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Abstract

A scheme is proposed to produce (3+1)-dimensional superluminal spatiotemporal optical soli-

tons and vortices in a coherent atomic system working in an active Raman gain regime. It is shown

that the evolution of the envelope of a signal field obeys a modified (3+1)-dimensional nonlinear

Schrödinger equation, which includes dispersion, diffraction, and Kerr nonlinearity. Various solu-

tions of light bullets, light vortices, light-bullet trains, and light-vortex trains are presented, which

display many interesting characters, including superlumianl propagating velocity and extremely

low generating power. In addition, they can be easily manipulated in a controllable way. Stabi-

lization of such high-dimensional superluminal light bullets and vortices can be realized using the

trapping potential formed by an additional far-detuned laser field.

PACS numbers: 42.65.Tg, 05.45.Yv

a Corresponding author: hjli@zjnu.cn
b Corresponding author: gxhuang@phy.ecnu.edu.cn

1



I. INTRODUCTION

Stable high-dimensional spatiotemporal optical solitons, alias light bullets (LBs) [1], ap-

pearing as a result of the interplay between dispersion, diffraction and nonlinearity, are of

great interest due to their rich nonlinear physics and important practical applications [2–18].

Up to now, most LBs are produced in passive optical media, in which far off resonance exci-

tation schemes are adopted to avoid significant optical absorption. However, such schemes

have some shortcomings. For example, they require very high generating power needed to

obtain nonlinearity strong enough to balance diffraction and dispersion, they are hard to

achieve an active control on light bullet property due to the lack of energy-level structure

and selection rules, etc. As a result, the propagating velocity of the LBs obtained with such

schemes is not far from c (the light speed in vacuum), and so on.

It is desirable to design new LB generation schemes that may overcome the above short-

comings. Active (i.e. on-resonance) optical media, in which light interacts with matter

resonantly, can be used to achieve such aim. However, for on-resonance media there is usu-

ally a very large optical absorption. In recent years there have been great interest focused on

the wave propagation in active atomic systems via electromagnetically induced transparency

(EIT) [19]. Based on EIT, it has been shown that optical solitons [20–26] and LBs [27] with

ultraslow propagating velocity can form in various active atomic systems.

However, the EIT scheme has drawbacks of large pulse spreading at room temperature

and very long response time due to ultraslow propagation. Parallel to EIT study, optical

pulse propagation using active Raman gain (ARG) scheme has also been received much

attention in recent years [28–44]. In an ARG system a temporary population inversion

is established prior to the arrival of signal field. The gain can lead to many interesting

propagation phenomena such as abnormal propagation velocity of a signal field. There are

ample experimental observations showing apparent superluminal propagation (i.e., apparent

group velocity exceeds c, or even becomes negative [28–44] ) of optical pulses in the systems

where gain is a dominate feature.

In the present work, we propose a scheme to produce LBs and vortices in a lifetime-

broadened four-level atomic system, which interact resonantly with three laser fields and

working in an ARG regime. Due the quantum interference effect induced by a control field,

the gain of the system can be largely suppressed. By using standard method of multiple-
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scales we derive an envelope equation for the signal field, which includes dispersion, diffrac-

tion, and Kerr nonlinearity of the system. We present various solutions of LBs, light vortices,

LB trains, and light-vortex trains, and find that they possess many interesting characters, in-

cluding superlumianl propagating velocity and extremely low generating power. In addition,

they can be easily manipulated in a controllable way. Stabilization of such high-dimensional

superluminal light bullets and vortices can be achieved using the trapping potential formed

by an additional far-detuned laser field. As far as we know such superluminal light bullets

and vortices have never been reported in literature up to now.

The article is arranged as follows. Sec. II gives an introduction of the model under

study. Sec. III presents a derivation of (3+1)-dimensional [ (3+1)D] [45] nonlinear envelope

equation of signal field using a method of multiple scales. Sec. IV discusses the formation,

propagation and their stability of superluminal LBs and vortices. Lastly, the final section

summarizes the main results obtained in this work.

