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Phase-Sensitive Detection for Unconventional Bose-Einstein Condensations

Zi Cai,1 Lu-Ming Duan,2, 3 and Congjun Wu1, 3

1Department of Physics, University of California, San Diego, California 92093
2Department of Physics and MCTP, University of Michigan, Ann Arbor, Michigan 48109, USA

3Center for Quantum Information, IIIS, Tsinghua University, Beijing, China

We propose a phase-sensitive detection scheme to identify the unconventional px ± ipy symme-
try of the condensate wavefunctions of bosons, which have already been proposed and realized in
high bands in optical lattices. Using the impulsive Raman operation combining with time-of-flight
imaging, the off-diagonal correlation functions in momentum space give rise to the relative phase
information between different components of condensate wavefunctions. This scheme is robust
against the interaction and interband effects, and provides smoking gun evidence for unconventional
Bose-Einstein condensations with nontrivial condensation symmetries.
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Macroscopic condensates of bosons and paired fermions are of central interest in condensed matter physics. Order
parameters of Cooper pairings are termed “unconventional” if they belong to non-trivial representations of rotational
symmetry groups. Celebrated examples include the d-wave pairing states of high Tc cuprates [1, 2], the p-wave
pairing states of 3He A and B-phases [3], and Sr2RuO4 [4, 5]. Among various experimental tools, phase-sensitive
detections are exceptional as they provide the smoking-gun evidence for unconventional pairing symmetries, such as
the π-phase shifts in the joint corner SQUID junctions [1] and the tri-crystal superconducting ring experiments [2] of
high Tc cuprates. Unconventional symmetries have also been generalized to the particle-hole channel pairings, i.e.,
the Pomeranchuk type Fermi surface instabilities. The spin instabilities in high orbital angular momentum channels
are denoted as “unconventional magnetism”.
Recently, unconventional symmetries have been introduced to the single-boson condensates [6, 7], denoted as “un-

conventional” Bose-Einstein condensations (UBEC). Their condensate wavefunctions belong to non-trivial represen-
tations of the lattice point group. Such states have been proposed in high orbital bands of optical lattices [8–14].
These systems have been experimentally realized by pumping bosons into high orbital bands [15–17]. Bosons have
been observed to develop phase coherence before they decay to the lowest band. In addition, in the artificial lattice
systems of exciton-polariton in semiconductor quantum wells, a d-wave condensation in the excited bands of bosons
have also been observed [18]. These UBECs are beyond Feynman’s “no-node” theorem [6, 19], which states that the
ground-state wavefunctions of bosons are positive-definite under very general circumstances. This theorem applies for
the system of superfluid 4He [19] and many experiments of alkali bosons [20]. It also implies that time-reversal (TR)
symmetry cannot be spontaneously broken in usual BECs. However, UBECs, which are metastable excited states of
bosons instead of the groundstate, escape from the “no-node” constraint . Their condensate wavefunctions are nodal,
which are able to break TR symmetry spontaneously under certain conditions [6].
The recent UBECs realized in Hemmerich’s group is an exciting progress [16], where the time-of-flight (TOF)

spectrum has revealed signatures of both the real and complex UBECs by tuning the anisotropy of the optical lattice.
However, the TOF images can only provide the single-particle density distribution in momentum space, thus in the
complex UBECs, the key information about the relative phase between the condensate components is lost during
TOF. Without the phase information, the TOF images of the px ± ipy BEC can be interpreted by other plausible
scenarios such as the phase separation between two real condensates at different momenta or the incoherent mixing
between them[21]. It would be important to have the smoking gun evidence of the phase difference ±π

