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A new class of experiments is proposed which involve multiple measurements combined with
multiple perturbations of a nonlinear classical complex system. A family of multipoint n+m− 1
dimensional measures R(n,m) that provide complimentary information on complex systems is ob-
tained by combining m non linear stimuli and n measurements. They represent the combined effect
of causal response and noncausal spontaneous fluctuations. The proposed signals can be measured
either in the frequency domain or in the time domain. Generalized fluctuation-dissipation relations
which hold in the nonlinear regime restrict the number of independent techniques. Two dimensional
correlation plots derived from such measurements can reveal various types of couplings among col-
lective modes.

PACS numbers:

I. INTRODUCTION

Study of dynamical phenomena in nonlinearly coupled systems is of paramount importance in many branches of
physics [1, 2]. In many cases, analyses of dynamical behavior is often complicated by the presence of fluctuations
caused by interactions with a noisy environment or by inherent stochasticity of the system of interest. Dynamics of
such systems can be characterized by calculating or measuring averages of some dynamical quantities over different
realizations of these fluctuating systems. Such averaged quantities, in which time enters as parameter, are invariant
objects and thus serve as time-dependent measures of fluctuating dynamical systems. One such measure is produced
by n-point correlation functions, obtained by performing n measurements of a variable A(t) at times τ1, ..., τn and
constructing the n-point average 〈A(τn)...A(τ1)〉. More generally one can measure cross correlations of different
quantities Aj at different times, yet to simplify the notation we consider a single quantity A, while the extension is
straightforward. In a stationary system, these quantities depend on n− 1 time intervals and thus constitute an n− 1
dimensional characteristic of the system [3–8].
Another way to investigate the properties of a dynamical system is studying how it responds to controlled external

perturbations [9–11]. By subjecting a system to n − 1 impulsive perturbations at times τ1, ..., τn−1 one can record
some property B(τn) of the system as a function of the various time delays. The expectation value of B(τn) can be
calculated within the scopes of response theory [11], which brings in another type of (n−1) dimensional characteristic
given by the (n− 1)-th order response function [12–18] (−1)n〈{...{B(τn), A(τn−1)}..., A(τ1)}〉, where {..., ...} are the
Poisson brackets and A is the physical quantity through which external perturbation interacts with the system,
H ′(t) = E(t)A. In case of perturbations by impulsive electric fields, A could be the dipole moment. Nonlinear
(n− 1)-th order optical response functions can be measured directly in multidimensional time-domain spectroscopic
experiments. The response function corresponding to n = 2, i.e. the linear response function, is related to the
two-point correlation function via the well-known fluctuation-dissipation theorem [19, 20], and thus does not carry
additional information on the microscopic dynamics of a system beyond what is already contained in the two-point
correlation function. A significant research effort has been made in the past to seek for relation between the nonlinear
response functions and multi-point correlation functions, and to derive generalized fluctuation-dissipation theorem
[21–30]. However, for n > 2, no simple relation between the (n − 1)-th order nonlinear response function and the
n-point correlation function was found, implying that the nonlinear response function provides additional information
to the n-point correlation function. Both n-point correlation functions and (n−1)-th order response functions depend
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on (n − 1) time intervals and thus both can serve as complementary (n − 1) dimensional measures of fluctuating
dynamical systems.
In the present paper we show that a broader class of dynamical (n − 1)-dimensional measures can be introduced

by combining m impulsive, but weak, perturbations with n − m measurements done on the system. Indeed, an n-
point correlation function corresponds to n consecutive measurements of a dynamical quantity, while n-point response
functions represent (n−1) perturbations followed by a single measurement of some dynamical quantity. It is interesting
to explore a generalized class of experiments that consist of m perturbations and (n−m) measurements.
We define a k-point correlation function in which k measurements on a system at times τi are mixed with m

perturbations of the system at times τ ′j

〈A(τk)...A(τ1)〉k,m =

∫
dτ ′m

∫
dτ ′m−1...

∫
dτ ′1

×R(k,m)(τk, ..., τ1, τ
′
m, ..., τ ′1)Em(τ ′m)...E1(τ

′
1), (I.1)

with k + m = n. The time variables τj and τ ′i are ordered according to the order in which perturbations and
measurements are applied. τ1 is the first measurement, τ ′1 is the first perturbation, etc. For instance, the time
ordering for an experiment that consists of one perturbation, one measurement, another perturbation and a second
measurement is τ2 > τ ′2 > τ1 > τ ′1. Note that the chronologically last time must be a τ , not τ ′, otherwise R(k,m)

vanishes, which is a signature of causality. R(k,m) is the response of an k point correlation function to m impulsive
perturbations. We note, however, that for fixed k and m, one will have (k +m− 1)!/(k − 1)!m! different realizations
of time-domain experiments with particular time ordering of measurements and perturbations, each having its own
R(k,m). In this notation R(1,n−1) is an ordinary response function, while R(n,0) is the ordinary n-point correlation
function. Similarly we can write frequency domain analogues of these quantities

〈Ã(ωk)...Ã(ω1)〉k,m =
1

(2π)m

∫
dω′

m...

∫
dω′

1

×χ(k,m)(ωk, ..., ω1, ω
′
m, ..., ω′

1)Ẽm(ω′
m)...Ẽ1(ω

′
1), (I.2)

where χ(k,m) is a generalized susceptibility. Here the system is subjected to m periodic perturbations and k Fourier
components of the response are measured. In the frequency domain, time ordering is irrelevant, and thus a frequency
domain experiment that consists of m perturbations and k measurements corresponds to a single quantity χ(k,m)

that combines contributions of all (k + m − 1)!/(k − 1)!m! realizations of time ordered experiments. Time domain
experiments thus carry more detailed information since different sequences can be separated. We discuss these details
in the following sections.

For weak perturbations Ej(t) = εjδ(t− τ ′j) or Ej(t) = εje
ıω′

jt one can determine the respective R(k,m) and χ(k,m),
respectively by differentiation

R(k,m)(τk, ..., τ1, τ
′
m, ..., τ ′1) =

∂m

∂ε1...εm
〈A(τk)...A(τ1)〉k,m

χ(k,m)(ωk, ..., ω1, ω
′
m, ..., ω′

1) =
∂m

∂ε1...εm
〈Ã(ωk)...Ã(ω1)〉k,m,

which in practical applications may be obtained by finite differences.
In the coming sections we discuss the introduced generalized response functions (GRF) R(k,m) and susceptibilities

χ(k,m) in greater detail and analyze them within the scope of classical mechanics in phase space. We concentrate our
discussion on systems initially at thermal equilibrium. Although other systems such as systems at steady state will
be an interesting future application. The paper is organized as follows. In section II we provide explicit expressions
for the general class of n-point time domain quantities R(k,m). In section III we show that for systems at thermal
equilibrium there exist n − 1 independent quantities R(k,m), with k +m = n. In section IV we discuss how R(k,m)

can serve as new (n − 1)-dimensional characteristics of dynamical systems. Several numerical examples are given in
section V. The considered models are linearly coupled Morse oscillators, each coupled to a thermal bath of harmonic
oscillators; and non-linearly coupled harmonic oscillators each coupled to a thermal harmonic bath. There we also
consider an exactly solvable model of uncoupled constant-energy harmonic oscillators to simplify subsequent analysis
of multidimensional signals of systems at thermal equilibrium. We discuss frequency-domain experiments and derive
explicit expressions of generalized susceptibilities χ(k,m) in section VI. We conclude with discussion in section VII.
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II. MULTIPLE PERTURBATIONS AND MEASUREMENTS