II. MODEL

We consider a lifetime-broadened atomic system of N -type energy-level configuration,

see Fig. 1(a). A strong continuous-wave (CW) pump (weak pulsed signal) field with center

angular frequency ωp (ωs) and half Rabi frequency Ωp (Ωs) couples resonantly with states

|1〉 and |3〉 (|2〉 and |3〉). States |1〉, |2〉, and |3〉 together with the pump and signal fields

constitute a Λ-type three-level ARG core. A strong CW control field with center angular

frequency ωc and half Rabi frequency Ωc coupling with levels |3〉 and |4〉 is used to suppress

the gain of the signal field. The electric-field vector that resonantly interacting with atoms

is given by E =
∑

l=p,s,c elEl exp [i(kl · r− ωlt)] + c.c., where el (kl) is polarization direction

(wave vector) of lth field with envelope El. In addition, a far-detuned standing-wave laser

field EStark(r, t) = eL
√
2E0(x, y) cos(ωLt) is added to the system, where eL, ωL are unit

polarization vector and angular frequency, respectively. Due to the existence of EStark(r, t),

a small but space-dependent Stark level shift ∆Ej = −1
2
αj 〈E2

Stark〉t = −1
2
αjE

2
0(x, y) occurs,

here αj is the scalar polarizability of the level |j〉, 〈· · · 〉 denotes the time average in an

oscillating cycle. As we shall see below, the space-dependent Stark level shift will contribute a

trapping potential to the signal-field envelope. All four laser beams are assumed to propagate

along the z axis [see Fig. 1(b) ], and the pump and sinal fields have large detunings. The
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FIG. 1. (Color online) (a): Energy-level diagram and excitation scheme of the lifetime-broadened four-state

atomic system interacting with a strong CW pump field (with half Rabi frequency Ωp), a weak pulsed signal

field (with half Rabi frequency Ωs), a strong CW control field (with half Rabi frequency Ωc). ∆3, ∆2, and

∆4 are one-photon, two-photon, and three-photon detunings, respectively. (b): Possible arrangement of

beam geometry. ωp, ωs, ωc, ωL are angular frequencies of the pump, signal, control, and far-detuned laser

fields, respectively.

copropagating geometry and large detunings ∆3,4 chosen here are for suppressing the Doppler

effect resulted from the thermal motion of atoms.

The Hamiltonian of the system in the interaction picture reads Ĥint = −~
∑4

j=1[∆j +

αjE
2
0/(2~)]|j〉〈j| − ~(Ωp|3〉〈1|+ Ωs|3〉〈2|+ Ωc|4〉〈2|+H.c.). Here Ωp ≡ (ep · p13)Ep/~, Ωs ≡

(es ·p23)Es/~, Ωc ≡ (ec ·p24)Ec/~, H.c. denotes Hermitian conjugate, and ∆3 = ωp−(ω3−ω1),

∆2 = ωp−ωs−(ω2−ω1), and ∆4 = ωp−ωs+ωc−(ω4−ω1) are the one-, two-, and three-photon

detunings, respectively. The state vector of the system reads |Ψ〉 =
∑4

j=1Aj exp{i[kj · r −
(Ej/~ + ∆j)t]}, with Ej the bare state eigenenergy of the level |j〉, k1 = 0, k2 = kp − ks,

k3 = kp, and k4 = kp − ks + kc. By Schrödinger equation i~∂|Ψ〉/∂t = Ĥint|Ψ〉 one obtains

the equations of motion on Aj (j = 1, 2, 3, 4)

(

i
∂

∂t
+ d2

)

A2 + Ω∗

sA3 + Ω∗

cA4 = 0, (1a)

(

i
∂

∂t
+ d3

)

A3 + ΩpA1 + ΩsA2 = 0, (1b)

(

i
∂

∂t
+ d4

)

A4 + ΩcA2 = 0, (1c)
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with
∑4

j=1 |Aj|2 = 1, where dj ≡ ∆j + αjE
2
0/(2~) + iγj (j = 2-4), and γj is the decay rate

of the state |j〉. The base state (i.e. the steady state of the system when the signal field is

absent) is A1 = 1/

√

1 + |Ωp|2/|d(0)3 |2, A2 = A4 = 0, and A3 = −(Ωp/d
(0)
3 )A1.

The electric-field evolution is governed by the Maxwell equation, which under a slowly

varying envelope approximation is reduced to

i

(

∂

∂z
+

1

c

∂

∂t

)

Ωs +
c

2ωs

(

∂2

∂x2
+

∂2

∂y2

)

Ωs + κ23A3A
∗

2 = 0, (2)

where κ23 = Nωs|es · p23|2/(2ǫ0~c), with N being the atomic concentration.

