and quantum cavity methods. Using these
techniques we find that the quantum adiabatic algorithm fails to solve either of these problems
efficiently, although for different reasons.
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I. INTRODUCTION

The Quantum Adiabatic Algorithm (QAA) [1] is an al-
gorithm for solving optimization problems using a quan-
tum computer. The optimization problem to be solved
is defined by a cost function which acts on N bit strings.
The computational task is to find the global minimum of
the cost function.

To use the QAA, the cost function is first encoded in a
quantum Hamiltonian HP (called the ‘problem Hamilto-
nian’) that acts on the Hilbert space of N spin 1

2 particles.
The problem Hamiltonian is written as a function of σz

Pauli-matrices and is therefore diagonal in the computa-
tional basis. The ground state of HP corresponds to the
solution (i.e., lowest cost bit string) of the optimization
problem.

To find the ground state of the problem Hamiltonian,
the system is first prepared in the ground state of an-
other Hamiltonian HB, known as the beginning Hamil-
tonian. The beginning Hamiltonian does not commute
with the problem Hamiltonian and must be chosen so
that its ground state is easy to prepare. Here we use the
standard choice

HB =
N
∑

i=1

(

1− σi
x

)

2
,

which has a product state as its ground state.
The Hamiltonian of the system is slowly modified from

HB to HP . Here we consider a linear interpolation be-

tween the two Hamiltonians

Ĥ(s) = (1− s)HB + sHP , (1)

where s(t) is a parameter varying smoothly with time,
from s(0) = 0 to s(T ) = 1 at the end of the algorithm
after a total evolution time T .

If the parameter s(t) is changed slowly enough, the
adiabatic theorem of Quantum Mechanics [2–5]), ensures
that the system will stay close to the ground state of
the instantaneous Hamiltonian throughout the evolution.
After time T the state obtained will be close to the
ground state of HP . A final measurement of the state
in the Pauli-z basis then produces the solution of the
optimization problem.

The runtime T must be chosen to be large enough so
that the adiabatic approximation holds: this condition
determines the efficiency, or complexity, of the QAA. A
condition on T can be given in terms of the eigenstates
{|m〉} and eigenvalues {Em} of the Hamiltonian H(s),
as [6, 7]

T ≫ ~
maxs|V10(s)|
(∆Emin)2

, (2)

where ∆Emin is the minimum of the first excitation gap
∆Emin = mins∆E with ∆E = E1 − E0, and Vm0 =
〈0|dH/ds|m〉.

Typically, matrix elements of H(s) scale as a low poly-
nomial of the system size N , and the question of whether
the runtime is polynomial or exponential as a function of
N therefore depends on how the minimum gap ∆Emin
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scales with N . If the gap becomes exponentially small
at any point in the evolution, then the computation re-
quires an exponential amount of time and the QAA is
inefficient. The dependence of the minimum gap on the
system size for a given problem is therefore a central issue
in determining the complexity of the QAA.

A notable feature of the interpolating Hamiltonian (1)
is that it is real and all of its off diagonal matrix elements
are non-positive. Hamiltonians which have this property
are called stoquastic [8]. There is complexity-theoretic
evidence that some computational problems regarding
the ground states of stoquastic Hamiltonians are easier
than the corresponding problems for more general Hamil-
tonians [9]. It may be the case that quantum adiabatic
algorithms using stoquastic interpolating Hamiltonians
(such as the ones we consider here) are no more powerful
than classical algorithms–this remains an intriguing open
question.

An interesting question about the QAA is how it per-
forms on “hard” sets of problems – those for which all
known algorithms take an exponential amount of time.
While early studies of the QAA done on small systems
(N ≤ 24) [1, 10] indicated that the time required to solve
one such problem might scale polynomially with N , sev-
eral later studies using larger system sizes gave evidence
that this may not be the case.

References [7, 11] show that adiabatic algorithms will
fail if the initial Hamiltonian is chosen poorly. Recent
work has elucidated a more subtle way in which the adi-
abatic algorithm can fail [12–16]. The idea of these works
is that a very small gap can appear in the spectrum of
the interpolating Hamiltonian due to an avoided crossing
between the ground state and another level correspond-
ing to a local minimum of the optimization problem. The
location of these avoided crossings moves towards s = 1
as the system size grows. They have been called “pertur-
bative crosses” because it is possible to locate them using
low order perturbation theory. Altshuler et al. [15] have
argued that this failure mode dooms the QAA for random
instances of NP-complete problems. However, the argu-
ments of Altshuler et al. have been criticized by Knysh
and Smelyanskiy [17]. The application of the QAA to
hard optimization problems has been reviewed recently
in Ref. [18].

Young et al. [19, 20] recently examined the perfor-
mance of the QAA on random instances of the constraint
satisfaction problem called 1-in-3 SAT (to be described
in the next section) and showed the presence of avoided
crossings associated with very small gaps. These ‘bot-
tlenecks’ appears in a larger and larger fraction of the
instances as the problem size N increases, indicating the
existence of a first order quantum phase transition. This
leads to an exponentially small gap for a typical instance,
and therefore also to the failure of adiabatic quantum op-
timization.

It is not yet clear to what extent the above behavior
found for 1-in-3 SAT is general and whether it is a fea-
ture inherent to the QAA that will plague most if not

all problems fed into the algorithm or something more
benign than this. Previous work [21–24] had argued that
a first order quantum phase transition occurs for a broad
class of random optimization models.

In this paper we contrast the performance of the quan-
tum adiabatic algorithm on random instances of two com-
binatorial optimization problems. The first problem we
consider is 3-XORSAT on a random 3-regular hyper-
graph, which was studied previously in Ref. [22]. In-
terestingly, although this computational problem is clas-
sically easy–an instance can always be solved in poly-
nomial time on a classical computer by using Gaussian
elimination–it is known that classical algorithms that do
not use linear algebra are stymied by this problem [25–
28]. In Ref. [22] it was shown that the QAA fails to
solve this problem in polynomial time. In this paper we
provide more numerical evidence for this. We also fur-
nish a duality transformation that helps to understand
properties of this model.

The second computational problem we consider is
Max-Cut on a 3-regular graph. This problem is NP-
hard. However we consider random instances, for which
the computational complexity is less well understood.

A nice feature of these problems is that the regularity
of the associated hypergraphs constrains the two ensem-
bles of random instances. Studying the performance of
the QAA for these problems, we therefore expect to see
smaller instance-to-instance differences than for the un-
constrained ensembles of instances.

We use two different methods to study the performance
of the QAA. The first method is quantum Monte Carlo
simulation. It is a numerical method that is based on
sampling paths from the Taylor expansion of the parti-
tion function of the system. Using this method we can
extract, for a given instance, the thermodynamic proper-
ties (in particular the ground state energy) as well as the
eigenvalue gap for the interpolating Hamiltonian H(s).
This allows us to investigate the size dependence of the
typical minimum gap of the problem from which we can
extrapolate the large-size scaling of the computation time
T of the QAA. The second approach is a quantum cav-
ity method. It is a semi-analytical method that allows
us to compute the thermodynamic properties averaged
over the ensemble of instances in the limit N → ∞. It
leads to a set of self-consistent equations that can be
solved analytically in some classical examples [29, 30].
However in the quantum case the equations are more
complicated and are solved numerically [31, 32]. The
method is not exact on general graphs. For locally tree-
like random graphs, it provides the exact solution of the
problem if some assumptions on the Gibbs measure are
satisfied [29, 30, 33]. As we will discuss below the cavity
method we use in this paper gives the exact result for
3-XORSAT, while it only gives an approximation for the
Max-Cut problem.

Using these methods we conclude that the quantum
adiabatic algorithm fails to solve both problems effi-
ciently, although in a qualitatively different way.
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The plan of this paper is as follows. In Section II we
describe the two computational problems that we inves-
tigate. In Sec. III we discuss the methods that we use to
obtain our results. These results are presented in Sec. IV
and our conclusions are summarized in Sec. V. Some
parts of this paper have previously appeared in the PhD
thesis of one of the authors [34].

II. MODELS

We now discuss in detail the two computational prob-
lems 3-regular 3-XORSAT and 3-regular Max-Cut.

When studying the efficiency of the QAA numeri-
cally [1, 19, 20], it is convenient to consider instances
with a unique satisfying assignment (USA) for reasons
that will be explained in Sec. III A. On the other hand,
the quantum cavity method is designed to study the en-
semble of random instances with no restrictions on the
number of satisfying assignments. In this section we spec-
ify the random ensembles of instances that we investigate
in this paper.

A. 3-regular 3-XORSAT

The 3-XORSAT problem is a clause based constraint
satisfaction problem. An instance of such a constraint
satisfaction problem is specified as a list of M logical
conditions (clauses) on a set of N binary variables. The
problem is to determine whether there is an assignment
to N bits which satisfies all M clauses.