To set the stage for our discussion, we first review nonlinear response theory, and introduce notations and models.
Response theory evaluates the expectation value of a physical quantity B after n perturbations done on the system
initially at equilibrium. Let us consider application of this theory to the case when pulses of light are used as external
perturbations. Suppose we have a classical system with the Hamiltonian H(x,p), which we perturb by an external
electric field E(t) consisting of a sequence of n pulses E(t) =

∑
Ej(t), interacting with the system via the dipole

coupling Hint = −E(t)V , where V is the system’s dipole moment. Vectors x and p denote, respectively, a set of N
coordinates and their N conjugate momenta of the N -dimensional system of interest. We assume that the dipole
moment V (t) = V (x(t),p(t)) is a function of system’s coordinates x and momenta p, and implicitly depends on time
through x(t) and p(t).
The expectation value of B ≡ V at time t can be evaluated via exact expression [31]

〈V (t)〉 =

〈
TV (t) exp

[
−

∫ t

−∞

dτE(τ)V−(τ)

]〉
, (II.1)

where 〈A〉 = Tr[Aρeq] denotes averaging with respect to the initial equilibrium distribution density ρeq = ρeq(x,p),
and the tracing operation Tr[...] ≡ (1/2πh̄)N

∫
dxdp... is over the (x,p) phase space. The ”-” subscript denotes a

special type of differential operator, which represents a Poisson bracket [32]

V−A ≡ {V,A}

=
∂V

∂x

∂A

∂p
−

∂A

∂x

∂V

∂p
. (II.2)

T is a time ordering operation. Although position and momentum canonical coordinates (x,p) are used in the present
analysis, it should be noted, however, that both the trace operation and the Poisson bracket are invariant under the
canonical transformation of phase space coordinates (x,p) → (q′,p′). The latter allows one in some cases to chose
a convenient set of canonical coordinates (q′,p′) for these operations (such as action-angle coordinates for systems
with periodic dynamics, which we use in section V to analyze one of the models). Different nonlinear contributions
of the incoming electric field are obtained by expanding the exponent in the right hand side of Eq.(II.1) in powers of
E(τ). The n-th order contribution reads

〈
V (n)(τn+1)

〉
=

∫ τn+1

−∞

dτn

∫ τn

−∞

dτn−1...

∫ τ2

−∞

dτ1

×E(τn)...E(τ1)R
(n)(τn+1, ..., τ1) (II.3)

where

R(n)(τn+1, ..., τ1) = (−1)
n
〈V (τn+1)V−(τn)...V−(τ1)〉

= (−1)n
∫

dxdp

(2πh̄)N
V (τn+1){V (τn), ...{V (τ1), ρ(x,p)}...} (II.4)

is the n-th order nonlinear response function.
Alternatively, the expression for the n-th order response function can be obtained non-perturbatively [31] from

Eq.(II.1) by subjecting the system to n impulsive delta-pulses E(t) =
∑n

i=1 εiδ(t− τi), which reduces Eq.(II.1) to

〈V (τn+1)〉 =
〈
V (τn)e

−εnV−(τn)...e−ε1V−(τ1)
〉

(II.5)

and Eq.(II.3) to

〈
V (n)(τn+1)

〉
= εnεn−1...ε1R

(n)(τn+1, ..., τ1). (II.6)

Eq.(II.5) serves as a generating function for the response function. From the Eqs.(II.5) and (II.6) one can easily find
that

R(n)(τn+1, ..., τ1) ≡
∂n

∂εn...∂ε1
〈V (τn+1)〉|εn=ε1=0

= (−1)
n
〈V (τn+1)V−(τn)...V−(τ1)〉 . (II.7)
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While Eqs.(II.4) and (II.7) are equivalent, equation (II.5), that is used in derivation of Eq.(II.7), has a clearer physical
meaning, i.e., it means that the response function can be calculated by imposing n weak impulsive perturbations on
the system and performing a measurement of V at some time τn+1 after the last perturbation. The mathematical
operation that corresponds to a perturbation is V− defined in Eq.(II.2). Although the exact form of the perturbation
operator is exp[−εiV−], it always appears in the expression of response function (II.7) together with the derivative
∂/∂εi exp[−εiV−]|εi=0 = −V−, we therefore refer to both operators exp[−εiV−] and V− as perturbation operators,
i.e., V− operator represents infinitely small perturbation.
To simplify further discussions, we introduce a subscript notation for the ordinary product

V+A ≡ V A. (II.8)

In this notation, the n-point correlation function reads

〈V+(τn)V+(τn−1)...V+(τ1)〉 , (II.9)

and the (n− 1)-th order response function becomes

(−1)n−1 〈V+(τn)V−(τn−1)...V−(τ1)〉 . (II.10)

The structural similarity of the expressions in Eqs.(II.9) and (II.10) suggests that we can define a broader class of
correlation functions, in which m perturbations V− are mixed with k = n−m measurements V+

R
(k,m)
+,±...± ≡ (−1)m 〈V+(τn)V±(τn−1)...V±(τ1)〉 . (II.11)

The only requirement is that chronologically the last operation should be V+, and not V−, since the trace Tr[V−B] =
Tr[{V,B}] vanishes, which is also a signature of causality, i.e., there is no reason to make a perturbation if it will not
be followed by a measurement. Keeping track of the possible time ordering of V+(τi) and V−(τ

′
j), the total number

of the generalized response functions R
(k,m)
+,±...± in Eq.(II.11) will be 2n−1. Yet, not all of them are independent for

systems initially at thermal equilibrium. This will be shown in the following section.

III. SYSTEMS AT THERMAL EQUILIBRIUM.

A distinctive feature of the Boltzmann distribution density, ρeq(x,p) = (1/Z) exp(−βH(x,p)), is its exponential
form with linear dependence on system’s Hamiltonian in its exponent. This allows to simplify Poisson bracket
expressions containing the Boltzmann distribution function using the chain rule

{V (t), ρeq} = −β{V (t), H}ρeq = −β
dV (t)

dt
ρeq. (III.1)

For the linear response, this results in the well-known fluctuation-dissipation relation between the two-point time
correlation function R++ = 〈V+(τ2)V+(τ1)〉 and the first order, linear, response function R+− = −〈V+(τ2)V−(τ1)〉

− 〈V+(τ2)V−(τ1)〉 = −Tr[V (τ2){V (τ1), ρeq}]

= βTr[V (τ2)V̇ (τ1)ρeq]

= β
d

dτ1
〈V+(τ2)V+(τ1)〉 (III.2)

Making use of Eq.(III.1) we can write down explicit expressions of several lowest order generalized response functions
from Eq.(II.11). For third order quantities n = 3 we have

R+++(τ3, τ2, τ1) = 〈V (τ3)V (τ2)V (τ1)〉

R++−(τ3, τ2, τ1) = −〈V (τ3)V (τ2)V−(τ1)〉

= β
d

dτ1
〈V (τ3)V (τ2)V (τ1)〉 (III.3)