III. (3+1)D NONLINEAR ENVELOPE EQUATION

For studying the nonlinear evolution and the formation of possible LBs and vortices in the

system, we employ the standard method of multiple-scales [46] to investigate the evolution of

the signal field. We make the asymptotic expansion Aj =
∑

l=0 ǫ
lA

(l)
j , Ωs =

∑

l=0 ǫ
lΩ

(l)
s , and

E0 = ǫE ′

0, here ǫ being a small parameter characterizing the typical amplitude of the signal

field. To obtain divergence-free expansions, all quantities on the right hand sides of the

asymptotic expansions are considered as functions of multi-scale variables x1 = ǫx, y1 = ǫy,

zl = ǫlz (l = 0, 1, 2), and tl = ǫlt (l = 0, 1). Substituting this expansion into Eqs. (1) and

(2), one can obtain a series of linear but inhomogeneous equations for A
(l)
j and Ω

(l)
s , which

can be solved order by order.

At the zero-order (l = 0), one obtains A
(0)
1 = 1/

√

1 + |Ωp|2/|d(0)3 |2, A(0)
2 = A

(0)
4 = 0, and

A
(0)
3 = −(Ωp/d

(0)
3 )A

(0)
1 . At the first-order (l = 1), one get the linear solution, which reads

Ω(1)
s = F eiθ, (3a)

A
(1)
2 = −A

(0)
3

D
(ω − d

(0)
4 )F ∗e−iθ∗ , (3b)

A
(1)
4 = −ΩcA

(0)
3

D
F ∗e−iθ∗ , (3c)

and A
(1)
1 = A

(1)
3 = 0. Here D ≡ |Ωc|2− (ω−d

(0)
2 )(ω−d

(0)
4 ) (with d

(0)
j ≡ ∆j + iγj), F is yet to

be determined envelope function depending on slow variables t1, z1, and z2, θ ≡ K(ω)z0−ωt0
[47] with the linear dispersion relation given by

K(ω) =
ω

c
− κ23|A(0)

3 |2
D∗

(

ω − d
∗(0)
4

)

. (4)
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FIG. 2. (Color online) The linear dispersion relation K of the signal field as functions of dimensionless

frequency ω/γ2,4. Panels (a) and (b) correspond to the absence (Ωc = 0) and the presence (Ωc = 5 × 107

Hz) of the control field, respectively. In both panels, the solid and dashed-dotted lines denote respectively

the real part Re(K) and the negative imaginary part −Im(K) of K.

Fig. 2 shows K(ω) as a function of dimensionless frequency ω/γ2,4. System parameters

used are γ1 = ∆2,4 = 0, 2γ2 = 1 × 103Hz, 2γ3 = 2γ4 = 36MHz, κ23 = 1.0 × 1010 cm−1 Hz,

and ∆3 = −2.0 × 109 Hz. Panels (a) and (b) correspond to the absence (Ωc = 0) and the

presence (Ωc = 5×107 Hz) of the control field, respectively. The solid and the dashed-dotted

lines in both panels denote the real part Re(K) and the negative imaginary part −Im(K)

of K, respectively. We see that when Ωc = 0, the signal field has a large gain [the dashed-

dotted line in panel (a) ]; however, a nearly gain-free window is opened when Ωc is applied

[the dashed-dotted line of panel (b) ]. The suppression of the gain comes from the quantum

interference effect induced by the control field. The steep slope for the large control field in

the solid line of panel (b) gives a superluminal group velocity at the center frequency of the

signal field (i.e. ω = 0).

At the second-order (l = 2), the solvability condition for A
(2)
j and Ω

(2)
s requires that in

this order the envelope F travels with complex group velocity Vg = (∂K/∂ω)−1. At the

third order (l = 3), the solvability condition requires

i
∂

∂z2
F +

c

2ωs

(

∂2

∂x21
+

∂2

∂y21

)

F − 1

2
K2

∂2F

∂t21
+ α11|F |2F + α12E

′2
0 F = 0, (5)
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where K2 = ∂2K/∂ω2, and

α11 = −κ23
D∗

(ω − d∗4)
(

A
∗(0)
3 a

(2)
3 + A

(0)
3 a

∗(2)
3

)

, (6a)

α12 =
κ23|A(0)

3 |2
2~D∗2

[

α∗

2(ω − d
(0)∗
4 )2 + α∗

4|Ωc|2
]

, (6b)

with

a
(2)
3 =

A
(0)
3

d
(0)
3 D

(

ω − d
(0)
4

)

− |A(0)
3 |2A(0)

3

2

[

|ω − d
(0)
4 |2 + |Ωc|2
|D|2 +

ω − d
(0)∗
4

d
(0)∗
3 D∗

+
ω − d

(0)
4

d
(0)
3 D

]

.

Combining above results, we obtain

i

(

∂

∂z
+

1

Vg

∂

∂t

)

U +
c

2ωs

(

∂2

∂x2
+

∂2

∂y2

)

U − 1

2
K2

∂2U

∂t2
+ α11|U |2U + α12E

2
0U = 0, (7)

after returning to the original variables, where U ≡ ǫF .

