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We propose a non-Hermitian quantum annealing algorithm which can be useful for solving com-
plex optimization problems. We demonstrate our approach on Grover’s problem of finding a marked
item inside of unsorted database. We show that the energy gap between the ground and excited
states depends on the relaxation parameters, and is not exponentially small. This allows a signif-
icant reduction of the searching time, which is proportional to the number of qubits. We discuss
the relations between the probabilities of finding the ground state and the survival of a quantum
computer in a dissipative environment, and new ways to solve NP-complete problems.
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Many physical and combinatorial problems
associated with complex networks of interact-
ing degrees of freedom can be mapped to equiv-
alent problems of finding the minimum of cost
function or the ground state of a corresponding
quantum Hamiltonian, Hg, [1-9]. One of the
approaches to find the ground state of Hy is
quantum annealing (QA) which can be formu-
lated as follows. Consider the time-dependent
Hamiltonian, H(t) = Ho + I'(t)H1, where Ho is
the Hamiltonian to be optimized, H; is an aux-
iliary “initial” Hamiltonian, and [Hg, H1] # 0.
The coefficient, I'(t), is a control parameter,
and I'(t) decreases from very high value to zero
during the evolution.

One starts with the ground state of H; as
the initial state, and if I'(¢) is slowly decreasing,
the adiabatic theorem guarantees approaching
the ground state of Hy, at the end of the com-
putation, assuming that there are no energy
level crossings between the ground and excited
states. So, the quantum optimization algo-
rithms require the presence of a gap between
the ground state and first excited state. How-
ever, in typical cases the minimal gap, ¢,
is exponentially small. For instance, in the
commonly used quantum optimization n-qubit
models, the estimation of the minimal energy
gap yields: g, ~ 27"/2 [1, 4, 10-12]. This
increases drastically the total computational
time, and from a practical point of view the
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advantage of the method is lost.

Recently [13], we have proposed a non-
Hermitian adiabatic quantum optimization
with the non-Hermitian auxiliary Hamiltonian.
We have shown that the non-Hermitian quan-
tum annealing (NQA) provides an effective
level repulsion for the total Hamiltonian. This
effect enables us to develop an adiabatic the-
ory without the usual gap condition and to de-
termine the low lying states of #g, including
the ground state. Some interesting suggestions
for implementation of non-Hermitian architec-
tures by realization of “Ising machine” based
on mutually injection-locked laser systems were
recently discussed in [14, 15].

In this paper, we apply the NQA to Grover’s
problem [16], i.e. finding a marked item in an
unstructured database.

Consider a set of N = 2" unsorted items
among which one item is marked. The related
Hilbert space is of dimension N. In this space,
the basis states are written as |¢) (i=1,2,...,N),
and the marked state is denotes as |m). The
task is to find the marked item as rapidly as
possible.

The Hamiltonian whose ground state is to
be found, can be written as: Ho = —|m)(m|.
Its ground state, marked as |m), is unknown.
The auxiliary Hamiltonian is given by H; =
~[io) (ol where [go) = (1/V/N) 3L, Ji) is its
ground state with energy EY = —1. For both
Hamiltonians, Hy and H;, the rest of eigen-
states have the NV — 1-times degenerate energy
E.=0(r=23,...,N). (Our choice of the
Hamiltonian is different from the Hamiltonian
considered in refs. [17-20] by a total shift on



the unit matrix.)

Usually, the non-Hermitian Hamiltonian ap-
pears naturally when one considers a qubit
based on two discrete eigenstates interacting
with their continuum spectrum [21]. In this
case, the non-Hermitian terms in the Hamilto-
nian have the structure which depends on the
concrete type of a qubit and on the mechanisms
of interactions between qubit and environment.

Below we use a simplified model (similar to
[22]) for a non-Hermitian term in the Hamilto-
nian, as our main goal in this paper is to demon-
strate the principal effects related to non-
Hermitian effects. The total time-dependent
non-Hermitian Hamiltonian is chosen as fol-

lows: H,(t) = Ho + h(t)H1, where
T—1t), 0<t<r
o ={3" 72, 1)

We denote v = (g+1id)/7, where g (an effective
field) and ¢ (a damping parameter) are real. In
what follows we assume that 0 < g.