R+−+(τ3, τ2, τ1) = −〈V (τ3)V−(τ2)V (τ1)〉

= −〈V (τ3){V (τ2), V (τ1)}〉+ β
d

dτ2
〈V (τ3)V (τ2)V (τ1)〉

R+−−(τ3, τ2, τ1) = 〈V (τ3)V−(τ2)V−(τ1)〉

= −β
d

dτ1
〈V (τ3){V (τ2), V (τ1)}〉+ β2 d2

dτ1dτ2
〈V (τ3)V (τ2)V (τ1)〉
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From Eqs.(III.3) one can see that the generalized response functions are actually related to each other through

R++−(τ3, τ2, τ1) = β
d

dτ1
R+++(τ3, τ2, τ1)

R+−−(τ3, τ2, τ1) = β
d

dτ1
R+−+(τ3, τ2, τ1). (III.4)

This implies that once R+++(τ3, τ2, τ1) and R+−+(τ3, τ2, τ1) are determined, the other two correlation functions
R++−(τ3, τ2, τ1) and R+−−(τ3, τ2, τ1) can be found by differentiation. Clearly, from Eqs.(III.3) it follows that there
is no way to express R+−+ in terms of derivatives of R+++. It is well known from the classical theory of nonlinear
response functions that it is not possible to express a nonlinear classical response function, R+−−, in terms of classical
correlation functions R+++ [33]. Therefore a pair of quantities, in which one is either R+++ or R++− and the other
one is either R+−+ or R+−− is sufficient to calculate all four 3-point generalized measures in Eq.(II.11), and thus
contains all the (independent) information that can be extracted from experiments that consist of m perturbations
and 3−m measurements.
Equations (III.4) may also be viewed as generalized fluctuation dissipation relations. We can also write them in

the frequency domain by introducing the quantity

S+,±,...,±(Ωn−1, ...,Ω1) =

∫ ∞

0

dtn...

∫ ∞

0

dt1R+,±,...,±(tn, ..., t1) exp (ıΩ1t1 + ...ıΩntn) (III.5)

which is a Fourier transform of the time-ordered generalized response function R+,±,...,±(tn, ..., t1) =
(−1)m 〈V+(tn + ...+ t1)...V±(t2 + t1)V±(t1)〉 over the time intervals tj ≡ τj − τj−1 between the consecutive pertur-
bations or measurements. We then have

S+−(Ω1) = ıβΩ1S++(Ω1)

S++−(Ω2,Ω1) = ıβΩ1S+++(Ω2,Ω1) (III.6)

S+−−(Ω2,Ω1) = ıβΩ1S+−+(Ω2,Ω1)

Note that these Fourier transforms of time domain signals are different from the frequency domain signals given by
susceptibilities. The connection will be made in sec VI.

A. The number of independent GRF

In the previous section we have seen that only one of the two GRF R+,± and only two of the four measures R+,±,±

are independent. Before we make a generalization to the case of arbitrary n, we consider one more case, n = 4, for
clearer illustration. There are 24−1 = 8 four-point measures R+,±,±,±, these are listed in the Appendix. One can see
that all these expressions depend only on 5 distinct GRF

〈V (τ4)V (τ3)V (τ2)V (τ1)〉

〈V (τ4)V (τ3){V (τ2), V (τ1)}〉

〈V (τ4)V (τ2){V (τ3), V (τ1)}〉 (III.7)

〈V (τ4)V (τ1){V (τ3), V (τ2)}〉

〈V (τ4){V (τ3), {V (τ2), V (τ1)}}〉.

The second, the third and the fourth correlation functions in Eqs.(III.7) differ only by time ordering and therefore their
Fourier transforms can be obtained from another one by permutation of the corresponding frequencies, thus carrying
essentially the same information, see Appendix. The latter also implies that by measuring one of these signals, the
remaining two can be computed automatically by data processing. In section VI, where we discuss frequency domain
measurements, time ordering becomes irrelevant, and a measurement of an appropriate nonlinear susceptibility is
sufficient to construct the second, the third and the fourth terms in Eqs.(III.7) with no additional information needed
beyond the susceptibility. Therefore, the number of independent correlation functions in Eqs.(III.7) reduces to only
three

〈V (τ4)V (τ3)V (τ2)V (τ1)〉

〈V (τ4)V (τ3){V (τ2), V (τ1)}〉

〈V (τ4){V (τ3), {V (τ2), V (τ1)}}〉. (III.8)
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We can now write down the Poisson bracket operation explicitly. The Poisson bracket of canonical variables reads

{V (τ1), V (τ2)} = ǫijMjk(τ2, τ1)V
′
i (τ2)V

′
k(τ1), (III.9)

where V ′
j ≡ ∂V

∂xj
, x1 ≡ p, x2 ≡ x and ǫii ≡ 0, ǫ12 = −ǫ21 = 1. The quantity Mjk(τ2, τ1) = ∂xk(τ1)

∂xj(τ2)
is the stability

matrix defined as the derivative of a small deviation δxk(τ1) at time τ1 with respect to a small deviation δxk(τ2) at

time τ2. A consecutive action of several Poisson brackets can lead to higher order stability matrices M
(n)
jk (τ2, τ1) =

∂nxk(τ1)
∂xj1(τ2)...∂xjn(τ2)

. The stability matrix is a new dynamical quantity that is not contained in correlation functions

and describes the classical coherence between the two (or more, for higher order stability matrices) nearby classical
trajectories. Therefore, each Poisson bracket operation in Eqs.(III.8) introduces a new type of dynamical variables,
the stability matrix, into the expressions of multipoint correlation functions. The expressions in Eqs.(III.8) can be
rewritten in terms of stability matrices

〈V (τ4)V (τ3)V (τ2)V (τ1)〉

〈ǫijV (τ4)V (τ3)Mjk(τ2, τ1)V
′
k(τ2)V

′
i (τ1)〉

[〈ǫijǫabMbc(τ4, τ3)V
′
c (τ4)V

′
a(τ3)Mij(τ2, τ1)V

′
k(τ2)V

′
i (τ1)〉

− β〈ǫijV (τ4)V̇ (τ3)Mjk(τ2, τ1)V
′
k(τ2)V

′
i (τ1)〉

]
, (III.10)

where summation over repeating indexes is implied. These expressions contain 0,1 and 2 stability matrices, respec-
tively. It is the number of correlation functions with different number of stability matrices and their combinations
that determines the number of independent n-point quantities R+,±,...,± for systems at thermal equilibrium. By
listing all possible combinations of stability matrices, i.e., all possible combinations of Poisson brackets in n-point
correlation functions R+,±,...,±, we can count the number of independent n-point quantities R+,±,...,± (one, however,
should check that some combinations may be the same due to the rule Tr(A{B,C}) = Tr({A,B}C)). The results are
given in Table I. We note that the number of independent quantities is n − 1. Each of these independent quantities
potentially carries some extra information on the underlying dynamics. In the following section, we discuss what new
information they can provide.