IV. SUPERLUMINAL LBS AND VORTICES, AND THEIR STABILITY

From Eq. (7) we see that the envelope of the signal field obeys a (3+1)D nonlinear

Schrödinger (NLS) equation, which include dispersion, diffraction, Kerr nonlinearity. In

addition, the last term on the left hand side of Eq. (7) is the one contributed from the

far-detuned laser field, which can be used to stabilize (3+1)D nonlinear excitations in the

system, as shown below.

A. Estimation of the coefficients in the nonlinear envelope equation

We now seek possible (3+1)D LBs and vortices based on Eq. (7). For convenience of

following calculations, we convert them into the dimensionless form

i
∂u

∂s
+

1

2

(

∂2

∂ξ2
+

∂2

∂η2
+ gd

∂2

∂τ 2

)

u+ g11|u|2u+ g12V (ξ, η)u = 0, (8)

with u ≡ U/U0, V (ξ, η) ≡ (E0(ξ, η)/E10)
2, s ≡ z/Ldiff , τ ≡ (t − z/Re(Vg))/τ0, (ξ, η) ≡

(x, y)/R⊥, gd ≡ −LdiffK2/τ
2
0 , g11 ≡ α11/|α11|, and g12 ≡ α12E

2
10/|α11U

2
0 |. Here Ldiff ≡

ωsR
2
⊥
/c (with R⊥ being typical beam radius) is typical diffraction length, and τ0 is typical

pulse length of the signal field. Note that we have taken Ldiff = LNL [with LNL = 1/(|α11U
2
0 |)

being a typical nonlinear length], thus U0 =
√

c/(ωsR
2
⊥
|α11|) (typical Rabi frequency of the

signal field). E10 is typical field intensity of the far-detuned laser field, which can be used
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to adjust the magnitude of the trapping potential V (ξ, η), and hence control the stability of

the (3+1)D LBs and vortices.

Because the system under study is an active and lifetime-broadened one, the coefficients

in Eq. (8) are generally complex. If the control-field half Rabi frequency Ωc is small, the

imaginary parts of the coefficients are comparable with their real parts, and hence stable

nonlinear excitations do not exist. However, it is easy to show that under the ARG condition

|Ωc|2 ≫ γ2γ4 the gain of the signal field can be largely suppressed due to the quantum inter-

ference effect induced by the control field, and thus the imaginary parts of these coefficients

can be made to be much smaller than their real parts.

To show this we make an estimation on the value of the coefficients in Eq. (8). Consider a

typical atomic gas of 87Rb atoms, with D1 line transitions 5
2S1/2 → 52P1/2. The energy levels

are chosen as those in Fig. 1(a), with the states selected as |1〉 = |5S1/2, F = 1, mF = −1〉,
|2〉 = |5S1/2, F = 2, mF = 0〉, |3〉 = |5P1/2, F = 2, mF = −1〉, |4〉 = |5P1/2, F = 2, mF = 1〉.
From the data of 87Rb [48], we have p23 = −

√

1
4
× 2.54 × 10−27 cm C. Other system

parameters are given by 2γ2 = 1 × 103 Hz, 2γ3,4 = 36 MHz, κ23 = 1.0 × 1010 cm−1Hz,

ωs = 2.37 × 1015Hz, R⊥ = 3.7 × 10−3 cm, Ωc = 6.0 × 107Hz, Ωp = 5.0 × 107Hz, and

∆2 = 1.0 × 104Hz. When these parameters are fixed, we have still other parameters ∆3,

∆4, τ0, and E10 that can be chosen and adjusted in a fairly arbitrary domain. Thus we can

obtain many different regimes, two of which are listed in the following:

Regime 1 (Self-focusing nonlinearity) : ∆3 = −6.0 × 108 Hz, ∆4 = −2.0 × 109 Hz,

τ0 = 5.0 × 10−6 s, E10 = 420 V cm−1. We have Ldiff = 1.08 cm, U0 = 2.49 × 106 Hz,

Re(Vg)/c = −1.58× 10−6, and thus we have

gd = 1.01 + 0.03i, g11 = 1.0 + 0.01i, g12 = 1.0 + 0.02i. (9)

Regime 2 (Self-defocusing nonlinearity) : ∆3 = 6.0 × 108 Hz, ∆4 = −6.0 × 108 Hz,

τ0 = 8.3 × 10−7 s, E10 = 1383 V cm−1. We have Ldiff = 1.08 cm, U0 = 1.50 × 107 Hz,

Re(Vg)/c = −1.73× 10−5, and hence one has

gd = 1.01 + 0.09i, g11 = −1.0 − 0.03i, g12 = 1.0 + 0.06i. (10)

We see that the imaginary parts of the coefficients in Eq. (8) are indeed much smaller

than their corresponding real parts. The physical reason for so small imaginary parts is, as

mentioned above, due to the quantum interference effect induced by the control field. In the
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following discussion, the small imaginary parts of the coefficients are neglected for analytical

analysis, but included in numerical simulations. We also see that due to the active character

of the system, one can obtain the case of self-focusing where g11 ≈ 1 (Regime 1) and the

case of self-defocusing where g11 ≈ −1 (Regime 2).