In the 3-XORSAT problem each clause involves three
bits. A given clause is satisfied if the sum of the three bits
(mod 2) is a specified value (either 0 or 1, depending on
the clause). We consider the “3-regular” case where every
bit is in exactly three clauses which implies M = N . This
model has already been considered by Jörg et al. [22].
The factor graph for an instance of 3-regular 3-XORSAT
is sketched in Fig. 1.

Since this problem just involves linear constraints (mod
2), the satisfiability problem can be solved in polyno-
mial time using Gaussian elimination. However, it is well
known that this problem presents difficulties for solvers
that do not use linear algebra (see, e.g. Refs. [25–28]).

We associate each instance of 3-regular 3-XORSAT
with a problem Hamiltonian HP that acts on N spins.
Each clause is mapped to an operator which acts nontriv-
ially on the spins involved in the clause. The operator
for a given clause has energy zero if the clause is satisfied
and energy equal to 1 if it is not, so

HP =

N
∑

c=1

(

1− Jcσ
i1,c
z σ

i2,c
z σi3,c

z

2

)

. (3)

Here each clause c ∈ {1, ..., N} is associated with the 3
bits i1,c, i2,c, i3,c and a coupling Jc ∈ {±1} which tells us

Figure 1: Factor graph of a small part of an instance of the
3-regular 3-XORSAT problem. In the full factor graph, each
clause (�) is connected to exactly three bits (©) and each bit
is connected to exactly three clauses, so there are no leaves
and the graph closes up on itself.

if the sum of the bits mod 2 should be 0 or 1 when the
clause is satisfied.

1. Random Instances of 3-regular 3-XORSAT

As in Ref. [22], we consider both the random ensemble
of instances of this problem and the random ensemble
of instances which have a unique satisfying assignment
(USA). In the 3-XORSAT problem as N → ∞, instances
with a USA are a nonzero fraction, about 0.285 [22], of
the set of all instances, so the random ensemble of USA
instances should be a good representation of the fully
random ensemble.

All satisfiable instances (and in particular instances
with a USA) have the property that the cost function
Eq. (3) can be mapped unitarily into the form

HP =
∑

c

(

1− σi1,c
z σ

i2,c
z σi3,c

z

2

)

(4)

by a product of bit flip operators.

2. Previous Work

Reference [22] studied the performance of the QAA
on the random ensemble of instances of 3-regular 3-
XORSAT using quantum cavity method and quantum
Monte Carlo simulation. They also studied the ensemble
of random instances with a USA using exact numerical
diagonalization. This work gave evidence that there is
a first order quantum phase transition which occurs at
sc ≈ 1

2 in the ground state. Their results also demon-
strate that the minimum gap is exponentially small as a
function of N at the transition point.
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3. Duality Transformation

In this section we demonstrate a duality mapping
for the ensemble of random instances of 3-regular 3-
XORSAT with a unique satisfying assignment. This du-
ality mapping explains the critical value sc = 1

2 of the
quantum phase transition in this model [22]. Consider
the Hamiltonian

H(s) = (1−s)

N
∑

i=1

(

1− σi
x

2

)

+s

N
∑

c=1

(

1− σi1,c
z σ

i2,c
z σi3,c

z

2

)

.

(5)
Here, the first term is the beginning Hamiltonian and the
second term is the problem Hamiltonian for an instance
of 3-regular 3-XORSAT with a unique satisfying assign-
ment. The 3-regular hypergraph specifying the instance
can be represented by a matrix M where

Mij =

{

1 , if bit j is in clause i

0 , otherwise.

and where M has 3 ones in each row and 3 ones in each
column. The fact that there is a unique satisfying as-
signment 000...0 is equivalent to the statement that the
matrix M is invertible over FN

2 . To see this, consider the
equation (with addition mod 2)

M~v = ~0.

This equation has the unique solution ~v = ~0 if and only
if there is a unique satisfying assignment for the given
instance. This is also the criterion for the matrix M to
be invertible.

The duality that we construct shows that the spectrum
of H(s) is the same as the spectrum of HDUAL(1 − s)
where HDUAL is obtained by replacing the problem
Hamiltonian hypergraph by its dual–that is to say, the in-
stance corresponding to a matrix M is mapped to the in-
stance associated with MT . The ground state energy per
spin (averaged over all 3-regular instances with a unique
satisfying assignment) is symmetric about s = 1

2 and the
first order phase transition observed in Ref. [22] occurs
at s = 1

2 . For each c = 1, ..., N define the operator

Xc = σi1,c
z σi2,c

z σi3,c
z . (6)

We also define, for each clause c, a bit string ~yc

~yc = M−1êc.

Here êc is the unit vector with components (êc)i = δic.
Note that ~yc is the unique bit string which violates clause
c and satisfies all other clauses. Such a bit string is guar-
anteed to exist since M is invertible. Let yci denote the
ith bit of the string ~yc. Define, for each c = 1, ..., N ,

Zc =

N
∏

i=1

[

σi
x

]yc
i . (7)

Note that

{Zc, Xc} = 0

and

[Zc, Xc′ ] = 0 for c 6= c′.

For each bit i = 1, ..., N let c1(i), c2(i), c3(i) be the
clauses which bit i participates in. Then

σi
x = Zc1(i)Zc2(i)Zc3(i). (8)

This follows from the fact that

Mêi = êc1(i) + êc2(i) + êc3(i)

and so

êi = M−1
(

êc1(i) + êc2(i) + êc3(i)
)

= ~yc1(i) + ~yc2(i) + ~yc3(i).

The above equation and the definition Eq. (7) show
Eq. (8). Now using Eqs. (8) and (6) write

H(s) = (1− s)

N
∑

i=1

(

1− σi
x

2

)

(9)

+ s

N
∑

c=1

(

1− σi1,c
z σ

i2,c
z σi3,c

z

2

)

(10)

= (1− s)
N
∑

i=1

(

1− Zc1(i)Zc2(i)Zc3(i)

2

)

(11)

+ s

N
∑

c=1

(

1−Xc

2

)

. (12)

The X and Z operators satisfy the same commutation
relations as the operators σx and σz . Comparing Eq. (12)
with Eq. (5) we conclude that the spectrum of H(s) is
the same as the spectrum of HDUAL(1 − s). This result
can be thought of as an extension of the duality of the
one-dimensional random Ising model in a transverse field,
see e.g. Ref. [35].

In Fig. 2 we show the first four energy levels of the
interpolating Hamiltonian H(s) = sHB +(1− s)HP as a
function of s for one 16-bit instance of 3-XORSAT. The
duality transformation means that these energy levels are
the same as for the interpolating Hamiltonian H ′(s) =
sHP,DUAL+(1− s)HB which involves the dual instance.
Evident from the figure is the apparent symmetry of the
energy levels around s = 1/2. In this case the instance
and its dual are similar from the point of view of the
QAA.

The duality argument given here has implications for
the phase transition which occurs in the ensemble of ran-
dom instances of 3-regular 3-XORSAT as N → ∞. Our
numerics in section IV show that for large N , the ground
state energy per spin as a function of s (averaged over
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Figure 2: (Color online) First four energy levels of the in-
terpolating Hamiltonian for a 16-bit instance of the 3-regular
3-XORSAT problem. The energy curves for this instance are
close to being symmetric about s = 1/2. Our duality transfor-
mation means that sending s → (1−s) we obtain the spectrum
of the interpolating Hamiltonian for a different instance from
the same ensemble, obtained by interchanging the clauses and
bits.

the ensemble of instances) has a nonzero derivative as
s → 1

2 . The duality transformation given here implies

that this curve is symmetric about s = 1
2 . So there is

a discontinuity in the derivative of this curve at s = 1
2 ,

which is associated with a first order phase transition.

B. 3-regular Max-Cut

The second model we discuss is also a clause based
problem. The instances we consider are not satisfiable
and we are interested in finding the assignment which
gives the maximum number of satisfied clauses. We view
this problem as minimizing a cost function that computes
the number of unsatisfied clauses. The 3-regular Max-
Cut problem is defined on N bits, and each bit appears in
exactly three clauses. Each clause involves two bits and
is satisfied if and only if the sum of the two bits (modulo
2) is 1. The number of clauses is therefore M = 3N/2.
The problem Hamiltonian is

HP =
∑

c

(

1 + σi1,c
z σi2,c

z

2

)

. (13)

The ground state of this Hamiltonian encodes the solu-
tion to the Max-Cut problem.

The model can also be viewed as an antiferromagnet
on a 3-regular random graph. Because the random graph
in general has loops of odd length, it is not possible to
satisfy all of the clauses.

The Max-Cut problem is NP-hard and accordingly
there is no known classical polynomial time algorithm
which computes the ground state energy of the problem
Hamiltonian (13). Indeed, even achieving a certain ap-
proximation to the ground state energy is hard, which
follows from the fact that it is NP hard to approximate
the Max-Cut of 3-regular graphs to within a multiplica-
tive factor 0.997 [36]. Interestingly, however, there is a
classical polynomial time algorithm which achieves an
approximation ratio of at least 0.9326 [37].