2 between the
two condensate components.
In this paper, we propose a phase-sensitive detection scheme to identify the px ± ipy symmetry of UBECs by

measuring the relative phases of ±π
2 . This proposal is based on the scheme in Ref. [22], which has been used to

construct the off-diagonal correlation functions in momentum space for UBECs. By implementing a momentum-kick
Raman pulse, we build up the connection between bosons with different condensate momenta in the complex UBEC.
The off-diagonal order of BEC has also been measured by the Bragg spectrum [23, 24]. As we will show below, the
relative phase information is uniquely tied to the off-diagonal correlations between the different condensate momenta,
which can be measured in time-of-flight imaging through the impulsive Raman pulse. We note that a different scheme
has been proposed recently by Kitagawa et al. for phase-sensitive detection of nontrivial pairing symmetries in
ultracold fermions based on the two-particle interferometry [25].
Our scheme is connected with the experiment in Ref. [16], where the bosons are pumped to the first excited

band of a s-p hybridized system (hybridization between the s-orbital of the shallow sublattice A and the p-orbital of
the deep sublattice B as illustrated in Fig. 1(a). Two degenerate band minima (denoted as K1,2 below) locate at
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FIG. 1: (a) The bipartite lattice structure (along the x-direction) in Hemmerich’s experiment [16], where bosons are loaded

into the second band. (b) The first Brillouin zone (blue area) and the basis vectors of the reciprocal lattice ~b1,2.

the lattice momenta 1
2
~b1,2 with ~b1,2 = (±π, π) the reciprocal lattice vectors (we set the lattice constant a = 1), as

shown in Fig.1 (b). Bloch-wave states Ψ1,2(r) at K1,2 points are are time-reversal invariant, and can be expressed
as Ψ1,2(r) = eiK1,2ruK1,2(r), where uK1,2(r) are periodic wavefunctions and can been obtained by energy band

calculation[7]. The complex combination of Ψ± = (Ψ1 ± iΨ2)/
√
2 only have nodal points from intersections of the

nodal lines of Ψ1,2. With repulsive interaction, the complex condensates Ψ± with nodal points are favored since their
spatial distributions of particle density are more uniform and extensive than other states, minimizing the interaction
energy [7].
Both of the wavefunctions Ψ1,2(r) have odd parity with the p-wave symmetry. Rigorously speaking, the lattice

configuration in Ref. [16] does not have 4-fold rotational symmetry, and thus Ψ1,2 are not transformable to each other
by the rotation of 90◦. Nevertheless, for simplicity, we still denote these condensates with the px ± ipy symmetry.

The TOF imaging in the experiment [16] has observed four peaks at (K1,2, K
′
1,2 ≡ K1,2 −~b1,2) with the same height,

which implies that the condensate has two equal weights of the Ψ1 and Ψ2. However, the phase difference between
the two components Ψ1 and Ψ2, which is critical for verifying the novel px ± ipy condensation symmetry, is not clear.
The spirit of our proposal for the phase-sensitive detection can be outlined of as follows: for the condensate

|Ψc〉 = 1
2N0/2

√
Nc!

(C†
K1

+ eiθC†
K2

)Nc |O〉, where Nc is the boson number in the condensate; C†
K1

(C†
K2

) is the bosonic

operator creating a boson at K1 (K2); θ is the relative phase between bosons in K1 and K2. If θ 6= 0 and π, the
condensate exhibits a vortex-antivortex lattice structure. The staggered orbital angular momentum (OAM) density

wave order parameter is defined Lz( ~Q) = i(C†
K1
CK2

− C†
K2
CK1

) where ~Q = ~K1 − ~K2. Its magnitude reads as

〈Ψc|Lz( ~Q)|Ψc〉 = Nc sin θ, which is just the off-diagonal correlation. It reaches maximum for the px ± ipy state
(θ = ± 1

2π). If we implement a Raman operation to transform the bosons in the original condensate into [22]:

C′
K1

=
1√
2
(CK1

− iCK2
); C′

K2
=

1√
2
(CK2

− iCK1
), (1)

we can measure the density difference of the new BECs δn′ ≡ 〈ΨC |C′†
K2
C′

K2
−C′†

K1
C′

K1
|Ψc〉 through the TOF imaging.