Equation (8) without the trapping potential (i.e., g12 = 0) is a (3+1)D NLS equation.

In such case, even if a LB is excited initially, it will be unstable [2, 3]. Our aim is not only

to obtain a (3+1)D LB, but also to provide a way to stabilize it. Thus in our model the

far-detuned laser field has been added, which contributes a trapping potential to the signal

field and hence can stabilize the LB formed by the signal field.

The far-detuned laser field is an “external” field, which can be selected very arbitrarily.

Here we assume E0(x, y) is a Bessel beam, so that V (ξ, η) = c20

[

Jl(
√
2br)

]2

. Here c0 is an

arbitrary constant, r =
√

ξ2 + η2, and Jl being the lth-order Bessel function. Then Eq. (8)

becomes

i
∂u

∂s
+

1

2

(

∂2

∂ξ2
+

∂2

∂η2
+

∂2

∂τ 2

)

u+ g11|u|2u+ g12c
2
0

[

Jl(
√
2br)

]2

u = 0. (11)

Using the further transformation u = ψ exp(iµs), Eq. (11) becomes
(

∂2

∂ξ2
+

∂2

∂η2
+

∂2

∂τ 2

)

ψ − 2µψ + 2g11|ψ|2ψ + 2c20g12

[

Jl(
√
2br)

]2

ψ = 0, (12)

where ψ is an complex function and µ is the propagation constant.

Once a solution ψ of Eq. (12) is obtained, one can analyze its linear stability by considering

a perturbation to it, i.e.

u(ξ, η, τ, s) = [ψ + (w1 + w2) exp (λs) + (w∗

1 − w∗

2) exp (λ
∗s)] exp(iµs), (13)

where w1,2 = w1,2(ξ, η, τ) and λ are normal mode and the corresponding eigenvalue of

the perturbation, respectively. Substituting Eq. (13) into Eq. (11), one obtains the linear

eigenvalue problem

−iλw1 =
1

2

(

∂2

∂ξ2
+

∂2

∂η2
+

∂2

∂τ 2

)

w2 + L0w1 + L+w2, (14a)

−iλw2 =
1

2

(

∂2

∂ξ2
+

∂2

∂η2
+

∂2

∂τ 2

)

w1 − L0w2 + L−w1, (14b)

with L0 = g11
2
(ψ2 − ψ∗2) , L± = −µ + 2g11|ψ|2 + c20g12

[

Jl(
√
2br)

]2

∓ g11
2
(ψ2 + ψ∗2) , which

can be solved numerically by using the method in Ref. [49]. The solution ψ is stable if the

real parts of all eigenvalues are negative or zero.
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B. Superluminal LBs and light vortices

We now present various nonlinear solutions of Eq. (12) for the case of self-focusing non-

linearity (g11 = 1, g12 = 1) and check their stability by using numerical simulations.

1. Superluminal LBs

We first consider possible LB solutions. When taking l = 0, the external trapping po-

tential in Eq. (12) is proportional to
[

J0(
√
2r)

]2
, where J0(

√
2r) is the zero-order Bessel

function (b = 1 is chosen without loss of generality). Fig. 3(a) and Fig. 3(b) give isosurfaces

(|ψ| = 0.01) of two LB solutions for (c0, µ) = (1.8, 1.4) and for (c0, µ) = (2.3, 2.7), respec-

tively. The LB solutions are obtained by numerically solving Eq. (12) based on the modified

squared-operator method (see Ref. [49] ). Initial trial functions in the numerical simulation

are of Gaussian types, which evolve into the ground state of Eq. (12), i.e. the LB solutions

of the system.

The stability of the LBs obtained can be checked by using the Vakhitov-Kolokolov (VK)

criterion [50]. For this aim, we calculate the power of the signal field defined by P =

2π
∫∫∫ +∞

−∞
|ψ|2dξdηdτ , which is a function of the propagation constant µ and the potential

strength constant c0, with the result shown in Fig. 3(c). According to the VK criterion, the

domains where the LBs are stable are the ones with dP/dµ > 0, which are clearly illustrated

in the figure.