IV. THE ROLE OF PERTURBATIONS IN CORRELATION FUNCTIONS

In the previous section we have seen that an impulsive perturbation introduces new type of dynamical variables,
stability derivatives, which thus should carry additional information on the system’s dynamics. A generalized response

function R
(n)
+,±,...,± consists of an ensemble average of a product of ordinary dynamical quantities V (τ) or V ′

j (τ) and
stability derivatives ∂xk(τ)/∂xj(0). The major difference between an ordinary dynamical stochastic quantity x(τ) and
its stability derivative ∂x(τ)/∂x(0) is that the former has some random initial phase ϕ0 = random(0, 2π), while the
latter has zero initial phase ϕ0 = 0. Since any correlation function contains averaging over the total random phase,
it is this difference that can provide new surviving components of correlation functions beyond what is contained
in ordinary correlation functions. We can consider the following simple example. Suppose that our observable of
interest, V (t), is a harmonic mode x(t) with frequency ω and some random initial phase ϕ0. One wants to compare
a regular product V+(t)V (0) ≡ x(t)x(0) with a Poisson-bracket expression V−(t)V (0) ≡ {x(t), x(0)} for this system.

Expressing x(t) = A cos(ωt+ϕ0), the product x(t)x(0) and the Poisson bracket {x(t), x(0)} = ∂x(t)
∂x(0)

∂x(0)
∂p(0) −

∂x(t)
∂p(0)

∂x(0)
∂x(0)

then read

x(t)x(0) =
A2

2
cos(ωt) +

A2

2
cos(ωt+ 2φ0)

{x(t), x(0)} = −
1

ω
sin(ωt) (IV.1)

One can see that while the former expression contains terms with random phases exp(±ı2ϕ0), the latter expression, the
Poisson bracket, contains no such terms. This implies that the overall phase of the product V (tn)V (tn−1)...V (t)V (0)
can be different from the overall phase of V (tn)V (tn−1)...{V (t), V (0)} and thus can result in a different number of

non-vanishing terms in various generalized response functions R
(n)
+,±,...,± ≡ 〈V+(τn)...V−(τ1)〉. More examples for other

types of dynamical variable V (t) for a two-oscillator system are given in Table II.
In weakly anharmonic systems the Poisson bracket operation removes some of the stochastic material phases,

and thus determines which terms in n-point correlation functions will survive, i.e., what peaks will be present in
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multidimensional spectra and what microscopic couplings will contribute to their intensities. The latter can provide

extra information on the microscopic dynamics and thus the generalized response functions R
(n)
+,±,...,± can serve as

complementary (n − 1)-dimensional measures of stochastic dynamical systems. As shown in the previous section,
there should be n− 1 such independent measures.
The same phase-cancelation approach is used in bispactral and bicoherence stochastic analysis [34, 35], see also

section VI. In bispectral analysis, one calculates expectation values of 3-point products E[Ṽ (ω1)Ṽ (ω2)Ṽ
∗(ω1 + ω2)]

of Fourier transforms of a fluctuating signal V (t), in which only the terms with zero overall random phase survive,
thus providing information on wave interactions in quadratically nonlinear systems. This approach is equivalent to

constructing a 3-point measure R
(3)
+++. The additional insight provided by the present approach, is that by subjecting

a system to perturbations, i.e., introducing Poisson brackets, we vary the overall random phase, and thus change or
filter the resulting multidimensional spectra. Several numerical examples are given in section V.

V. NUMERICAL EXAMPLES

In this section we calculate different 3-point measures R
(3)
+,±,±(t2 + t1, t1, 0) and their Fourier transforms

S
(3)
+,±,±(Ω2,Ω1) for several model systems: linearly coupled anharmonic oscillators, and non-linearly coupled har-

monic oscillators, which are in equilibrium with thermal bath.
Before we proceed to modeling systems at thermal equilibrium, we provide analytical results for exactly-solvable

microcanonical system, which will simplify further analysis of spectra of systems at thermal equilibrium. Expressions
for GRF in microcanonical ensemble can be easily obtained by replacing β in Eqs.(III.3) with −∂/∂E [36]

R+++(τ3, τ2, τ1) = 〈V (τ3)V (τ2)V (τ1)〉

R++−(τ3, τ2, τ1) = −
∂

∂E

d

dτ1
R+++(τ3, τ2, τ1) (V.1)

R+−+(τ3, τ2, τ1) = −〈V (τ3){V (τ2), V (τ1)}〉 −
∂

∂E

d

dτ2
R+++(τ3, τ2, τ1)

R+−−(τ3, τ2, τ1) = −
∂

∂E

d

dτ1
R+−+(τ3, τ2, τ1).

We consider a model of uncoupled harmonic oscillators Q1(t), Q2(t) with frequencies ω1 = 10, ω2 = 4.2, respectively,
and an observable V (t) that is nonlinear in Q1 and Q2 given by

V = f1Q1 + f2Q2 + f11Q
2
1 + f22Q

2
2 + f12Q1Q2 + f122Q1Q

2
2. (V.2)

Analysis of oscillating microcanonical systems can be efficiently performed in a special type of canonical coordinates:
action-angle variables (J, ϕ). Using these variables, harmonic oscillations x(t) are expressed as x(t) =

√
2J/ω cos(ωt+

ϕ). In Eq.(V.2), a reduced form Qj(t) =
√
Jj cos(ωjt + ϕj) is implied, with constant factors

√
2/ωj absorbed into

coefficients f . In our numerical calculations, these coefficients were taken as f1 = f2 = f12 = f122 = f11 = f22 = 1,
and the energies of harmonic oscillators were J1 = J2 = 1. The averaging in classical correlation functions in
Eq.(V.1) is therefore reduced to the averaging over the initial phases ϕ1 and ϕ2. In figure IX we present 2D signals

S
(3)
+++(Ω2,Ω1), S

(3)
++−(Ω2,Ω1), S

(3)
+−+(Ω2,Ω1) and S

(3)
+−−(Ω2,Ω1), defined in Eq.(III.5), and in Table III provide a list

of positions and intensities of diagonal and cross peaks of S
(3)
+±±, which can be obtained analytically for this model.

First, we notice that the information contained in the spectrum S
(3)
+++(Ω2,Ω1) is not complete, and it is not possible

to determine the coefficients of Eq.(V.2) from this spectrum alone (since all the intensities depend on the products of

coefficients). On the other hand, the 2D signal S
(3)
+−+(Ω2,Ω1), for instance, allows to determine the absolute values

of the coefficients f11 and f22 at frequencies (2ω1, 2ω1) and (2ω2, 2ω2), respectively, and thus obtain all remaining
coefficients fi, fij , fijj . However, if the quadratic anharmonicities f11 and f22 are small, the peaks at (2ω1, 2ω1) and

(2ω2, 2ω2) may not appear in S
(3)
+++(Ω2,Ω1) or S

(3)
+−+(Ω2,Ω1), since their intensities are proportional to the third

power of fii. One can then refer to the spectrum S
(3)
+−−(Ω2,Ω1), in which the peak (2ω1, 2ω1) is four times more

intensive than in S
(3)
+−+(Ω2,Ω1). Otherwise, one can compare S

(3)
+−+(Ω2,Ω1) with, for instance, S

(3)
+++(Ω2,Ω1), both

should have an intensive peak at the frequency (ω2, ω2). Either the ratio of the intensities of these diagonal peaks or

the ratio of intensities of the cross peaks at (ω2, ω2) and (ω2, 2ω2) in S
(3)
+++(Ω2,Ω1) can give us the ratio f11/f22 and

thus provide a way to express all the remaining coefficients fi, fij , fijj in terms of f11. Once any of these coefficients
are determined from some other experiment, from a 1D signal, for instance, the rest are found automatically. We

therefore conclude that the complementary spectra S
(3)
+±±(Ω2,Ω1) can simplify the analysis of a dynamical system.
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We now turn to a system at thermal equilibrium: two coupled dissipative Morse oscillators Ui(xi) = Di(1 −
exp(−αixi))