The adiabatic quantum search algorithm
consists of (i) preparing the system in the initial
state, [1(0)) = |¢o), and (ii) performing an evo-
lution by applying the non-Hermitian Hamilto-
nian, H,(t), during a time, 7. At the end of
evolution, the non-Hermitian part of the total
Hamiltonian disappears. Then, if the evolution
is sufficiently slow, the system is remained in
its ground state, which will be the ground state
of the Hermitian Hamiltonian, H.

We start with the solution of the eigenvalue
problem for H,(t). This yields (N-2)-times de-
generate highest eigenvalue, Ey = 0, and two
lowest eigenvalues, Fy and E7, which are given
by

N )
mp=-"0, 2

2
where Q(t) = +/h%(t) —2h(t)cosa +1 and
e(t) = h(t) —|— 1. We set sm(a/2) =1/VN.

The energy gap between the ground state and
the first excited state is given by |AE(t)| =
|/h3(t) — 2h(t) cosa + 1|. For N > 1/6 one
can show that the minimum of the energy gap
is given by |AE|min = 0/y/ g% + 02+ O(1/N).

In the two-dimensional subspace spanned
by the vectors, |1o) and |m), we choose
an orthonormal basis as |¢g) and |¢1) =
(sin(a/2)|1ho) — |m))/ cos(a/2). We comple-
ment it to the basis of the N-dimensional
Hilbert space by adding (N — 2) vectors, |y)

(k =2,...,N — 1), which form the orthonor-
mal basis of the orthogonal (N —2)-dimensional
Hilbert subspace. Then, an arbitrary state,
|W(t)), can be expanded as | U (1)) = co(¢)]10) +
er(B)vn) + sy on(t)|n).

Inserting this expansion into the Shrodinger
equation, i0/0t|¥) = H.|¥(t)), we find that
the differential equations for the coefficients,
co(t) and ¢1(t), do not involve the coefficients,
cr(t) (k=2,...,N —1). Then, effectively the
N-dimensional problem is exactly reduced to
the two-dimensional one. So, it is suffices to
confine our attention to the two-dimensional
subspace.

Choosing the orthonormal basis as {|1g) =

(9) 10 = (&

responding effective (non-Hermitian) Hamilto-
nian as

)}, one can write the cor-

%ef(t):_@‘f'w'a', (4)
2 2
where Q(t) = (sina, 0, h(t)—cos ) is a complex
vector, and o denotes the Pauli matrices.

We denote the (right) instantaneous eigen-
vectors, corresponding to the eigenvalues,
E.(t), as |uq(t)) (@ = 0,1). One can show
that [uo(0)) = [} + O(1/N), and Ju(t)) —
[¢r) + O(1/N), as t — .

For the two-level system (TLS) governed
by the effective non-Hermitian Hamiltonian
(4), the wave-function can be written as,
[W®) = co(t)lto) + ci(t)[¢r).  Writing
Ca = ua(t)exp (4 fo )dt), and employing the
Schrodinger equation for the TLS governed by
the effective Hamiltonian of Eq. (4), we obtain

il = %(sinaul — (h(t) — cosa)) uo), (5)
ity = %((h(t) —cosa) uy + sina uo). (6)

Further, it is convenient to introduce a new
variable, 2(t) = e™/4(y(r — t) — cosa)/\/7.
Then, for new functions, u,(t) = U,(z), we
rewrite Eqs. (5), (6) in the standard Landau-
Zener form [23, 24],

d z -
%UO = —§UO + \/ZVkUl, (7)
d
—Ui = gUl + ViU, (8)
2k

where v = sin® a/4y. From Egs. (7), (8) we
obtain the second order Weber equation [25, 26]

- iu) Uos=0. (9)



Solutions of Weber’s equation are given by
the parabolic cylinder functions, D_;, (+z),

U()(Z) = AD,W(Z) + BD,“/(—Z), 10)

(
U1 (Z) = \/7:_V(BD71'V,1(—Z) — AD,il,,l(Z)).
(11)

The constants, A and B, should be determined
from the initial conditions. We assume that the
evolution of the TLS starts at ¢ty = 0 in the state
[1(0)) = |1g). This implies the following initial
conditions: ¢g(0) =1 and ¢;(0) = 0. From here
we obtain A = D_;,_1(—20)'(1 + iv)/v2mv
and B = D_;,_1(20)T'(1 4+ iv)/v2mv, where we
set zg = 2(0).