δn′ exactly gives the desired off-diagonal correlation as

δn′ = i〈Ψc|C†
K1
CK2

− C†
K2
CK1

|Ψc〉. (2)

Now we turn back to the Hemmerich’s experiment and show how to implement the Raman transition. Similar
to Ref. [22], the Raman transition can be realized by two traveling-wave laser beams propagating along different
directions (as plotted in Fig.2) with corresponding wavevector k1,2 and frequency ω1,2, which introduce an effective

Raman Rabi frequency with a spatially varying phase Ω(r, t) = Ω0e
i(δk·r−δωt+φ), where δk = k1 − k2, δω=ω1 − ω2,

and φ is the relative phase between the two Raman beams. Ω0 is expressed as Ω0 = Ω1Ω
∗
2/∆, where ∆ is the

detuning, Ω1(2) are the resonant Rabi frequencies for the individual transitions between the initial (finial) states and
the intermediate state, and are proportional to the strength of the electric field of the corresponding Raman beams.
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FIG. 2: Using two Raman pulses with different propagating directions to built up the momentum transfer between bosons at
K1 and K2.

This spatially dependent Raman transition builds up the connection between the condensation components in two
degenerate points K1,2 = (±π/2, π/2), which demands that δk = K2 − K1 = (π, 0) (Notice that δk and −δk are
connected by a reciprocal lattice vector and thus equivalent. Because of this feature, the Raman scheme here is
simpler compared with the one in Ref. [22] which needs to use transition between two different hyperfine levels). The
effective Hamiltonian for the Raman process is described by

HR =

∫
drΩ(r, t)Ψ†(r)Ψ(r) + h.c, (3)

which, together with the original atomic Hamiltonian H0 in the optical lattice, gives the full Hamiltonian of the
system [16].
Different from Ref.[22], in the experiment [16] the optical lattice is too shallow to apply the tight binding approxi-

mation. Instead, we expand the field operator in the Bloch representation as

Ψ(r) =
∑
nk

Cnkψnk(r), (4)

where Cnk is the bosonic operator annihilating a boson in the nth band with momentum k, ψnk(r) is the Bloch
wavefunction, and the summation of k is over the first BZ. We choose the effective Rabi frequency Ω0 of the Raman
pulse so that it is small compared with the band gap but large compared with the atomic hopping rate in the lattice
(t ≪ ~Ω0 ≪ ∆12). Under this condition, we can neglect the interband tunneling as well as the time-dependence of
the wavepackets Ψ1(r) and Ψ2(r) during the Raman operation. For the typical values of the experiment parameters,
the energy band structure is shown in Fig. 3. The hopping rate is estimated by t ≈ 0.05Er ≈ 2π~× 0.1 kHz and the
smallest bandgap ∆12 ≈ 1.08Er ≈ 2π~ × 2.2 kHz. If we choose ~Ω0 ∼ 2π~ × 0.5 kHz, the corrections to the above
approximation, estimated by t2/ (~Ω0)

2 and (~Ω0)
2 /∆2

12, are pretty small. In our case, the Raman operation induces
a transition between the complex and polar BECs with the same kinetic energy but different interaction energy. ~δω
should match the energy difference between the initial (complex UBEC) and final (real UBEC) states of the Raman
transition, which can be estimated as 10−3Er ≈ 2π~ × 2.1 Hz and much smaller than ~Ω0. Therefore, the phase
accumulation induced by δω within the duration of Raman pulse δt can be neglected (δωδt ≪ π/4), and the Raman
Rabi frequency in Eq.(3) can be considered as time-independent during the Raman transition.
Under the above approximations, HR is simplified to

HR = eiφ
∑
k

Ω(k)C†
k+δkCk + h.c, (5)



4

-1.0

-0.5

0.0

0.5

1.0

1.5

23

12

X1
X2

 

 

E(
k)

K1

FIG. 3: The energy spectra along the lines between the high symmetry points with the experimental values of the parameters
given in Ref.[16].