2 with a bilinear coupling U12x1x2. Each oscillator is individually coupled to the Langevin thermostat
at temperature T . The friction coefficient is small such that the vibrational dynamics remained underdamped.
The fundamental frequencies of Morse oscillators were ω01 ≈ 2ω02 so that a Fermi 1 : 2 resonance is possible.
The dynamics of coupled oscillators as well as time evolution of stability matrix elements were obtained by solving
stochastic Langevin equations. The details of numerical simulations will be published elsewhere. We calculated

numerically the 3-point quantities R
(3)
+±±(t2 + t1, t1, 0) with V = x1. Physically V = x1 can correspond to a single

optically active mode. The Fourier-transformed spectra S
(3)
+±±(Ω2,Ω1) are shown in Fig.IX. By comparing these

spectra with Table III, one can deduce on the underlying microscopic dynamics. First, the cross peaks at (ω1+ω2, ω1)

and (ω1+ω2, ω2) in S
(3)
+−+(Ω2,Ω1) clearly show the Fermi-resonance, f122. The latter conclusion could not be made for

the same peaks of the S
(3)
+++(Ω2,Ω1) 2D-spectrum, since multiple couplings contribute to their intensities, see Table

III. Second, the (ω2, ω1+ω2) peak in S
(3)
+−+(Ω2,Ω1) indicates a bilinear mode-mode coupling f12. Third, as one would

expect from the linear dependence of V on x1, no peaks can be resolved at (2ω1, 2ω1) and (2ω2, 2ω2) implying weak
quadratic anharmonicities f11, f22. Yet, the peaks at (ω2, ω2) in both 2D-spectra, or (ω2, ω2) and (ω2, 2ω2) in the

S
(3)
+++(Ω2,Ω1) spectrum allows to estimate the ratio of f11/f22. We also note, that the (2ω1, ω1) peak in S

(3)
+−+(Ω2,Ω1)

and S
(3)
+−−(Ω2,Ω1) in Fig.2 is the result of anharmonicity of Morse oscillators and is produced due to the temporal

growth of stability derivatives. This peak is absent in harmonic systems, see Table III.
Another model system at thermal equilibrium that we consider is two coupled harmonic oscillators Ui(xi) = ω2

i x
2
i /2

with a nonlinear coupling U12x1x
2
2, each in thermal equilibrium with environment, and a linear observable V = x1.

The frequencies ω1 and ω2 are close to 2 : 1 resonance. Figure IX represents the numerical 2D Fourier transforms of
the corresponding GRFs calculated in this system. One can observe rather strong diagonal peaks at (2ω2, 2ω2). By
referring to Table III, one can conclude that these peaks are due to the significant quadratic f22 contribution of the
second mode x2 to the signal V (t) = x1(t) due to the nonlinear coupling between the harmonic modes. For the same

reason the diagonal peaks (ω1, ω1) are strong in S
(3)
+++(Ω2,Ω1) and S

(3)
++−(Ω2,Ω1), and weak in S

(3)
+−+(Ω2,Ω1) and

S
(3)
+−−(Ω2,Ω1), because the latter two 2D signals do not depend on f22. Additionally, the strong diagonal (ω1, ω1)

peaks in S
(3)
+++(Ω2,Ω1) and S

(3)
++−(Ω2,Ω1) do not allow one to resolve the weak cross peaks (ω1, 2ω2) and (2ω2, ω1),

which are much easier to resolve in S
(3)
+−+(Ω2,Ω1) and S

(3)
+−−(Ω2,Ω1) 2D signals, and which thus provide useful

complementary information. These cross peaks are indicators of the 1:2 Fermi resonance as it follows from Table III.

As one can see either from Eqs.(III.6) or from Figs.2 and 3, that while the 2D signal S
(3)
++−(Ω2,Ω1) contains the same

information as S
(3)
+++(Ω2,Ω1), and S

(3)
+−−(Ω2,Ω1) contains the same information as S

(3)
+−+(Ω2,Ω1), the former spectra

are amplified versions of the latter. For instance, from Eqs.(III.6) we have |S
(3)
++−(Ω2,Ω1)| = βΩ1|S

(3)
+++(Ω2,Ω1)|,

which means that the low intensity peaks at higher values of Ω1 that are poorly resolved in the spectra S
(3)
+++(Ω2,Ω1),

will be much better resolved in the spectra S
(3)
++−(Ω2,Ω1). And the opposite, the strong peaks at lower values of Ω1

in S
(3)
+++(Ω2,Ω1) will be suppressed in S

(3)
++−(Ω2,Ω1) (since they will be multiplied by small Ω1). The latter provides

a significant flexibility for the exploration of multidimensional spectra and investigation of complex dynamics by
designing a proper experiment with multiple perturbations and measurements.

VI. FREQUENCY DOMAIN MEASUREMENTS; SUSCEPTIBILITIES

In the previous sections we discussed time-domain signals R
(n)
+,±,...,±(τ1, ..., τk, τ

′
1, ..., τ

′
m), that keep track of time

ordering of perturbations V−(τ
′
j) and measurements V+(τi). However, in some cases it can be convenient to carry

the experiment in the frequency domain. Frequency domain experiments which combine multiple measurements of
an observable with multiple perturbations of the system can be performed in the following way. One can perturb
a system with frequencies ω′

1, ..., ω
′
m, while measuring k observables V (ω) at frequencies ω1, ..., ωk and constructing

a k-point correlation function 〈V (ω1)...V (ωk)〉. For this type of experiments, time ordering of measurements and
perturbations loses its sense. The correlation function then depends on all possible permutations of m perturbations
and k − 1 measurements (except for the last one, which cannot be substituted by a perturbation due to causality),
where m+ k = n.
First, let us consider the Fourier transform of the outputs of the time-domain experiments with one perturba-

tion and two measurements, which are ordered in time. These experiments will be governed by the corresponding

generalized response functions R
(3)
++−(τ3, τ2, τ1) = θ(τ3 − τ2)θ(τ2 − τ1) 〈V+(τ3)V+(τ2)V−(τ1)〉 and R

(3)
+−+(τ3, τ2, τ1) =

θ(τ3 − τ2)θ(τ2 − τ1) 〈V+(τ3)V−(τ2)V+(τ1)〉. The 2-point correlation functions that can be measured in these experi-
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ments, and which are defined in Eq.(I.1), are, respectively,

〈V (τ3)V (τ2)〉++− =

∫
dτ1R

(3)
++−(τ3, τ2, τ1)E(τ1)

〈V (τ3)V (τ1)〉+−+ =

∫
dτ2R

(3)
+−+(τ3, τ2, τ1)E(τ2). (VI.1)