1. Random Instances of 3-regular Max-Cut

Using the quantum cavity method we study the en-
semble of random instances of 3-regular Max-Cut.

The random instances we studied using quantum
Monte Carlo simulation were restricted to those which
have exactly 2 minimal energy states (note that this is the
smallest number possible since the problem is symmetric
under flipping all the spins) and for which the ground
state energy of the problem Hamiltonian is equal to 1

8N .
We choose to study instances with a unique satisfying
assignment (up to the bit-flip symmetry of this problem)
because it is numerically more convenient for the extrac-
tion of the relevant gap (to the first even state). For the
range of sizes studied, 1

8N was found numerically to be
the most probable value of the ground state energy. The
restriction to instances with a fixed Max-Cut (18N) fur-
ther reduces the instance-to-instance fluctuations. How-
ever, this choice affects the ensemble averaged value of
thermodynamic observables (e.g. the average energy of
fully random instances is different from N/8), making it
more difficult to compare the quantum Monte Carlo re-
sults with our quantum-cavity results on the fully random
ensemble. We expect (and find numerically) that this set
of instances makes up an exponentially small fraction of
the whole random ensemble for large N .

2. Previous work

Laumann et al. [31] used the quantum cavity method
to study the transverse field spin glass with the problem
Hamiltonian

HP =
∑

c

(

1 + Jcσ
i1,c
z σi2,c

z

2

)

(14)

where each Jc is chosen to be +1 or −1 with equal prob-
ability.

In general there is no “gauge transformation” equiv-
alence between this problem Hamiltonian and the anti-
ferromagnetic problem Hamiltonian Eq. (13). However
we do expect these models to exhibit similar properties
since a random graph is locally tree-like, and on a tree
such a gauge transformation does exist, see Ref. [38] for
a discussion of this point in the case where there is no
transverse field present.
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Laumann et al. found that this system exhibits a sec-
ond order phase transition as a function of the transverse
field. Their method is similar to the quantum cavity
method that we use, although the numerics performed
in Ref. [31] have some systematic errors which our cal-
culations avoid. The method used in Ref. [31] is a dis-
crete imaginary time formulation of the quantum cavity
method which has nonzero Trotter error, whereas our cal-
culation works in continuous imaginary time [32] where
this source of error is absent. Our calculation also does
not use the approximation used in Ref. [31] where the “ef-
fective action” of a path in imaginary time is truncated
at second order in a cluster expansion.

III. METHOD

A. Quantum Monte Carlo

The complexity of the QAA algorithm is determined by
the size dependence of the “typical” minimum gap of the
problem. Following Refs. [19, 20, 24], we analyze the size-
dependence of these gaps by considering (typically) 50
instances for each size, and then extracting the minimum
gap for each of them. For each instance, we perform
quantum Monte Carlo simulations for a range of s values
and hunt for the minimum gap. We then take the median
value of the minimum gap among the different instances
for a given size to obtain the “typical” minimum gap. In
situations where the distribution of minimum gaps is very
broad, the average can be dominated by rare instances
which have a much bigger gap than the typical one, and
so the typical value (characterized, for example, by the
median) is a better measure than the average. This has
been discussed in detail by Fisher [35] who solved the
random transverse field model in one-dimension exactly,
and found that the average gap at the quantum critical
point vanishes polynomially with N while the typical gap
has stretched exponential behavior, exp(−cN1/2).

Quantum Monte Carlo simulation works by sampling
random variables from a probability distribution (over
some configuration space) which contains information
about the quantum system of interest. The probability
distribution is sampled by Markov chain Monte Carlo,
and properties of the quantum system to be studied
are obtained as expectation values. Different quantum
Monte Carlo methods are based on different ways of as-
sociating probability distributions to a quantum system.

In our simulations we use a quantum Monte Carlo tech-
nique known as the stochastic series expansion (SSE) al-
gorithm [39, 40]. In this method, the probability dis-
tribution associated with the quantum system is derived
from the Taylor series expansion of the partition function

Tr[e−βĤ ] at inverse temperature β. This is in contrast to
other quantum Monte Carlo techniques which are based
on the path integral expansion of the partition function.
Whereas some of these techniques have systematic errors
because the path integral expansions used are inexact,

the SSE that we use has no such systematic error.
A second feature of the SSE method that we use is

that the Markov chain used to sample configurations al-
lows global, as well as local, updates, which leads to faster
equilibration. We further speed up equilibration by im-
plementing “parallel tempering” [41], where simulations
for different values of s are run in parallel and spin con-
figurations with adjacent values of s are swapped with
a probability satisfying the detailed balance condition.
Traditionally, parallel tempering is performed for systems
at different temperatures, but here the parameter s plays
the role of (inverse) temperature [42].

The details of our implementations of the SSE method
for 3-XORSAT and Max-Cut are slightly different and
are further discussed in Appendix A. Moreover, the Max-
Cut problem can not be simulated with the ‘traditional’
SSE method because of its symmetry under flipping all of
the spins: For a given instance of Max-Cut, every eigen-
state of the interpolating Hamiltonian H(s) is either even
or odd under this symmetry transformation. Since the
ground state is even, here we are interested in the eigen-
value gap to the first even excited state. We therefore
design our quantum Monte Carlo simulation so that it
works in the subspace of even states. The modified algo-
rithm is detailed in Appendix B.

In our simulations we extract the gap from imaginary
time-dependent correlation functions. The gap of the
system for a given instance and a given s value is ex-
tracted by analyzing measurements of (imaginary) time-
dependent correlation functions of the type

CA(τ) = 〈Â(τ)Â(0)〉 − 〈A〉2 , (15)

where the operator Â is some measurable physical quan-
tity. It is useful to optimize the choice of correlation
functions such that the contribution from the first excited
state, m = 1 in Eq. (16) below, is as large as possible rela-
tive to the contributions from higher excited states. One
way of doing this, which was used in some of the runs, is
described in Ref. [43].

The evaluation of 〈A〉2 in the above equation is com-
puted from the product 〈A〉(1)〈A〉(2) where the two in-
dices correspond to different independent simulations of
the same system. This eliminates the bias stemming from
straightforward squaring of the expectation value.

In the low temperature limit, T ≪ ∆E1 where ∆E1 =
E1 − E0, the system is in its ground state so the
imaginary-time correlation function is given by

CA(τ) =
∑

m=1

|〈0|Â|m〉|2
(

e−∆Emτ + e−∆Em(β−τ)
)

,

(16)
where ∆Em = Em−E0. At long times, τ , the correlation
function is dominated by the smallest gap ∆E1 (as long

as the matrix element |〈0|Â|1〉|2 is nonzero). On a log-
linear plot CA(τ), then has a region where it is a straight
line whose slope is the negative of the gap. This can
therefore be extracted by linear fitting. A more detailed
description of the method may be found in Ref. [43].
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B. The quantum cavity method

The quantum cavity method [31, 32] is a technique that
is used to study thermodynamic properties of transverse
field spin Hamiltonians. In our implementation we use
the continuous imaginary time method from Ref. [32].
Quantum Cavity methods have now been used to study
a number of problems including the ferromagnet on the
Bethe lattice in uniform [32] and random [44] trans-
verse field, the spin glass on the Bethe Lattice [31], 3-
regular 3-XORSAT [22], and the quantum Biroli-Mézard
model [45].

If the Hamiltonian is a two-local transverse field Hamil-
tonian on a finite number of spins and if the interaction
graph consists of a tree (i.e if there are no loops) then
the quantum cavity equations are exact. In this case the
quantum cavity equations are a closed set of equations
that exactly characterize the thermodynamic properties
of the system at a fixed inverse temperature β. If instead
the interaction graph is a random regular graph with a fi-
nite number of spins then it must have loops. As N → ∞
we can think of it as an “infinite tree” since the typical
size of loops in such a graph diverges.

Quantum cavity methods (such as the one we use) for
problems defined on random regular graphs make use of
two properties of the system: (i) the fact that a random
regular graph is locally tree-like; (ii) the fact that spin-
spin correlations decay quickly as a function of distance.
While the first property is true with probability 1 for ran-
dom regular graphs when N → ∞, the second property
is not always true and we now discuss it more carefully.

The simplest case is when the Gibbs measure is char-
acterized by a single pure state that has the clustering
property, as in a paramagnetic phase. This happens at
high enough temperature or large enough transverse field.
In this case, correlations decay exponentially and the sim-
plest version of the cavity method (the so-called “replica
symmetric (RS)” cavity method) gives the exact result.
Upon lowering the temperature or the transverse field,
a phase transition towards a more complicated phase
can be encountered. If this phase is a standard broken-
symmetry phase (e.g. a ferromagnetic phase), then cor-
relation decay holds provided one adds an infinitesimal
symmetry-breaking field, and the RS cavity method still
provides the exact result [32].