The stability of the LB solutions is also checked by numerically solving the eigenvalue

problem (14). The Fourier collocation method combining the Newton conjugate gradient

method introduced in Ref. [49] is used. The result of the real part of maximum eigenvalue

[i.e. Re(λ) ] as a function of µ and c0 is shown in Fig. 3(d). One sees that the stability

domains of the LBs [i.e. the domains where Re(λ) is non-positive] are the same as those

obtained by using the VK criterion, and the stability domains become larger for larger c0.

This is easy to understand because a larger c0 means a stronger trapping of the LB provided

by the external potential. Hence, one can adjust the far-detuned laser field, and hence

the external potential, to control the existence domain of the LB, which is easy to realize

physically in the present active system.

High-order LB solutions for l ≥ 1 can also be obtained, and their stability domains can
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FIG. 3. (Color online) (a) and (b): Isosurface (|ψ| = 0.01) plots of LBs in the self-focusing case (g11 = 1,

g12 = 1) for (c0, µ) = (1.8, 1.4) and (c0, µ) = (2.3, 2.7), respectively. The external trapping potential

contributed by the far-detuned laser field is zero-order (i.e. l = 0) Bessel function. (c): Signal-field power

P as a function of µ and c0. (d): The real part of maximum eigenvalue (i.e. Re(λ) ) as a function of µ and

c0 obtained by solving the eigenvalue problem (14). In panels (c) and (d), the dotted-dashed, dashed, and

solid lines are for c0 = 1.8, 2.3, and 2.8, respectively.

also be identified in the similar way. Generally, the stability domains of the high-order LBs

become narrower for increasing l because the strength of the trapping potential with the

form
[

Jl(
√
2r)

]2
becomes weaker as l increases.

The LB solutions obtained are the stationary solutions of Eq. (11). Because τ = (t −
z/Re(Vg) )/τ0, we obtain the propagating velocity of the LBs given by VLB = Re(Vg), which

is around −1.58 × 10−6 c based on the chosen parameters. Fig. 4 shows the evolution of

dimensionless signal-field amplitude |u(x = 0, y = 0, z, t/τ0)| as a function of dimensionless

time t/τ0 by numerically solving Eq. (11). One sees that the LB profile at z = 0.5 cm has

an advancement comparing with the LB profile at z = 0. Thus the LB obtained displays
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FIG. 4. (Color online) Evolution of |u(x = 0, y = 0, z, t/τ0)| as a function of t/τ0 and z by numerically

solving Eq. (11). Solid red line and dashed blue line are for z = 0 and z = 0.5 cm, respectively.

indeed a superluminal propagation.

The peak power of the signal field may be estimated by calculating Poynting’s vector,

which is given by P̄max = 2ǫ0cnsS0(~/| p23|)2U2
0 |umax|2, where ns, S0 and umax are the re-

flective index, cross-section area of the signal beam, and the maximum of u, respectively.

Taking S0 = πR2
⊥
≈ 4.3× 10−5 cm2 and using the other parameters given above, we obtain

the generation power of the optical bullet given in Fig. 3(a) as P̄max ≈ 0.01 µ W. Conse-

quently, the (3+1)D LBs obtained in the present active system have not only superluminal

propagating velocity but also extremely low generation power.

2. Superluminal light vortices

We now turn to consider the case that the system allows (3+1)D light vortices, which are

obtained by solving Eq. (12) numerically. Shown in Fig. 5 is the result for the zero-order

(l = 0) light vortex. A isosurface plot with |ψ| = 0.01 for (c0, µ) = (2.5, 0.9) and a 3D shaded

surface plot of amplitude |ψ| (i.e. τ = 0) are shown in Fig. 5(a) and 5(b), respectively. The

solution is obtained by using the modified squared-operator method [49]. The initial trial

function is chosen as ψ = A0[r
2 + τ 2]1/2 sech(

√
r2 + τ 2) exp (iθ1) with A0 is the initial trial

amplitude and (r, θ1, τ) is the corresponding cylindrical coordinate system of (ξ, η, τ), which

evolves into a light vortex.
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FIG. 5. (Color online) Isosurface plot (panel (a) ) with |ψ| = 0.01 and 3D shaded surface (i.e. τ = 0) plot

(panel (b) ) in the self-focusing case (i.e. g11 = 1, g12 = 1) for (c0, µ) = (2.5, 0.9). The trapping potential

contributed by the far-detuned laser field is zero-order (i.e. l = 0) Bessel function. (c): Signal-field power

P as a function of µ and c0. (d): Real part of maximum eigenvalue, i.e., Re(λ), as a function of µ and

c0 obtained by solving the eigenvalue problem (14). In panels (c) and (d), the dotted-dashed, dashed, and

solid lines are for c0 = 1.5, 2.5, and 3.5, respectively.