Introducing the Fourier transform

F (τ) =
1

2π

∫ ∞

−∞

dΩF̃ (Ω)e−ıΩτ

F̃ (Ω) =

∫ ∞

−∞

dτF (τ)eıΩτ (VI.2)

and using the definition in Eq.(III.5), one gets

〈
Ṽ (Ω3)Ṽ (Ω2)

〉

++−
=

∫
dΩ1Ẽ(Ω1)S++−(Ω3,Ω3 +Ω2)δ(Ω3 +Ω2 − Ω1)

〈
Ṽ (Ω3)Ṽ (Ω1)

〉

+−+
=

∫
dΩ2Ẽ(Ω2)S+−+(Ω3,Ω3 − Ω2)δ(Ω3 +Ω1 − Ω2). (VI.3)

As we discussed in the beginning of this section, in the frequency domain, the measured correlation function is the
combination of the two time-ordered correlation functions, i.e.,

〈
Ṽ (ω2)Ṽ (ω1)

〉

2,1
=

1

2

[〈
Ṽ (ω2)Ṽ (ω1)

〉

++−
+
〈
Ṽ (ω2)Ṽ (ω1)

〉

+−+

]
. (VI.4)

Substituting Eqs.(VI.3) into Eq.(VI.4), we get

〈
Ṽ (ω2)Ṽ (ω1)

〉

2,1
=

1

2π

∫
dω′

1χ
(2,1)(ω1, ω2, ω

′
1)Ẽ(ω′

1) (VI.5)

where the generalized susceptibility χ(2,1) is

χ(2,1)(ω1, ω2, ω
′
1) = 2πδ(ω2 + ω1 − ω′

1)

×
1

2
[S++−(ω2, ω2 + ω1) + S+−+(ω2, ω2 − ω′

1)] . (VI.6)

The latter result can be generalized to the case of k measurements and m perturbations, with the corresponding
susceptibility χ(k,m), m+ k = n, introduced in Eq.(I.2)

χ(k,m)(ω1, ..., ωk, ω
′
1, ..., ω

′
m)

= 2πδ




k∑

i=1

ωi −

m∑

j=1

ω′
j




×
1

(n− 1)!

∑

p

S+,ν1,...νn−1
(ωk, ωk + ων1 , ..., ωk + ων1 + ...+ ωνn−1

). (VI.7)

The summation in Eq.(VI.7) is over the (n− 1)! permutations of indices νj = +,− (m of these indices are ”−”, and
k−1 indices are ”+”), with the following rule ω+ ≡ ωj and ω− ≡ −ω′

j. Using the rule of Eq.(VI.7), the two remaining

3-point susceptibilities χ(3,0)(ω1, ω2, ω3) and χ(1,2)(ω1, ω
′
1, ω

′
2), corresponding, respectively, to 3 measurements (i.e.,

symmetrized 3-point correlation function in frequency domain), and two perturbations with one measurement (i.e.,
the second order susceptibility from the response theory) read

χ(3,0)(ω1, ω2, ω3) = 2πδ(ω3 + ω2 + ω1)

×
1

2
[S+++(−ω2 − ω1,−ω2) + S+++(−ω2 − ω1,−ω1)] , (VI.8)
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χ(1,2)(ω1, ω
′
1, ω

′
2) = 2πδ(ω1 − ω′

1 − ω′
2)

×
1

2
[S+−−(ω

′
2 + ω′

1, ω
′
2) + S+−−(ω

′
2 + ω′

1, ω
′
1)] , (VI.9)

where S+,±,± were defined in Eq.(III.6), and in both cases the arguments of the S-functions were slightly rearranged
by expressing one frequency in terms of the two others within the constraints of the delta-functions. We can also
rewrite Eq.(VI.6) in a similar form using the delta-function constraint ω2 = ω′

1 − ω1

χ(2,1)(ω1, ω2, ω
′
1) = 2πδ(ω2 + ω1 − ω′

1)

×
1

2
[S++−(−ω1 + ω′

1, ω
′
1) + S+−+(−ω1 + ω′

1,−ω1)] . (VI.10)

The susceptibilities given by Eqs.(VI.9)-(VI.10) were calculated numerically for the model systems discussed in section
V and are shown in Figures 4 and 5.
It should be noted, that the symmetrization procedure given by Eq.(VI.7), that is required for frequency domain

measurements, reduces the number of independent n-point GRF to n − 1 due to the loss of information on time
ordering. While for systems at thermal equilibrium the number of independent n-point measures in time domain is
equal to n− 1, this number is expected to be larger for non-thermal systems, for which there exists no simple relation
between the distribution density ρ(E) and its derivative ∂ρ(E)/∂E.

VII. DISCUSSION

We proposed and analyzed a new class of experiments in which multiple measurements of a dynamical variable
are combined with multiple perturbations of the corresponding dynamical system. The n− 1 time intervals between
m perturbations and k = n −m measurements constitute (n − 1)-dimensional space and result in a novel family of
(n− 1)-dimensional measures R(k,m)(tn−1, ..., t1). These objects can be directly measured by subjecting a system to
weak impulsive perturbations. In the latter family of (n−1)-dimensional measures, n−1 of them are independent and
thus can provide additional information on dynamics to the one already contained in the usual multipoint correlation
function, R(n,0)(tn−1, ..., t1), and response function, R(1,n−1)(tn−1, ..., t1).
Each perturbation introduces a new dynamical quantity, the stability derivative, to an n-point correlation function

R(k,m)(tn−1, ..., t1), which carries information on classical coherence, i.e., coherence of the nearby classical trajectories.
Various combinations of perturbations and measurements thus lead to different time correlation functions between
classical dynamical quantities and their classical coherences. On the other hand, in case of weakly anharmonic systems
we have shown that a perturbation of a dynamical quantity cancels some of its random phase by launching two classical
trajectories with infinitely close initial conditions. The latter allow to manipulate the total random phase of the n-
point time correlation functions, and thus to change the resulting (n−1)-dimensional spectra. These differences result
in new spectral peaks or contributions of different mode couplings to their intensities. Additionally, one can amplify
or suppress different parts of multidimensional spectra by choosing the appropriate combination of perturbations and
measurements. In particular, we have shown that while the 2D signals S+++(Ω2,Ω1) and S+−+(Ω2,Ω1) contain the
same information as S++−(Ω2,Ω1) and S+−−(Ω2,Ω1), respectively, for systems at thermal equilibrium, the former
provide better resolution of spectral peaks at lower Ω1, while the latter provide better resolution at higher Ω1.
In the present paper we only discussed applications of this new class of multidimensional measures to Hamiltonian

systems, yet, the approach can be extended to non-Hamiltonian dynamical systems such as chemical reactions,
electric currents, currents in membranes, biological systems and for systems initially at a steady state. For instance,
the method of multiple perturbations and measurements can be used to obtain new information on structure and
connectivity of complex biological networks. A limited number of methods is currently available to study complex
reaction mechanisms [37]. The introduced GRFs, with their novel type of correlations between multiple perturbations,
are believed to serve as a new tool to study correlations in complex reaction networks and thus help to extract
information on their topology. The same ideas can be applied to investigate topology of electric currents in biological
systems. Thus, the proposed method of multiple perturbations and measurements can provide novel tools to study
complex behavior of general dynamical systems and will be analyzed in future extensions.
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IX. APPENDIX

In this Appendix we provide classical expressions of the 4-point measures R+,±,±,± for systems with Boltzmann
distribution.