However, if the transition is to a spin glass phase,
then the Gibbs measure is split into a large number of
states, and the decorrelation property that is required by
the cavity method only holds within each state. In this
case, there is no explicit symmetry breaking, therefore
the states cannot be selected by adding an infinitesimal
external field. It turns out that refined versions of the
cavity method must be used, that are based on assump-
tions on the structure of these states [33]. The simplest
assumption is that states are distributed in a uniform
way in the phase space of the system, and leads to the
so-called “1 step replica symmetry breaking (1RSB)” ap-
proximation. In more complicated cases, states might

be arranged in “clusters” leading to a hierarchical orga-
nization, and this requires further steps of RSB [46]. A
consistency check can be performed within the method to
check whether a given RSB scheme gives the exact result
or whether further RSB steps are required.

For the XORSAT problem on random regular graphs,
it can be rigorously shown that the 1RSB scheme gives
the exact result in the classical case [47, 48], and it has
been conjectured that the same is true for the quantum
problem in transverse field [22]. For the specific case
of 3-regular 3-XORSAT investigated here, a RS calcula-
tion is enough to get the thermodynamic properties [22],
which is why we use the RS method in our simulations of
this model. We study this problem at a temperature low
enough that no residual temperature dependence of the
energy is observed. Furthermore, we set the parameters
of our calculation to be more computationally demanding
than those of reference [22], which allows us to achieve
better precision.

The study of 3-regular Max-Cut is more involved. To
understand how well the cavity method works on this
problem, we can look at results obtained for the classical
3 regular spin-glass with Hamiltonian (14). We expect
that these problems have very similar (possibly identi-
cal) thermodynamic properties [38]. For the classical 3-
regular spin glass it can be shown that neither the RS nor
the 1RSB cavity method give exact results [29, 30, 38],
and it is widely believed that an infinite number of RSB
steps is required (this has been shown rigorously for the
z-regular spin glass as z → ∞, which corresponds to the
Sherrington-Kirkpatrick model [46]). However the 1RSB
calculation gives a good approximation to the classical
ground state energy [30].

To study 3-regular Max-Cut we used the 1RSB quan-
tum cavity method with Parisi parameter m = 0. This
level of approximation is more accurate than the replica
symmetric approximation but less accurate than the full
1RSB calculation. With this method we studied the
N → ∞ limit of the random ensemble of 3-regular Max-
Cut Hamiltonians

H(λ) =
∑

c

σi1,c
z σi2,c

z − λ

N
∑

i=1

σi
x.

We ran our calculations at finite inverse tempera-
ture β = 4 and various values of the transverse field
λ. Thermodynamic expectation values with respect to
H(λ) at inverse temperature β can be related to ther-
modynamic expectation values with respect to H(s) =
(1 − s)HB + sHP at s = 1

1+λ and inverse temperature

β′ = 2β
s . Note that there is an s dependence introduced

in the temperature when relating these two thermody-
namic ensembles.



8

 0.01

 0.02

 0.04

 0.06

 0.08

 0.1

 10  15  20  25  30  35  40

m
ed

ia
n 

∆E
m

in

N

diag

QMC

0.22 exp(-0.080 N)

Figure 3: (Color online) Median minimum gap as a function
of problem size of the 3-regular 3-XORSAT problem on a
log-linear scale. The straight-line fit is good, indicating an
exponential dependence which in turn leads to an exponential
complexity of the QAA for this problem. Triangles indicate
exact-diagonalization results while the circles are the results
of QMC simulations.

IV. RESULTS

In what follows we present the results of the QMC
simulation alongside those of the quantum cavity results
for the two problems we study here. We show that the
QAA fails with the choice of interpolating Hamiltonians
discussed previously; for both problems the running time
appears to be exponentially long as a function of the
problem size. However, the reasons for this failure are
different for each of the models.

A. Random 3-regular 3-XORSAT

The 3-regular 3-XORSAT problem was studied by Jörg
et al. [22] who determined the minimum gap for sizes
up to N = 24. Here, we extend the range of sizes up
to N = 40 by quantum Monte Carlo simulations. The
two sets of results agree and provide compelling evidence
for an exponential minimum gap. The duality argument
in Sec. II A 3, shows that the quantum phase transition
occurs exactly at s = sc = 1/2. Our numerics show that
the phase transition is strongly first order, in agreement
with Ref. [22].

We show results for the median minimum gap as a
function of size for the 3-regular 3-XORSAT problem in
Fig. 3 (log-lin). A straight line fit works well for the log-
lin plot, which provides evidence that the minimum gap is
exponentially small in the system size. The results shown
here generalize and agree with those obtained by Jörg et
al. [22]. While Ref. [22] computed the average minimum
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0
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s

Figure 4: (Color online) Mean energy (averaged over 50 sam-
ple instances per size) of the 3-regular 3-XORSAT problem
as a function of the adiabatic parameter s for different sizes
(QMC results) compared with the RS quantum cavity calcu-
lations. Because of the duality of the model, the true curve
(averaged over all instances at a given value of N) is sym-
metric about s = 1/2. The main panel shows a blowup near
the symmetry point s = 1/2. In the inset, the entire range is
shown.

gap and we computed the median, the difference here
is very small because the distribution of minimum gaps
is narrow for this problem, see for example Fig. 21 of
Ref. [18].

We also computed some ground-state properties of the
model: the energy 〈Ĥ〉, the magnetization along the x-
axis Mx = 1

N

∑

i〈σx
i 〉, and the spin-glass order parameter

defined by:

q =
1

N

∑

i

〈σz
i 〉2 . (17)

These quantities, averaged over 50 instances for each size,
are plotted in Figs. 4, 5, and 6.

Figure 4 shows that for large system sizes differences
between the QMC results for the ground state energy
and the (replica symmetric) cavity results are small. Ref-
erence [22] has argued that the replica symmetric (RS)
cavity method is actually exact for the thermodynamic
properties of the 3 regular 3-XORSAT problem. To check
this, in Fig. 7 we have expanded the vertical scale and
show an extrapolation of the QMC results to N = ∞ at
the critical value s = sc = 1/2 (where finite-size correc-
tions are largest). The extrapolated value appears to be
consistent with the cavity result.

The rapid variation of Mx and q shown in figures 5
and 6 in the vicinity of sc = 1/2 is evidence for a first-
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Figure 5: (Color online) Magnetization along the x-axis,
Mx = N−1
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〈σx

i 〉, as a function of the adiabatic parame-
ter s for the 3-regular 3-XORSAT problem. Results obtained
both by QMC and the cavity method are shown. The latter
indicates a sharp discontinuity at s = sc = 1/2. The slope
of the QMC results at s = 1/2 increases with increasing N ,
consistent with a discontinuity at N = ∞.
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Figure 6: (Color online) The spin-glass order parameter q as
defined in Eq. (17) as a function of the adiabatic parameter
s for the 3-regular 3-XORSAT problem. The rapid change
for large sizes around s = 1/2 indicates a first-order quantum
phase transition at this value of s.

order transition. Figure 5 also shows a discontinuity in
the x-axis magnetization predicted by the cavity calcu-
lations at s = 1

2 . In the quantum Monte Carlo data we
see that the slope of the magnetization increases with N
and is therefore consistent with the cavity prediction for
N → ∞.
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 0  0.005  0.01  0.015

E
0/

N

1/N

cavity

fit to QMC

Figure 7: (Color online) Extrapolation of the energy values
as given by the QMC method (solid line) for different sys-
tem sizes at s = 1/2 as compared to the value given by
the cavity method (which is for N = ∞) for the 3-regular
3-XORSAT problem, assuming a 1/N dependence. Extrap-
olating the QMC results to N = ∞ seems to given a result
consistent with the cavity value.

B. Random 3-regular Max-Cut

In the Monte Carlo simulations of the Max-Cut prob-
lem we restrict ourselves to instances for which the prob-
lem Hamiltonian has a ground state degeneracy of two,
and for which the ground state energy is N/8. For this
ensemble of instances, we measured the energy, the x-
magnetization and the spin-glass order parameter using
quantum Monte Carlo simulations. Because of the bit-
flip symmetry of the model, we use the following different
definition of the spin glass order parameter:

q′ =





1

N(N − 1)

∑

i6=j

〈σz
i σ

z
j 〉2




1/2

. (18)
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Figure 8: (Color online) The spin-glass order parameter q′ ob-
tained from Monte Carlo simulations, obtained from Eq. (18),
as a function of the adiabatic parameter s for the Max-Cut
problem. Also shown is the value of q̄ from the cavity calcula-
tion, which is defined differently as discussed in the text. The
inset shows a global view over the whole range of s, indicating
large differences between the Monte Carlo and cavity calcula-
tions for large s. This may be due to the different ensembles
used in the two calculations, as discussed in the text.
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Figure 9: (Color online) Magnetization along the x direction,
Mx = N−1

∑
i
〈σx

i 〉, as a function of the adiabatic parameter
s for the Max-Cut problem.