FIG. 4: TOF imagings after the Raman transition with φ = 0 for (a) the complex UBEC (Ψ1+ iΨ2) and (b) incoherent mixing
of the real UBECs (Ψ1 and Ψ2).

which is constrained only to the relevant band. The summation of k is over the first BZ, and the effective Raman-
Rabi frequency Ω(k) is k dependent and can be calculated based on the eigenvectors obtained in the band-structure
calculation. Before the Raman transition, the momentum distribution of the px ± ipy condensate is sharply peaked
at K1 and K2 with a small distribution width Λ, and within this small region Ω(k) can be considered as a constant,
estimated by Ω ≈ 0.98Ω0 for the typical value of the experimental parameters. So during the Raman transition, the
small wave-packets around K1 and K2 are transferred by the same formula without distortion. When we choose the
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duration of the Raman pulse as Ωδt = π/4, the wave-packets around K1 and K2 with |dk| ≤ Λ are transferred by

C′
K1+dk = (CK1+dk − ieiφCK2+dk)/

√
2,

C′
K2+dk = (CK2+dk − ie−iφCK1+dk)/

√
2. (6)

Right after this Raman pulses, we turn off the trapping optical potential and perform the TOF imagings to
measure the particle density distribution in momentum space around K1(2). The density difference 〈δn′ (dk)〉 ≡
〈n′

K2+dk − n′
K1+dk〉 = 〈C′†

K2+dkC
′
K2+dk − C′†

K1+dkC
′
K1+dk〉 gives the off diagonal correlation for the original BEC

δn′ (dk) = i〈eiφC†
K1+dkCK2+dk − e−iφC†

K2+dkCK1+dk〉. (7)

Notice that the experimental observable δn′ (dk =0), the height difference between the peaks in K1 and K2, is
dependent on the phase difference of the two Raman pulses φ. For the px ± ipy BEC, after the Raman pulse, we see
that δn′ (dk =0) ∝ cosφ from Eq.(7). The oscillation of δn′ with φ indicates coherence of the two Raman pulses,

which is critical for phase-sensitive detection. For φ = 0, δn′ (dk =0) = i〈C†
K1
CK2

− C†
K2
CK1

〉 represents the order
parameter of the orbital ordering of the original UBEC.

With this phase-sensitive measurement, we can easily distinguish the complex condensate |Ψ〉 ∝ 1
2Nc/2

√
Nc!

(C†
K1

+

eiθC†
K2

)Nc |O〉 and other plausible scenarios, such as the phase separation or incoherent mixing between the polar

UBECs |Ψ1〉 = 1√
Nc!

(C†
K1

)Nc |O〉 and |Ψ2〉 = 1√
Nc!

(C†
K2

)Nc |O〉. In the conventional TOF imagings, both of them

exhibit four peaks with the same height thus can not be distinguished. Under this phase-sensitive TOF imaging, we
find that for the px ± ipy UBEC, 〈Ψ|n′

K2+dk|Ψ〉 = 0, which means that after Raman transition, the initial complex
UBEC turns to the polar UBEC condensing only at K1, and the predicted new TOF images are shown in Fig.4 (a)
with only two peaks. However, for the incoherent mixing state between the condensates Ψ1 and Ψ2, after Raman
transition, the polar UBECs Ψ1(2) will turn to complex UBECs Ψ′

1(2), each of them exhibits the four peaks with the

same height in the TOF imaging, thus the incoherent mixing of them still preserve this four peaks imaging, as shown
in Fig. 4 (b).

FIG. 5: (a) The vortex-antivortex lattice sturcture of the px± ipy BEC before the Raman transition; (b) the real-space current
pattern during the Raman transition, solid (dashed) arrows denote original (reflected) currents.