It is assumed that the quantum measurement
will determine the state of the quantum system
at t > 7, when the external field, h(t) = 0.
(See Eq. (1).) We denote the final state of the
system as |¢;). Then, the probability, P,, of
finding the system in a given state, |n), can be
written as,

p _ lolvo)P )

(e [1p7) 2
Since for non-Hermitian systems the norm of
the wavefunction is not conserved, we define
the (intrinsic) probability of transition |vg(t))

= |¢u(2)) as

O aP
B0 = GoEta@r

Using the functions, Uy 1(z), we recast (13) as
1

- FAGIEN
R AGIE

(13)

Py (t) (14)

To estimate P, at the end of evolution
(t = 7), we use asymptotic formulas for the
parabolic functions [27]. The leading term is

Uo(zr) _ _6_7”//26_'272'/2F(1 +iv) (15)
Ui (2r) V2rvi ’

where 2, = z(7) = —e™/* cosa/ /7. Using Eq.
(15), we obtain

1
P, = : . (16)
14+ |F(1 + ZV)|2 e*ﬂ%ufﬂ?z?_
27 |v|
For § < g we can approximate
Rv ~ (1/4g) sin? a, (17)
R22 ~ (67/9%) cos® a, (18)
T(1+iv) &~ T(1 +iRv). (19)
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FIG. 1: (Color online) The transition probability,
P;, as a function of a scaled decay rate, 6. = d70/g,
and scaled annealing time, 7. = 7/70, where 79 =
gN.

Inserting (17) — (19) into Eq. (16) and using
the relation [26],

2 s

IN( = — 20
Dy = . (20)
for real y, we obtain
1— —27Rv
P, c (21)

= 1— 67271'8?1/ + 67271'8?1/7%,23 :

In Fig. 1, the transition probability, P., as a
function of a scaled decay rate, §. = d79/g, and
a scaled annealing time, 7. = 7/70, is demon-
strated, where 79 = gV denotes the character-
istic time-scale of the QA. As one can see, even
for 6 < 1 and small 7 < 79, the probability,
P, is close to 1.

For the Hermitian QA (§ = 0) Eq. (21) yields
the Landau-Zener formula [23, 24]

Pr=1-¢?", (22)

where for N > 1 we obtain, v = (7/70). We
conclude that P, =~ 1, if 7 > 79 = gNN. Thus,
to obtain the probability close to 1 to remain
in the ground state at the end of evolution, the
computational time should be of order N. In
fact, this result is equivalent to the well-known
result on the complexity of order N provided
by quantum adiabatic evolution approach [18],
which is the same as in the classical search al-
gorithm.

For the NQA with N > 1, we can approxi-
mate Rv ~ 7/79 and R22 ~ §7/g?. Assuming



T K Tp, we obtain

1
1+ i 6*57/92 '
2T

P, = (23)

From here, in the limit of § — 0, we obtain

1
T0
14+ -2
+ 2rT

P, — < 1. (24)

This result is expected, as in this case, the time

of the Hermitian annealing, 7, is small with re-

spect to the characteristic time, 7p: 7 < 7.
Next, assuming

or To
we obtain
P~1— 2;—07 e07/9", (26)

As one can see P; = 1, if conditions of Eq. (25)
are satisfied.

From (25) we obtain the following rough
estimate of the computational time: 7 =
(g?/0)In N. Recognizing that 7 < 79, this can
be recast as 6 > (g/N)In N. The obtained re-
sults mean that the characteristic time of non-
Hermitian annealing, even for small but finite
d # 0, is defined not by N (as in Hermitian
annealing), but mainly by the dissipation rate,
§. (See Fig. 1 and Eq. (26).) Thus, the
non-Hermitian quantum search has complex-
ity of order In N, which is much better than
the quantum Hermitian (global) adiabatic algo-
rithm. Also, this complexity is certainly better
than one of the adiabatic local search algorithm
that has total running time of order v/N [17].

In Fig. 2 we present the results of our nu-
merical simulation. For the Hermitian QA
(6 = 0) the transition probability (to remain
in the ground state) at the end of evolution is:
P. ~3-1078; and for the NQA with weak dis-
sipation, § = 0.0025, the transition probability
is: P, =1 (7=15-10%).