In Figs. 8, 9 and 10 we compare the QMC results with
those of our quantum cavity method computation. Re-
call that the cavity method results apply to the random
ensemble of instances. Formally the value of the spin
glass parameter q from Eq. (17) is zero due to the bit
flip symmetry of the Hamiltonian. However, the cavity
method works in the thermodynamic limit in which this
symmetry is spontaneously broken for s greater than the
critical value sc. For the cavity calculations, we measure
a spin glass order parameter q̄ which is the magnetiza-
tion squared for each thermodynamic “state”, averaged
over the states. This becomes non-zero for s > sc ≃ 0.36
as shown in Fig. 8. The Monte Carlo results are consis-
tent with this value of sc. The inset of Fig. 8 shows a
global view of the two spin glass order parameters that
we measure, over the whole range of s. There we see
differences between the (different) order parameters mea-
sured using Monte Carlo and cavity calculations for large
s. Note that the Monte Carlo simulations take only in-
stances with a doubly degenerate ground state for the
problem Hamiltonian, s = 1, so q′ = 1 in this limit,
whereas the cavity calculations are done for the random
ensemble where the instances have much larger degener-
acy at s = 1 and so q̄ < 1 in this limit.

Our numerical results for the x-component of the mag-
netization are shown in Fig. 9. We see no evidence of
a discontinuity in this quantity at sc ≃ 0.36 for large
N . This is in contrast with the corresponding plot for
3-XORSAT in figure 5.

Results for the energy of the Max-Cut problem, ob-
tained both from Monte Carlo and the cavity approach
are shown in Fig. 10. The two agree reasonably well
but there are differences in the spin glass phase, s > sc,
which may be due to the different ensembles used in the
two calculations. We also note that our cavity method
computation is performed at nonzero temperature.

Using quantum Monte Carlo simulations we have de-
termined the energy gap as a function of s for s in the
range between 0.3 (i.e. well below sc) and 0.5 (i.e. well
above sc) for sizes between N = 16 and 160. For the
smaller sizes we find a single minimum in this range,
which lies a little above sc. However, for larger sizes, we
see a fraction of instances in which there is a minimum
close to sc and a second, deeper, minimum for s > sc well
inside the spin-glass phase. A set of data which shows two
minima is presented in Fig. 11. This interesting behavior
of the minimum gaps suggests the following interpreta-
tion: The minima found close (just above) sc correspond
to the order-disorder quantum phase transition. Above
sc the system is the spin-glass phase. The minima that
are well within the spin-glass phase may correspond to
‘accidental’ or perturbative crossings in the spin glass.

Double-minima occurrences become more frequent as
the system size increases. While no double minima were
found for sizes N = 16, 24 and 32 (within the studied
range of s values), for sizes N = 64, 128 and 160 the
percentage of instances that exhibit such double minima
was found to be approximately 7%, 36% and 40%, re-
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spectively (obtained from ∼ 50 instances for each size).

We have therefore performed two analyses on the data
for the gap. In the first analysis we determine the global
minimum (for the range of s studied) for each instance
and determine the median over the instances. There are
about 50 instances for each size. This data is presented in
Table I, and is plotted in Fig. 12 both as log-lin (main fig-
ure) and log-log (inset). A straight line fit works well for
the log-lin plot (goodness of fit parameter Q = 0.57), pro-
vided that we omit the two smallest sizes. The goodness
of fit parameter Q is the probability that, given the fit,
the data could have the observed value of χ2 or greater,
see Ref. [49]. However, a straight-line fit works much less
well for the log-log plot (Q = 2.7× 10−3), again omitting
the two smallest sizes, because the data for the largest
size lies below the extrapolation from smaller sizes. If
smaller points do not lie on the fit, it is possible that the
fit is correct and the deviations are due to corrections to
scaling. However, if the largest size shows a clear devia-
tion then the fit can not describe the asymptotic large-N
behavior. From these fits we conclude that an exponen-
tially decreasing gap is preferred over a polynomial gap.
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Figure 10: (Color Online) Energy as a function of the adi-
abatic parameter s for the Max-Cut problem. The cavity
results computed at inverse temperature β = 8

s
are depicted

by the dashed line. The lower panel is a blow up of the region
around the maximum, which illustrates the difference between
the Monte Carlo and cavity results. Some of this difference
may be due to the different ensembles used, as discussed in
the text.

Table I: Median minimum gap for 3-regular Max-Cut (plotted
in figure 12)

N Median gap Error

16 0.3203 0.0056

24 0.2323 0.0057

32 0.1844 0.0057

64 0.1113 0.0058

128 0.0496 0.00473

160 0.0291 0.0049

There are other possibilities for the scaling of the min-
imum gap with size, in addition to polynomial or expo-
nential. For example, we considered a “stretched expo-

nential” scaling of the form Ae−cN0.5

. Omitting the first
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Figure 11: (Color online) The gap to the first (even) excited
state as a function of the adiabatic parameter s for one of
the N = 128 instances of the Max-Cut problem, showing
two distinct minima. The first, higher, minimum is close to
s ≈ 0.36 (the location of the order-disorder phase transition)
while the other, lower minimum (global in the range) is well
within the spin-glass phase.

two points (as we did for the exponential fit) we find the
fit is satisfactory, as shown in the upper panel of Fig. 13
(Q = 0.31). Hence it is possible that the minimum gap
decreases as a stretched exponential.

However, if for the instances with more than one mini-
mum, we just take the minimum close to the critical value
sc, a different picture emerges, as shown in Fig. 14. In
this case, a straight line fit works well for the log-log plot
(Q = 0.96), but poorly for the log-lin plot (Q = 0.016).
For consistency, we again omitted the two smallest sizes
for the log-lin plot. These results indicate that the gap
only decreases polynomially with size near the quantum
critical point.

So far we have plotted results for the median minimum
gap, which is a measure of the typical value. However, it
is important to note that there are large fluctuations in
the value of the minimum gap between instances. This
is illustrated in Fig. 15 which presents the values of the
minimum gap for all 47 instances for N = 160. For the
19 instances with two minima in the range of s studied,
the minimum at larger s is lower than the one at smaller
s. For these instances, the figure shows both the “local”
(smaller-s), and the “global” (larger-s) minima.

From Fig. 15 we note that a substantial fraction of
instances for N = 160 have a minimum gap which is much
smaller than the median, 0.0291(49). Smaller sizes do not
have such a pronounced tail in the distribution for small
gaps. We should mention that the gap is not precisely
determined if it is extremely small because we require
the condition β∆E ≫ 1. For N = 160 we took β =
2048 so this condition is well satisfied for gaps around
the median. Hence we are confident that the median is
accurately determined. However, it is not well satisfied
for the smallest gaps in Fig. 15. Thus, while it is clear
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Figure 12: (Color online) Median minimum gap, on log-linear
(main panel) and log-log (inset) scales, for the 3-regular Max-
Cut problem for s in the range 0.3 to 0.5. The straight-line
fit on the log-linear scale (omitting the two smallest sizes) is
a much better fit (Q = 0.57) than that of the log-log scale
(Q = 2.7 × 10−3), in which the two smallest sizes are also
omitted.
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Figure 13: (Color online) A stretched exponential fit to

Ae−cN
1/2

for data for the median minimum gap for the 3-
regular Max-Cut problem, omitting the two smallest sizes.
The fit is satisfactory (Q = 0.31).

that a non-negligible fraction of instances for N = 160 do
have a very small minimum gap, the precise value of the
very small gaps in Fig. 15 is uncertain. We note that if
the fraction of instances with a very small minimum gap
continues to increase with N , then, asymptotically, the
median would decrease faster than that shown by the fit
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mum gaps were taken from the vicinity of the quantum phase
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the global minima. The two fits indicate that in this case the
polynomial dependence is more probable.

in the main part of Fig. 12.

V. SUMMARY AND CONCLUSIONS

It was demonstrated in Ref. [22] that the quantum
adiabatic algorithm fails to solve random instances of
3-regular 3-XORSAT in polynomial time, due to an ex-
ponentially small gap in the interpolating Hamiltonian
which occurs near s = sc = 1

2 . This exponentially small
gap is associated with a first order quantum phase tran-
sition in the ground state. In this work we have pro-
vided additional numerical evidence for this. We have
also demonstrated using a duality transformation that
the critical value of the parameter s is in fact at exactly
sc =

1
2 . We have also shown that the ground state energy

of the three regular 3-XORSAT model with a transverse
field agrees very well with a replica symmetric (RS) cav-
ity calculation. This provides support for the claim of
Ref. [22] that the RS calculation is exact for the thermo-
dynamic properties of this model.