To get a better understanding of our results, we provide a real space picture to illustrate the complex-real UBEC
transition during the Raman process. Before the Raman transition, the px ± ipy UBEC exhibits a vortex-antivortex
lattice structure in B sublattice (p-orbital sites), as shown in Fig.5(a). The Raman beams introduce an extra potential
with the form of Eq.(3), as shown in Fig.5 (b). Without loss of generality, we focus on one site in B-sublattice, initially
the local wavefunction within this site can be approximately considered as ϕ(r) ∼ ei

π
4 [ϕx(r)+ iϕy(r)], where ϕx(y)(r)
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denote the px(y)-orbital Wannier function. During the Raman transition, the initial current is reflected by the extra
potential, and the local wavefunction turns to ϕ(t) = cos(Ωt)ϕ(r) + sin(Ωt)ϕ∗(r), where ϕ∗(r) is the TR counterpart
of ϕ(r) carrying a current with an opposite direction. Initially, ϕ(0) = ϕ(r) denotes the px + ipy local state, at the
momentum of t0Ω = π/4, the reflected current happens to cancel with the initial one, and it turns to a polar state
with the real wavefunction ϕ(t0) ∼ ϕx(r)−ϕy(r), and the corresponding polar UBEC exhibits two peaks in the TOF
spectrum, as shown in Fig.4 (a).
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FIG. 6: Time evolution of the fraction of bosons in K1 with Ω = 2π × 0.5kHz, g0ρ = 0 (solid line) and 0.6Er (dashed line)

In above analysis of the Raman transition, we have neglected the effect of interaction, which is responsible for the
broadening of the TOF imaging peaks [26, 27]. Now we estimate the interaction effect by solving the time evolution
from the Gross-Pitaevskii (GP) equations (the GP equation gives an adequate description of the interaction since the
initial state of the system is a BEC). A similar problem has been addressed for the many-body Rabi oscillation in a two-
component BEC [28]. As analyzed above, we neglect the deformation of Ψ1(r) and Ψ2(r) during the time evolution,
and the dynamics of the system can be approximately considered as two-mode transition, thus the wavefunction
during the time evolution can be expressed as: Ψ(t) = C1(t)Ψ1 + C2(t)Ψ2. The corresponding GP equation reads:

i
∂C1(t)

∂t
= ΩC2 + (2g|C1|2 + 4g′|C2|2)C1 + 2g′C∗

1C
2
2 ,

i
∂C2(t)

∂t
= ΩC1 + (4g′|C2|2 + 2g|C2|2)C2 + 2g′C∗

2C
2
1 ,

where g = g0ρ
∫
d2r|Ψ1(r)|4 = g0ρ

∫
d2r|Ψ2(r)|4, g′ = g0ρ

∫
d2r|Ψ1(r)|2|Ψ2(r)|2. ρ is the average density, g0 is the

s-wave scattering interaction parameter. In the experiment[16], g0ρ is estimated to be 0.6Er. Using the initial

condition: C1(0) = 1/
√
2, C2(0) = i/

√
2 (px + ipy state) and Ω = 2π × 0.5 kHz, we get the time evolution of the

fraction of bosons in K1 wave-packet, and compare the result with the non-interacting case. As shown in Fig. 6, the
interaction barely change the Rabi oscillation within the duration of the Raman pulses in our case, which implies the
single-particle Rabi oscillation approximation we adopted above provides an accurate description for the many-body
dynamics of the system during the Raman transition.
To conclude, we propose a phase-sensitive detection scheme to identify the nontrivial symmetry of recently observed

px±ipy orbital BEC, where the connection between different condensate momentum is built up by the momentum kick
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provided by impulsive Raman pulse. Our scheme can also be applied to the phase-sensitive detection for unconventional
BECs with other symmetries, eg. the recently observed BEC in f -orbital bands of the optical lattice [17].
This work was supported by the NBRPC (973 program) 2011CBA00300 (2011CBA00302), NSF DMR-1105945, the
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