Nonlinear NQA. — We define the survival
probability of the lossy system as the trace of
the density matrix, P,(t) = Trp(t). Using the
asymptotic formulas for the Weber functions,
one can show that for N > 1, the asymptotic
behavior of the survival probability is given by:
Py(t) ~ e7%. (See Fig. 2, dotted blue line.)
Then, one can see that the conditions to ob-
tain high probabilities for (i) finding the ground
state, leading to inequality, 7 > (¢2/d)In N,

1
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FIG. 2: (Color online) Left panel: The transi-
tion probability, P-, as a function of the scaled
time, s = t/7 (§ = 0). Right panel: The survival
probability, Ps (dotted blue line), and the transi-
tion probability, P, (red line), as functions of the
scaled time, s = t/7 (§ = 0.0025). In all cases:
g=2,7=15-10* N = 2%,
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FIG. 3: (Color online) Nonlinear NQA.The transi-
tion probability (left panel), and the survival prob-
ability (right panel) as the functions of the scaled
time, s = t/7 (g = 2,6 = 107,71 = 5-10", N =
240)‘

and (ii) survival of qubits, dt < 1, are not com-
patible. A compromise can be found by using
a local adiabatic evolution approach [17].

We rewrite the total time-dependent non-
Hermitian Hamiltonian as,

Ho(t) =Ho+ho(l = f(t)H1,  (27)
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FIG. 4: (Color online) Nonlinear NQA.The transi-
tion probability (left panel) and the survival prob-
ability (right panel) as functions of the scaled time,
s=t/T(g=2,6 =7.510"° 7 = 5510, N = 2%°).



where hg = (g + i), and f(¢) is a mono-
tonic function of t. For concreteness, we choose
g = 2, and impose the following boundary con-
ditions: f(0) = 0 and f(7) = 1, where 7 de-
notes the computational time.

We choose f(t) as a solution of,

af _ po (1—-2f)\2
480 (),
dt T ( * 0 (28)
where 8 = arctan(1/6). Performing the inte-
gration, we find
2f —1
t= % + 2L arctan(f%;).
By inverting this function we obtain,

£ =L O an (ﬁ@ - 1)) (30)
2 2 T

From here it follows that f(7) = 1, and the

computation time is 7.

In Figs. 3 and 4 we present the results of
numerical calculations for different choice of
parameters, 4 and 7. Our results show that
the nonlinear NQA can be realized with the
transition probabilities, P, ~ 1.2 - 1072 and
P, ~ 1.6 - 1072, The computational time,
T ~ 5.5-10%, is better than the time of quan-
tum search predicted by the Grover algorithm,
7 =+/N ~ 10° (for n = 40).

Conclusion.— The field of quantum adiabatic
computation is well-established, and many use-
ful results are discussed in the literature. One
of the main problems of this approach is that
the energy gap between the ground state to be
found and the excited states is generally ex-
ponentially small. This requires exponentially
large computational times, 7 ~ /N, in the
best case. On the other hand, in the dissi-
pative (non-Hermitian) regime, the energy gap
is defined by the relaxation parameters, and
may not be exponentially small. (See also
[14, 15].) In this case, the computational time
can be significantly reduced, 7 ~ (g?/§)In N.
This means that the characteristic time of non-
Hermitian annealing, even for small but finite
dissipation parameter, ¢, is defined mainly not
by N, but by a dissipation rate, ~ 4.

At the same time, another problem appears —
the quantum computer has a finite probability
to be destroyed (which happens anyway). One
way to overcome this problem was discussed
in [14,15], where both dissipation and external
pumping in the locked laser system was used to
model the Ising system in its stationary ground
state. But still many theoretical and experi-
mental issues must be resolved in order to build
this type of “Ising machine”.

(29)

The results presented in our paper demon-
strate that non-Hermitian quantum computa-
tions can be used for two purposes. One is
to use non-Hermitian quantum algorithms to-
gether with the use of classical computer to
significantly reduce computational time, which,
we expect, would help in solving NP-complete
problems. We are in the process of demonstrat-
ing this option for some classes of Ising mod-
els [28]. Another purpose is to build a real
“non-Hermitian quantum computer” (NHQC)
to solve specific complex problems rapidly. As
was demonstrated in this paper, in the later
case there will be a tradeoff between the prob-
ability of finding the desired outcome and the
probability of survival of the computer. As our
results show, there are useful ways to improve
the performance of the NHQC.
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