The power P of the signal field in the case of the light vortex as a function of µ and

c0 is shown in Fig. 5(c). The dotted-dashed, dashed, and solid lines in the figure are for

c0 = 1.5, 2.5, and 3.5, respectively. We see that P changes for different c0. Note that

although for vortices the VK criterion cannot apply, P curves of vortices can be taken to

illustrate the existence domain of vortices. Interestingly, we find that for the present system

the light vortex is stable in the domains where dP/dµ > 0. Such conclusion is verified by a

linear stability analysis of the light vortex by calculating maximum eigenvalue Re(λ) based

on Eq. (14). The light vortex is stable in the domains where Re(λ) is zero or negative.
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FIG. 6. (Color online) Isosurface plots for the evolution of a light vortex with |u| = 0.1 for s = 0.0, 3.0,

and 6.0, respectively. The initial condition is taken as that given in Fig. 5(a).

Such domains are illustrated in Fig. 5(d), which coincide nearly with the domains where

dP/dµ > 0 in Fig. 5(c).

In the same way, the high-order light vortices for l ≥ 1 can also be obtained, and their

stability domains can also be identified. The existing and stability domains of the high-

order light vortices are narrower because the strength of the trapping potential with the

form
[

Jl(
√
2r)

]2
becomes weaker as l increases.

The results presented above are the stationary solutions based on Eq. (12). It is necessary

to consider the evolution and stability of the light vortices starting directly from Eq. (11) with

complex coefficients. To this end, we make a numerical simulation on Eq. (11) by taking the

light vortex solution obtained above as an initial condition, and add a random perturbation

to it, i.e. we take u(s = 0, ξ, η, τ) = ψ(ξ, η, τ)(1 + εf). Here ε is a typical amplitude of

the perturbation, and f is a random variable uniformly distributed in the interval [0, 1].

We find that Eq. (11) possesses indeed vortex solution that is fairly stable for propagating

to a long distance. Shown in Fig. 6 is the evolution of a light vortex based on Eq. (11)

by taking ε = 0.1 and the solution given in Fig. 5(a) as an initial condition. Illustrated

are isosurface plots of the vortex with |u| = 0.1 for s=0.0, 3.0, and 6.0, respectively. We

see the vortex is quite close to the initial unperturbed one after propagating z = 6.48 cm.

The propagating velocity and generation power of the light vortex are −1.58 × 10−6 c and

0.01 µW, respectively.
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C. Superluminal LB trains and light-vortex trains

Though in the case of self-defocusing nonlinearity (i.e., g11 = −1, g12 = 1) LBs and light

vortices do not exist, the system however may support a LB-train and light-vortex train

solutions, as shown below.

1. Superluminal LB trains

Shown in Fig. 7(a) is an isosurface plot with |ψ| = 0.1 for (c0, µ) = (3, 2), τ = −3.8 to

3.8, and l = 0. The solution is obtained by numerically solving Eq. (12) with g11 = −1

and g12 = 1. One sees that for such solution (called the zero-order LB train) light intensity

distributes with the form of a train of round flat “cakes” along vertical (i.e. τ) direction.

Note that the similar LB train has also been obtained in Ref. [17]. However, formation

reason of the structure is very different. In Ref. [17], the LB train is in fact a type of gap

soliton induced by an external potential that consists of a transverse harmonic-oscillator

potential and an axial periodic potential. Differently, in our model there is only a transverse

Bessel potential. The reason for the appearance of periodic distribution in τ -direction is

the following. The diffraction is balanced by the transverse Bessel potential and the self-

defocusing Kerr nonlinearity. The competition between the dispersion term and linear term

(i.e. −2µψ) results in the formation of periodic distribution in τ -direction.

Shown in Fig. 7(b) is the power curve of the LB train as a function of µ and c0, which

illustrate the existence domain of the LB train. The solid, dashed, and solid-dashed lines are

for c0 = 2.3, 2.6, and 3.0, respectively. One sees that the existence domain of the LB train is

increased when c0 increases. The stability of the LB train is studied by solving the eigenvalue

problem (14), with the result given in Fig. 7(c). One sees that the stability domain (i.e.

the domain where Re(λ) ≤ 0) of the LB train coincides nearly with the existence domain.