For the random ensemble of Max-Cut instances that
we consider, we find that the interpolating Hamiltonians
exhibit a second order, continuous phase transition at a
critical value s = sc ≃ 0.36. Near this critical value of s
we find that the eigenvalue gaps decrease only polynomi-
ally with the number of bits. However, we also observe
very small gaps at values s > sc, i.e. in the spin glass
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Figure 15: (Color online) A scatter plot of the minimum gap
for all 47 instances for size N = 160 for the 3-regular Max-
Cut problem. For the 19 instances with two minima in the
range of s studied, both are shown, that closer to s = 0.36
being denoted “local”, and the smaller one, at larger s, being
denoted “global”. Note the large scatter in the values of the
minimum gap for different instances.

phase. An analysis of the fits indicates that a gap de-
creasing exponentially with size is preferred over a poly-
nomially varying gap, though a stretched exponential fit
is also satisfactory.

For both of the problems we studied, the adiabatic in-
terpolating Hamiltonians are stoquastic. This makes it
possible for us to numerically investigate the performance
of the QAA using quantum Monte Carlo simulation and
the quantum cavity method. However it is possible that
quantum adiabatic algorithms with stoquastic interpo-
lating Hamiltonians are strictly less powerful than more
general quantum adiabatic algorithms.

The QMC calculations consider only instances in which
the problem Hamiltonian, HP , has a doubly degenerate
ground state and a specified value of the ground state en-
ergy. These instances are exponentially rare. By contrast
the cavity approach considers random instances. How-
ever, we do not think that these restrictions invalidate
the conclusions on the minimum gap summarized in the
previous paragraph.

Also, it should be noted that inside the spin-glass
phase, QMC techniques become less and less efficient as
the adiabatic parameter s approaches 1, i.e. when the
Hamiltonian approaches the classical problem Hamilto-
nian. Hence we have not been able to study s values
much larger than 0.5 for a broad range of sizes. It is pos-
sible, indeed likely, that there are other avoided crossings
in this range which might lead to even smaller minima
than those found in the studied range, 0.3 ≤ s ≤ 0.5.
These minima will however not alter the conclusion that
the overall scaling of the running time of the QAA – when
applied to the Max-Cut problem – appears to grow expo-
nentially (or perhaps in a stretched exponential manner)
with problem size.
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The first order phase transition in 3-regular 3-
XORSAT prevents the quantum adiabatic algorithm
from successfully finding a satisfying assignment. In con-
trast, the second order phase transition in 3-regular Max-
Cut does not determine the performance of the quantum
adiabatic algorithm on this problem. In this example
the small gaps which occur beyond sc cause the quan-
tum adiabatic algorithm to fail. These small gaps may
be associated with “perturbative crossings” as described
in Refs. [12–16].
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Appendix A: Details of the Quantum Monte Carlo

Simulations

In the Max-Cut problem, the global updates are
achieved by dividing the configurations of the system
produced within the SSE scheme into clusters and then
flipping a fraction of them within each sweep of the simu-
lation [50]. An important bonus of these cluster updates
is the existence of “improved estimators” with which one
considers all possible combinations of flipped and un-
flipped clusters. Improved estimators are very beneficial
for determining time-dependent correlation functions as
the signal to noise is much better than with conventional
measurements. It is important to note, however, that
partitioning the SSE configuration into clusters tends
to be very inefficient as the adiabatic parameter s ap-
proaches 1, where the entire configuration tends to form
one big cluster.

A difficulty arises in extracting the gap for the Max-
Cut problem due to the bit-flip symmetry of the Hamilto-
nian for the following reason. Eigenstates of the Hamil-
tonian are either even or odd under this symmetry (in
particular, the ground state is even). In the s → 1
limit, states occur in even-odd pairs with an exponen-
tially small gap (see Fig. 2 of Ref. [24] for an illustration).
Therefore, the quantity of interest is the gap to the first
even excited state. We consider correlation functions of
even quantities, so there are only matrix elements be-
tween states of the same parity. However, the lowest
odd level becomes very close to the ground state near
where the gap to the first even excited state has a min-
imum. Hence this lowest odd state becomes thermally
populated, with the result that odd-odd gaps are present
in the data as well.

We eliminate these undesired contributions by project-

ing into the symmetric subspace of the Hamiltonian. A
way of implementing this projection at zero temperature
is as follows. In standard quantum Monte Carlo simula-
tions one imposes periodic boundary conditions in imagi-
nary time τ at τ = 0 and β. To project out the symmetric
subspace one imposes, instead, free boundary conditions
at τ = 0 and β. The properties of the symmetric sub-
space can then be obtained, for β → ∞, by measurements
far from the boundaries. We have incorporated this idea
into the SSE scheme, and use this modified algorithm in
the simulations of the Max-Cut problem. For the con-
venience of the reader, this idea is explained in greater
detail in Appendix B.

For 3-XORSAT there is no need to employ a projec-
tion method because the Hamiltonian does not have bit-
flip symmetry. However, the presence of 3-spin inter-
actions in the problem Hamiltonian leads to a different
difficulty. In the Max-Cut case, the (two-spin) Ising in-
teractions allow the SSE configurations to be partitioned
into mutually-exclusive clusters which in turn enable the
use of improved estimators. The nature of the interac-
tions in the 3-XORSAT problem does not allow for such
convenient scheme. Rather, construction of clusters for 3-
XORSAT is done by repeatedly attempting to construct
clusters using randomly-chosen pairs of spins taken from
the three-spin operators. The resulting clusters therefore
have a random component and can in general overlap
one another. Moreover, it is important to note that not
all attempts to construct clusters will be successful as in
some cases the third spin of the operators involved may
interfere in the construction. In such cases the cluster
construction must be aborted and restarted.

Appendix B: An SSE-based projection-QMC

method

Here we derive in some detail an SSE-based projec-
tion QMC method. This appendix is rather technical in
nature and so is intended mainly for readers who are al-
ready familiar with the SSE method. The purpose of the
algorithm outlined here is to obtain the zero-temperature
properties of a system described by a Hamiltonian Ĥ pro-
jected onto an invariant subspace of a discrete symmetry
operation respected by the Hamiltonian. In this paper,
we apply the method to N spin-1/2 particles and the
Max-Cut Hamiltonian, where the goal is to sample only
states which are even under bit-flip symmetry. It should
be noted, however, that the method is easily generaliz-
able to other cases.

The success of the projection method follows from the
following observation: Consider the state

|φ〉 =
(

2N
)−1/2∑

{z}

|z〉 , (B1)

which is a superposition of all 2N basis states {z} with
equal amplitude. Here, the orthonormal set {z} denotes
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the basis of all classical spin configurations along the z-
direction. Clearly, the state |φ〉 is symmetric (even) un-
der bit-flip symmetry. Acting β times with the operator

e−Ĥ/2 on the state |φ〉, where β is a large integer, the
resulting state is, up to a normalization constant, the
(even) ground state, i.e.

|0〉 ∝ |0̃〉 ≃ e−βĤ/2|φ〉 , (B2)

where |0̃〉 is the unnormalized ground state. Note that

the bit-flip symmetry shared by both the Hamiltonian Ĥ
and the state |φ〉 confines the projected states to the even
subspace. This method can be very easily generalized
for other systems that respect other symmetries if one
chooses the state |φ〉 appropriately.

Next we define a fictitious ‘partition function’ for the
scheme,

Z = 〈0̃|0̃〉 = 〈φ|e−βĤ/2 × e−βĤ/2|φ〉 (B3)

=
∑

z1,z2

∑

n1,n2

1

n1!n2!

(

β

2

)n1+n2

〈z1|(−Ĥ)n1(−Ĥ)n2 |z2〉 .

As will be immediately clear, the above ‘partition func-
tion’ merely serves here as a normalizing factor for the
various measured quantities.

As with the usual SSE approach, we divide the Hamil-
tonian into components, commonly referred to as ‘bond’
operators,

−Ĥ =
∑

b

Ĥb . (B4)

The bond operators should obey Ĥb|z〉 = h(b, z)|z′〉 for
all states in {z}. Here, h(b, z) is a real number that
depends in general on the bond index b and the state z.
The resulting state |z′〉 must also be one of the 2N basis
states chosen for this problem. The partition function
then becomes

Z =
∑

z1,z2

∑

n1,n2

∑

{Ŝn1 ,Ŝn2}

1

n1!n2!

(

β

2

)n1+n2

〈z1|Ŝn1 Ŝn2 |z2〉 ,

(B5)

where Ŝn1 (Ŝn2) denote products or ‘sequences’ of bond

operators of length n1 (n2) and the summation {Ŝn1}
({Ŝn2}) is taken over all possible such sequences.