Similarly, high-order LB trains (i.e. l ≥ 1) are also obtained, which are not presented here

for saving space.

The time evolution of the LB train is investigated by taking the LB train solution given

in Fig. 7(a) as an initial condition, with a random perturbation to it. Illustrated in Fig.

8 are respectively the isosurface plots for the evolution of the LB train based on Eq. (11)

for s = 0, 1.5, and 4.5. We see that the LB train is indeed quite stable during propagation
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FIG. 7. (Color online) (a): Isosurface plot of the zero-order LB train with |ψ| = 0.1 in the self-defocusing

case (i.e., g11 = −1, g12 = 1) for (c0, µ) = (3, 2). (b): Signal-field power P as a function of µ and c0. (c):

Real part of maximum eigenvalue, i.e., Re(λ), as a function of µ and c0 obtained by solving the eigenvalue

problem (14). In panels (c) and (d), the solid, dashed, and dotted-dashed lines are for c0 = 2.3, 2.6, and 3.0,

respectively.

FIG. 8. (Color online) Isosurface plots for the evolution of the LB train with |u| = 0.1 for s=0.0, 3.0, 6.0

based on the results by solving Eq. (11). The initial condition is taken as that given in Fig. 7(a).
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FIG. 9. (Color online) (a): Isosurface plot of the zero-order (l = 0) light-vortex train with |ψ| = 0.3 in the

self-defocusing case (i.e., g11 = −1, g12 = 1) for (c0, µ) = (3, 1), and τ from −3.5 to 3.5. (b): Signal-field

power P as a function of µ and c0. (c): Real part of maximum eigenvalue, i.e., Re(λ), as a function of

µ and c0 obtained by solving the eigenvalue problem (14). In panels (c) and (d), the solid, dashed, and

dotted-dashed lines are for c0 = 2.5, 2.7, and 3.0, respectively.

to a long distance. The propagating velocity and generation power of the LB train are

−1.73× 10−5 c and 0.86 µW, respectively.

2. Superluminal light-vortex trains

We finally present the result on the superluminal light-vortex trains in the system. Shown

in Fig. 9 is the result for a zero-order (i.e. l = 0) light-vortex train. An isosurface plot of

|ψ| = 0.3 for (c0, µ) = (3, 1), and τ from −3.5 to 3.5 is shown in Fig. 9(a). The solution is
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FIG. 10. (Color online) Isosurface plots for the evolution of the light-vortex train with |u| = 0.3 for s=0.0,

5.0, 10.0 based on solving Eq. (11). The initial condition is taken as that given in Fig. 9(a).

obtained by numerically solving Eq. (12) in terms of the modified squared-operator method

[49].

The power curve P of the light-vortex train and the real part of maximum eigenvalue

Re(λ) (based on solving Eq. (14) ) as a functions of µ and c0 have been presented respectively

in Fig. 9(b) and Fig. 9(c). The solid, dashed, and dotted-dashed lines in both panels are

for c0 = 2.5, 2.7, and 3.0, respectively. The result shows that not only the light-vortex train

exist, but also its existence domain and stability domain nearly coincide each other.

We have also investigated the evolution of the light-vortex train by numerically solving

Eq. (11) and taking the solution given in Fig. 9(a) as an initial condition. Shown in Fig. 10

are the results for s = 0.0, 5.0, 10.0, respectively. To test its stability, a small random

perturbation has been added in the calculation. We see that the light-vortex train is indeed

stable during propagation to a long distance. The propagating velocity and generation power

of the light-vortex train are −1.73×10−5 c and 0.32 µW, respectively. Thus, the light-vortex

train obtained is a superluminal one and can be produced with extremely low generation

power.

V. SUMMARY

In this article, we have proposed a scheme to produce (3+1)D superluminal light bul-

lets and vortices in a coherent four-level atomic system interacting resonantly with three

laser fields and working in ARG regime. We have proved that that the evolution of the

envelope of the signal field satisfies a modified (3+1)D NLS equation, which includes dis-

persion, diffraction, and Kerr nonlinearity. Various solutions of light bullets, light vortices,
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light-bullet trains, and light-vortex trains have been provided, which have many interesting

features, including superlumianl propagating velocity and extremely low generating power,

etc. Furthermore, they can be easily manipulated in a controllable way due to the active

character of the system. In addition, we have demonstrated that the stabilization of such

high-D superluminal localized optical structures can be realized using the trapping potential

induced by an additional far-detuned laser field. The results presented here may be useful for

understanding the physical properties of coherent atomic systems and guiding experimental

findings of (3+1)D nonlinear excitations with very low generation power, which may have

potential applications in optical information processing and transmission.
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