We next define a new index variable n = n1 + n2, in
terms of which the partition function may be written as

Z =
∑

z1,z2

∑

n

∑

{Ŝn}

βn

n!

n
∑

n1=0

w(n, n1)〈z1|Ŝ(n1)
n |z2〉 , (B6)

where Ŝ
(n1)
n denotes an operator sequence of length n

with an imaginary ‘cut’ running through it, separating
the first n1 operators in the sequence from the last (n−
n1) operators. Here, we have also defined the weights

w(n, n1) = 2−n

(

n

n1

)

(B7)

which obey

n
∑

n1=0

w(n, n1) = 1 , ∀n . (B8)

Before moving on, let us first denote by |α(n1)〉 the (nor-
malized) state obtained by acting with the first n1 op-

erators in the sequence Ŝn on state |z1〉. In particular

|α(0)〉 = |z1〉 and |α(n)〉 = |z2〉 ∼ Ŝn|z1〉, where n is the
number of operators in the sequence.

The above expression for the partition function
Eq. (B6) has a form very similar to the one obtained
in the usual SSE decomposition. There are however a
couple of notable exceptions: (i) While in the usual SSE
the boundaries in the imaginary time direction are peri-
odic (the requirement |z1〉 = |z2〉 is enforced), here the
boundary conditions are free and the states |z1〉 and |z2〉
are different in general and are summed over indepen-
dently. (ii) To each level along the operator sequence
there is an assigned weight, reflecting the fact that the
different time slices in the ‘level’ direction are not equally
weighed. The time slices in the middle are weighted more
than those close to the boundaries.

1. The updating mechanism

As in the usual SSE routine, a configuration is de-
scribed by the pair {|z1〉, Ŝn}, i.e., a basis state and an
operator sequence. Importance sampling of the config-
urations can be done here in much the same way as in
the usual SSE algorithm. One can use the same local ‘di-
agonal’ updating steps by sweeping serially through the
sequence Ŝn replacing identity operators with diagonal
ones with appropriate acceptance probabilities and vice
versa. The acceptance ratios here are exactly the same
as those in the usual SSE procedure.

The global non-diagonal updates (normally loop or
cluster constructions) will also be the same albeit with
one exception. Here, since the boundaries in the
imaginary-time direction are free rather than periodic,
loops or clusters cannot cross the initial and final levels
to the other side but must terminate at the boundaries.

2. Static measurements

The expectation value of an operator Â is given by

〈Â〉 = 〈0̃|Â|0̃〉
〈0̃|0̃〉

=
1

Z
〈φ|e−βĤ/2Âe−βĤ/2|φ〉 (B9)

=
1

Z

∑

z1,z2

∑

n,{Ŝn}

βn

n!

n
∑

n1=0

w(n, n1)〈z1|Ŝn1ÂŜn−n1 |z2〉 ,

where Ŝn1ÂŜn−n1 stands for the operator Â sandwiched

between two parts of the sequence Ŝn splitting it in two
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at the cut n1. The subscripts denote the sizes of each of
the two sequences, n1 and n− n1, respectively.

For a diagonal operator, whether a bond operator or
not, we get

〈Â〉 = (B10)

1

Z

∑

z1,z2

∑

n,{Ŝn}

βn

n!

n
∑

n1=0

[w(n, n1)a(αn1)] 〈z1|Ŝ(n1)
n |z2〉 ,

where a(αn1) = 〈α(n1)|Â|α(n1)〉. This means that the

expectation value of Â will be determined from

〈Â〉 = 〈
n
∑

n1=0

[w(n, n1)a(αn1)]〉 . (B11)

As in the usual SSE scheme we can only calculate ex-
pectation values of off-diagonal operators if they are bond
operators (or products of bond operators). A general ex-

pression for the average of a bond operator Â (either
diagonal or off-diagonal) is

〈Â〉 = Z−1 ×
∑

z1,z2

∑

n,{Ŝn}

βn

n!

n
∑

n1=0

w(n, n1)× 〈z1|Ŝn1 Ŝn−n1+1|z2〉 × δ
Â,Ŝ

(1)
n−n1+1

, (B12)

where δ
Â,Ŝ

(1)
n−n1+1

means that if the first operator in Ŝ
(1)
n−n1+1 is anything other than Â then the corresponding weight

is zero (this is completely analogous to the corresponding derivation in the usual SSE scheme, see, e.g., [40]). Making
the substitution n → n− 1, we arrive at:

〈Â〉 = Z−1 ×
∑

z1,z2

∑

n,{Ŝn}

βn−1

(n− 1)!
×

n−1
∑

n1=0

w(n− 1, n1)〈z1|Ŝn1 Ŝn−n1 |z2〉 × δ
Â,Ŝ

(1)
n−n1

. (B13)

Rewriting the above expression gives

〈Â〉 = Z−1 ×
∑

z1,z2

∑

n,{Ŝn}

βn

n!
×

n−1
∑

n1=0

(

w(n − 1, n1)
n

β
δ
Â,Ŝ

(1)
n−n1

)

〈z1|Ŝn1 Ŝn−n1 |z2〉 , (B14)

which eventually becomes our final expression for the average of a bond operator:

〈Â〉 = 2

β
〈
n−1
∑

n1=0

[

w(n, n1)

(

(n− n1)δÂ,Ŝ
(1)
n−n1

)]

〉 = 2

β
〈
n−1
∑

n1=0

[

w(n, n1)
(

(n− n1)δÂ,Ŝ
(n−n1+1)
n

)]

〉 . (B15)

For diagonal bond operators one can use either Eq. (B11) or (B15). For products of bond operators, we similarly get

〈
m
∏

i=1

Âi〉 =
(

2

β

)m

× 〈
n−m
∑

n1=0

[

w(n, n1)

(

(n− n1)!

(n− n1 −m)!
δ∏m

i=1 Âi,Ŝ
(n1+1..n1+m)
n

)]

〉 . (B16)

3. Correlation functions

For correlation-function measurements, let us consider the following expectation value:

〈Â1(τ/2)Â2(−τ/2)〉 = 〈eĤτ/2Â1e
−Ĥτ Â2e

Ĥτ/2〉 ≈ 〈0|eĤτ/2Â1e
−Ĥτ Â2e

Ĥτ/2|0〉 (B17)

= 〈0|Â1|0〉〈0|Â2|0〉+
∑

m=1

〈0|Â1|m〉〈m|Â2|0〉e−(Em−E0)τ .

In our case

〈Â1(τ/2)Â2(−τ/2)〉 = 〈eĤτ/2Â1e
−Ĥτ Â2e

Ĥτ/2〉 ∼ 〈φ|e− 1
2 (β−τ)ĤÂ1e

−Ĥτ Â2e
− 1

2 (β−τ)Ĥ |φ〉 , (B18)

which becomes

〈Â1(τ/2)Â2(−τ/2)〉 = Z−1 ×
∑

z1,z2

∑

n,{Ŝn}

∑

m,{Ŝm}

(β − τ)n

n!

τm

m!

n
∑

n1=0

w(n, n1)〈z1|Ŝn1

(

Â1ŜmÂ2

)

Ŝn−n1 |z2〉 . (B19)
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For diagonal operators, this can be expressed as

〈Â1(τ/2)Â2(−τ/2)〉 = 〈
n
∑

m=0

(

n

m

)

(
τ

β
)m(1− τ

β
)n−m

(

n−m
∑

n1=0

[w(n−m,n1)a1(n1)a2(n1 +m)]

)

〉 , (B20)

with an analogous expression for bond correlation functions:

〈Â1(τ/2)Â2(−τ/2)〉 = (B21)

〈
n−2
∑

m=0

(

n

m

)

(
τ

β
)m(1− τ

β
)n−m × (n−m)(n−m− 1)

(τ − β)2

(

n−m−2
∑

n1=0

[

w(n −m− 2, n1)δÂ1,Ŝ
(n1+1)
n

δ
Â2,Ŝ

(n1+m+2)
n

]

)

.

4. Integrated susceptibilities

Integrated susceptibilities are given by

∫ β

0

dτ〈Â1(τ/2)Â2(−τ/2)〉 = 〈 β

n+ 1

n
∑

m=0

n−m
∑

n1=0

a1(n1)a2(n1 +m)w(n−m,n1)〉 , (B22)

for diagonal operators and by

∫ β

0

dτ〈Â1(τ/2)Â2(−τ/2)〉 = 〈n
β

n−2
∑

m=0

n−m−2
∑

n1=0

w(n−m− 2, n1)δÂ1,Ŝ
(n1+1)
n

δ
Â2,Ŝ

(n1+m+2)
n

〉 , (B23)

for bond operators.

5. Binomial distribution of the level weights and

the large β limit

Note that since the weights assigned to the levels,
w(n, n1) given in Eq. (B7), correspond to a binomial
distribution with p = q = 1/2, the weights are sharply
peaked around n1 = n/2, i.e., the mid-point of the se-
quence. More importantly, the standard deviation of the
distribution is σ = (1/2)

√
n meaning that in the limit of

very large n, most of the weight is sharply peaked around
n/2 and there is no need to perform measurements over
the entire sequence, as most of the weight is concentrated
in the region within of order

√
n of n/2.

We should emphasize, however, that this binomial dis-
tribution is only needed to reproduce the precise average
in Eq. (B10) for a specific value of β. However, β does not
correspond to a true inverse temperature and the average
in Eq. (B10) does not, in general, correspond to a Boltz-
mann distribution. Only for the special case of β → ∞,
in which limit the method projects out the ground state,
does this technique give a valid thermal average. In the
case of large β we can, in fact, obtain the ground state
by sampling anywhere far from the boundaries. For ex-
ample we can obtain 〈A〉 by the following generalization
of Eq. (B10),

〈A〉 = 1

Z
〈φ|e−(1−λ)βĤÂe−λβĤ |φ〉 , (B24)

where λ can take any value between 0 and 1 for which

both e−λβĤ |φ〉 and e−(1−λ)βĤ |φ〉 project out the ground
state. Repeating the above analysis the weights are now
sharply peaked around n1 = λn. Since different values of
λ give the same result, we can average over λ, and hence
obtain ground state properties by omitting the weights
w(n, n1) and averaging uniformly over a range of levels
around the middle (in practice we take the middle n/4
levels). Averaging in this way over a range of levels pro-
portional to n (rather than

√
n) improves the signal to

noise.

Appendix C: The quantum cavity method for

two-Local transverse field spin Hamiltonians

In this section we motivate and describe the equations
which we have solved numerically in our study of random
3 regular Max-Cut. We first derive the cavity equations
for a transverse field spin Hamiltonian with two local
interactions on a finite tree. We then briefly mention
the procedure that is used to investigate the infinite size
limit for homogeneous Hamiltonians defined on random
regular graphs (homogeneity means that the interaction
is the same on each edge of the graph).
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1. The quantum cavity method on a tree

We now review the quantum cavity equations in the
continuous imaginary time formulation [32]. We consider
transverse field spin Hamiltonians of the form

H(λ) = H0 − λ

N
∑

i=1

σi
x (C1)

where H0 is diagonal in the Pauli basis and is two local,
that is

H0 =
∑

(i,j)∈T

Hij

where Hij only acts nontrivially on spins i and j and the
graph of interactions T is a tree.

The starting point for the quantum cavity method
is the path integral expansion of the partition function
Tr
[

e−βH
]

, where β is the inverse temperature. This
leads to an expression of the form

Tr
[

e−βH
]

=
∑

pathsP

ρ̃(P ), (C2)

where ρ̃ is a positive function on paths in continuous
imaginary time. A path P can be specified by a number
of flips r a sequence of bit strings {z1, z2, z3, ..., zr+1 =
z1} where zi+1 differs from zi by a single bit flip, and
an ordered list of times {t1, t2, ..., tr} at which transitions
occur. By normalizing ρ̃ we get a probability distribution
ρ over paths:

ρ(P ) =
1

Z(β)
λrdtrdtr−1...dt1e

−
∫

β
0
〈P (t)|H0|P (t)〉dt.

A path P of N spins can also be specified as a collection
of N one-spin paths P (i) for i ∈ {1, ..., N} where P (i) is
specified by r(i) (the number of transitions in the path of
the ith spin), a single bit b(i) ∈ {0, 1} which is the value
taken by the spin at time t = 0, and a list of transition

times {t(i)1 , t
(i)
2 , ..., t

(i)
r(i)}. Then we can also write

ρ(P ) =
1

Z(β)

[

N
∏

i=1

λr(i)dt
(i)
1 dt

(i)
2 ...dt

(i)
r(i)

]

e−
∫ β
0
〈P (t)|H0|P (t)〉dt.

(C3)
The quantum cavity equations allow one to determine
µi→j(P

(i)) , the marginal distribution of the path of spin

i when the interaction Hij between spins i and j is re-
moved from H . This marginal distribution is defined
through

µi→j(P
(i)) =

1

Ni→j

∑

Pk:k 6=i

ρ(P )e
∫ β
0
〈P (t)|Hij |P (t)〉dt.

where Ni→j is a normalizing factor. The quantum cavity
equations are the following closed set of equations for the
cavity distributions {µi→j}.

µi→j(P
(i))

=
1

zi→j

(

(

λr(i)dt
(i)
1 dt

(i)
2 ...dt

(i)
r(i)

)

(C4)

∑

P (k) :
k∈∂i\j

[

∏

k∈∂i\j

µk→i

(

P (k)
)

(C5)

e−
∫

β
0
〈P (t)|Hik|P (t)〉dt

]

)

(C6)

where zi→j is a normalizing constant. From the cavity
distributions it is straightforward to compute expectation
values of local operators such as the magnetization or the
energy.

2. The thermodynamic limit: replica symmetric

and 1-step replica symmetry breaking cavity

equations

The replica symmetric (RS) scheme is exact under the
assumption that the measure over paths in Eq. (C2) is
characterized by a single pure state, and local correla-
tions decay very quickly as a function of distance. In
this case the loops of the random graph are irrelevant.
For a model defined on a regular graph, and without dis-
order in the Hamiltonian, such as the Max-Cut problem
in Eq. (13), the local environment of each site is identical
to all others. Then, in the thermodynamic limit all the
cavity distributions are the same (µi→j = µ for all di-
rected edges i → j). Roughly speaking this assumes that
a random regular graph is modeled by an “infinite tree”
which is obtained by assuming translation invariance for
the recursion in Eq. (C6). For a 3 regular antiferromag-
net, this gives

µ(P (0)) =
1

Z
(λrdt1dt2...dtr)

∑

P (1),P (2)

[

µ
(

P (1)
)

µ
(

P (2)
)

e−
∫

β
0
〈P (t)|[σ0σ1+σ0σ2]|P (t)〉dt

]

. (C7)

One can then attempt to solve for a distribution µ over paths which satisfies this recursion. Note that if there is
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disorder in the Hamiltonian, e.g. in Eq. (14), then the
RS cavity method is more complicated and requires the
introduction of a distribution of cavity distributions [29,
31]. This is not required in our case.

The 1RSB ansatz is the next level of refinement within
the cavity method–it is described in Refs. [51] and [33] at
the classical level and in the quantum case in Ref. [45].
The 1RSB ansatz is exact under the assumption that in
the thermodynamic limit the distribution ρ in Eq. (C2)
for a random regular graph is a weighted convex combi-
nation of distributions κ which have very little overlap
(their support is on non-overlapping sets of paths) and
are uncorrelated. In the 1RSB cavity method the Parisi
parameter m ∈ [0, 1] is used to assign the “states” κ dif-
ferent weights in the distribution. By choosing m ∈ [0, 1]

appropriately one obtains the correct weighting corre-
sponding to the distribution ρ.

In our study of 3-regular Max-Cut we use the 1RSB
quantum cavity method with m fixed to be 0. This cor-
responds to the assumption that each of the distributions
κ is weighted evenly in the distribution ρ. We made
this choice here because it greatly simplifies the compu-
tation [45] and does not affect much the result for the
ground state energy of this particular model [30].

We therefore do not present the 1RSB in full
generality–we now discuss the 1RSB case with m = 0.
To use this method, we solve for a distribution Q(µ) over
marginal distributions µ which has the property: If µ1

and µ2 are drawn independently from Q, then µ̃ defined
by

µ̃(P (0)) =
1

Z
(λrdt1dt2...dtr)

∑

P (1),P (2)

[

µ1

(

P (1)
)

µ2

(

P (2)
)

e−
∫ β
0
〈P (t)|[σ0σ1+σ0σ2]|P (t)〉dt

]

. (C8)

is also distributed according to Q.
Since we cannot represent an arbitrary distribu-

tion Q(µ) in a finite amount of computer mem-
ory, we represent the distribution Q by a number
ND of representatives: that is, marginal distributions
µ1, µ2, ..., µND which are each assigned an equal weight
in the distribution. Furthermore, each cavity distribu-
tion µ is stored as a list of NR representative paths
P (1), P (2), ..., P (NR) which are given weights in the dis-
tribution w(1), w(2), ..., w(NR) (with

∑

i w
(i) = 1).

3. Details of the Quantum Cavity Numerics for

Max-Cut

Our simulation was run on a Sicortex computer cluster
in an embarrassingly parallel fashion. We ran two inde-
pendent simulations at each value of λ. We have checked

our results with a second independent implementation of
the continuous time cavity method. We used population
sizes ND = 200 and NR = 15000. We found numerically
that there is a systematic error associated with taking
NR to be too small and that this error increases as β is
increased. We believe that NR = 15000 is large enough
to make this error small for our simulation at β = 4 (see
[34] for more details).

For unknown reasons our computer code sometimes
(primarily at higher values of the transverse field λ and
larger values of NR) did not output the data file. This
computer bug did not seem to compromise the results
when the output was produced (we checked this by com-
paring with results from the independent implementa-
tion). We have only reported data for values of λ where
both independent simulations at NR = 15000 outputted
data files.