Rc
++++(τ4, τ3, τ2, τ1) = 〈V (τ4)V (τ3)V (τ2)V (τ1)〉

Rc
+++−(τ4, τ3, τ2, τ1) = β

d

dτ1
Rc

++++(τ4, τ3, τ2, τ1)

Rc
++−+(τ4, τ3, τ2, τ1) = −〈V (τ4)V (τ3){V (τ2), V (τ1)}〉+ β

d

dτ2
Rc

++++(τ4, τ3, τ2, τ1)

Rc
++−−(τ4, τ3, τ2, τ1) = β

d

dτ1
Rc

++−+(τ4, τ3, τ2, τ1)

Rc
+−++(τ4, τ3, τ2, τ1) = −〈V (τ4)V (τ1){V (τ3), V (τ2)}〉 − 〈V (τ4)V (τ2){V (τ3), V (τ1)}〉

+β
d

dτ3
Rc

++++(τ4, τ3, τ2, τ1)

Rc
+−+−(τ4, τ3, τ2, τ1) = β

d

dτ1
Rc

+−++(τ4, τ3, τ2, τ1) (IX.1)

Rc
+−−+(τ4, τ3, τ2, τ1) = −β

d

dτ3
〈V (τ4)V (τ3){V (τ2), V (τ1)}〉

−β
d

dτ2
〈V (τ4)V (τ2){V (τ3), V (τ1)}〉

−β
d

dτ2
〈V (τ4)V (τ1){V (τ3), V (τ2)}〉

+〈V (τ4){V (τ3), {V (τ2), V (τ1)}}〉

+β2 d2

dτ2dτ3
Rc

++++(τ4, τ3, τ2, τ1)

Rc
+−−−(τ4, τ3, τ2, τ1) = β

d

dτ1
Rc

+−−+(τ4, τ3, τ2, τ1)

The Fourier transforms given by Eq.(III.5) of the above quantities are

S++++(Ω3,Ω2,Ω1) = C̃1(Ω3,Ω2,Ω1)

S+++−(Ω3,Ω2,Ω1) = ıβΩ1S++++(Ω3,Ω2,Ω1)

S++−+(Ω3,Ω2,Ω1) = −C̃2(Ω3,Ω2,Ω1) + ıβ(Ω2 − Ω1)S++++(Ω3,Ω2,Ω1)

S++−−(Ω3,Ω2,Ω1) = ıβΩ1S++−+(Ω3,Ω2,Ω1)

S+−++(Ω3,Ω2,Ω1) = −C̃2(Ω3,Ω3 − Ω1,Ω2 − Ω1)− C̃2(Ω3,Ω1 − Ω2 +Ω3,Ω1)

+ıβ(Ω3 − Ω2)S++++(Ω3,Ω2,Ω1)

S+−+−(Ω3,Ω2,Ω1) = ıβΩ1S+−++(Ω3,Ω2,Ω1) (IX.2)

S+−−+(Ω3,Ω2,Ω1) = ıβ(Ω2 − Ω3)C̃2(Ω3,Ω2,Ω1)

+ıβ(Ω2 − Ω3)C̃2(Ω3,Ω1 − Ω2 + Ω3,Ω1)

+ıβΩ1C̃2(Ω3,Ω3 − Ω1,Ω2 − Ω1)

+C̃3(Ω3,Ω2,Ω1)

+β2(Ω2 − Ω3)(Ω1 − Ω2)S++++(Ω3,Ω2,Ω1)

S+−−−(Ω3,Ω2,Ω1) = ıβΩ1S+−−+(Ω3,Ω2,Ω1),

where C̃1(Ω3,Ω2,Ω1), C̃2(Ω3,Ω2,Ω1), and C̃3(Ω3,Ω2,Ω1) are the Fourier transforms of
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〈V (τ4)V (τ3)V (τ2)V (τ1)〉, 〈V (τ4)V (τ3){V (τ2), V (τ1)}〉 and 〈V (τ4){V (τ3), {V (τ2), V (τ1)}}〉, respectively.
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Table I: The number of independent n-point measures R
(n)
+,±,...,± in systems with Boltzmann distribution.

Table II: Overall phases of 2-point quantities for a two-oscillator system.

Table III: 2D-spectra for the model in Eq.(V.2) for two modes Q1 and Q2 with microcanonical distribution J1 =
J2 = 1. Asterisk in 0∗ means that the term is proportional to J1 − J2.

FIG.1: Absolute values of Fourier transforms given by Eq.(III.5) of the correlation functions R
(3)
+++(t2 + t1, t1, 0),

R
(3)
+−+(t2 + t1, t1, 0), R

(3)
++−(t2 + t1, t1, 0) and R

(3)
+−−(t2 + t1, t1, 0) for the model of two uncoupled constant-energy

harmonic oscillators with V (t) from Eq.(V.2). The two normal mode frequencies are ω1 = 10 and ω2 = 4.2.

FIG.2: Absolute values of the Fourier transform given by Eq.(III.5) of the correlation functions R
(3)
+++(t2+ t1, t1, 0),

R
(3)
+−+(t2 + t1, t1, 0), R

(3)
++−(t2 + t1, t1, 0) and R

(3)
+−−(t2 + t1, t1, 0) for the model of two linearly coupled dissipative

Morse oscillators with the fundamental frequencies ω1 = 27.3 and ω2 = 13.0.

FIG.3: Absolute values of the Fourier transform given by Eq.(III.5) of the correlation functions R
(3)
+++(t2+ t1, t1, 0),

R
(3)
+−+(t2 + t1, t1, 0), R

(3)
++−(t2 + t1, t1, 0) and R

(3)
+−−(t2 + t1, t1, 0) for the model of two nonlinearly coupled dissipative

harmonic oscillators with the fundamental frequencies ω1 = 31.9 and ω2 = 14.9.

FIG.4: Generalized susceptibilities for a system of two uncoupled harmonic oscillators with V(t) from Eq.(V.2).

FIG.5: Generalized susceptibilities for a system of two bilinearly coupled dissipative Morse oscillators with the
fundamental frequencies ω1 = 27.3 and ω2 = 13.0 and V (t) = x1(t).
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TABLE I:

n The number of all possible R
(n)
+,±,...,± The number of independent correlation functions

2 2 〈V V 〉 ⇒ 1

3 4 〈V V V 〉

〈V {V, V }〉

}

⇒ 2

4 8
〈V V V V 〉

〈V V {V, V }〉

〈V {V, {V, V }}〉







⇒ 3

5 16

〈V V V V V 〉

〈V V V {V, V }〉

〈V {V, V }{V, V }〉

〈{V, V }{V, {V, V }}〉















⇒ 4

6 32

〈V V V V V V 〉

〈V V V V {V, V }〉

〈V V {V, V }{V, V }〉

〈V {V, V }{V, {V, V }}〉

〈{V, {V, V }}{V, {V, V }}〉



























⇒ 5

TABLE II:

V (t) phases of terms in V (t)V (0) phases of terms in {V (t), V (0)}

Q2
1 0, ±2φ1, ±4φ1 0, ±2φ1

Q1 +Q2 0, ±2φ1, ±2φ2, ±(φ1 − φ2), ±(φ1 + φ2) 0

Q1Q2 ±2φ1, ±2φ2, ±2(φ1 − φ2), ±2(φ1 + φ2) 0, ±2φ1 , ±2φ2
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TABLE III:

(Ω1,Ω2) |S
(3)
+++(Ω2,Ω1)| |S

(3)
+−+(Ω2,Ω1)| |S

(3)
++−(Ω2,Ω1)| |S

(3)
+−−(Ω2,Ω1)|

(ω1, ω1)
1
8
(f11 + f22)(f1 + f122

2
)2 1

8
f11(f1 + f122

2
)2 1

4
(f11 + f22

2
)(f1 + f122

2
)2 1

8
f11(f1 + f122

2
)2

(ω1, 2ω1)
1
16

f11(f1 + 1
2
f122)2

1
8
f11(f1 + f122

2
)2 1

8
f11(f1 + f122

2
)2 1

8
f11(f1 + f122

2
)2

(ω1, ω2)
1
16

f12f2(f1 + f122
2

) 1
16

f12f2(f1 + f122
2

) 1
16

f12f2(f1 + f122
2

) 1
16

f12f2(f1 + f122
2

)

(ω1, ω1 − ω2)
1
16

f12f2(f1 + f122
2

) 1
16

f12f2(f1 + f122
2

) 1
16

f12f2(f1 + f122
2

) 1
16

f12f2(f1 + f122
2

)

(ω1, ω1 + ω2)
1
16

f12f2(f1 + f122
2

) 1
16

f12f2(f1 + f122
2

) 1
16

f12f2(f1 + f122
2

) 1
16

f12f2(f1 + f122
2

)

(ω1, 2ω2)
1
64

f122f22(f1 + f122
2

) 1
16

f122f22(f1 + f122
2

) 1
64

f122f22(f1 + f122
2

) 1
16

f122f22(f1 + f122
2

)

(ω1, ω1 − 2ω2)
1
64

f122f22(f1 + f122
2

) 1
16

f122f22(f1 + f122
2

) 1
64

f122f22(f1 + f122
2

) 1
16

f122f22(f1 + f122
2

)

(ω1, ω1 + 2ω2)
1
64

f122f22(f1 + f122
2

) 1
16

f122f22(f1 + f122
2

) 1
64

f122f22(f1 + f122
2

) 1
16

f122f22(f1 + f122
2

)

(ω2, ω1)
1
16

f12f2(f1 + f122
2

) 1
16

f1f12f2
1
16

f12f2(f1 + f122)
1
16

f12f2(f1 + f122
2

)

(ω2, ω1 + ω2)
1
16

f12f2(f1 + f122
2

) 1
16

f12f2(f1 + f122)
1
16

f12f2(f1 + f122)
1
16

f12f2(f1 + 3f122
2

)

(ω2, ω2)
1
8
f2
2 (f11 + f22)

1
8
f2
2 f22

1
8
f2
2 (f11 + 2f22)

1
8
f2
2 f22

(ω2, 2ω2)
1
16

f2
2 f22

1
8
f2
2 f22

1
8
f2
2 f22

1
8
f2
2 f22

(ω2, ω1 − ω2)
1
64

f12f122f2
1
64

f12f122f2
1
32

f12f122f2 0∗

(ω2, ω1 + 2ω2)
1
64

f12f122f2
3
64

f12f122f2
1
32

f12f122f2
1
16

f12f122f2

(2ω1, ω1)
1
16

f11(f1 + f122
2

)2 0 1
4
f11(f1 + f122

2
)2 0

(2ω1, 2ω1)
1
32

f2
11(f11 + f22)

1
16

f3
11

1
8
f2
11(f22 + 3

2
f11)

1
4
f3
11

(2ω1, ω1 − ω2)
1
64

f11f
2
12

1
64

f11f
2
12

1
16

f11f
2
12

1
16

f11f
2
12

(2ω1, ω1 + ω2)
1
64

f11f
2
12

1
64

f11f
2
12

1
16

f11f
2
12

1
16

f11f
2
12

(2ω1, ω1 − 2ω2)
1

256
f11f

2
122

1
64

f11f
2
122

1
64

f11f
2
122

1
16

f11f
2
122

(2ω1, ω1 + 2ω2)
1

256
f11f

2
122

1
64

f11f
2
122

1
64

f11f
2
122

1
16

f11f
2
122

(2ω2, ω2)
1
16

f2
2 f22 0 1

4
f2
2 f22 0

(2ω2, 2ω2)
1
32

f2
22(f11 + f22)

1
16

f3
22

1
8
f2
22(f11 + 3

2
f22)

1
4
f3
22

(2ω2, ω1 + ω2)
1
64

f2
12f22

1
64

f22f
2
12

1
16

f2
12f22

1
16

f2
12f22

(2ω2, ω1 + 2ω2)
1
64

f122f22(f1 + f122
2

) 1
64

f122f22(f1 + 3f122
2

) 1
16

f122f22(f1 + 3f122
4

) 1
16

f122f22(f1 + 7f122
4

)

(2ω2, ω1)
1
64

f122f22(f1 + f122
2

) 1
64

f122f22(f1 − f122
2

) 1
16

f122f22(f1 + 3f122
4

) 1
16

f122f22(f1 − f122
4

)

(ω1 + ω2, ω1)
1
16

f12f2(f1 + f122
2

) 1
32

f12f122f2
1
8
f12f2(f1 + 3f122

4
) 1

16
f12f122f2

(ω1 + ω2, ω2)
1
16

f12f2(f1 + f122
2

) 1
32

f12f122f2
1
8
f12f2(f1 + 3f122

4
) 1

16
f12f122f2

(ω1 + ω2, 2ω1)
1
64

f11f
2
12

1
32

f11f
2
12

3
64

f11f
2
12

1
16

f11f
2
12

(ω1 + ω2, 2ω2)
1
64

f22f
2
12

1
32

f22f
2
12

3
64

f22f
2
12

1
16

f22f
2
12

(ω1 + ω2, ω1 + ω2)
1
32

f2
12(f11 + f22)

1
32

f2
12(f11 + f22)

3
32

f2
12(f11 + f22)

1
16

f2
12(f11 + f22)

(ω1 + ω2, ω1 − ω2)
1
64

f22f
2
12

1
32

f22f
2
12

3
64

f22f
2
12

1
16

f22f
2
12

(ω1 + ω2, ω1 + 2ω2)
1
64

f12f122f2
1
32

f12f122f2
3
64

f12f122f2
1
16

f12f122f2

(ω1 − ω2, ω1 − ω2)
1
32

f2
12(f11 + f22)

1
32

f2
12(f11 − f22)

1
32

f2
12(f11 − f22) 0∗

(ω1 − ω2, 2ω1)
1
64

f11f
2
12

1
32

f11f
2
12

1
64

f11f
2
12 0∗

(ω1 − ω2, ω1 − 2ω2)
1
64

f12f122f2
1
32

f12f122f2
1
64

f12f122f2 0∗

(ω1 − ω2, ω1)
1
16

f12f2(f1 + f122
2

) 1
32

f12f122f2
1
32

f12f122f2 0∗

(ω1 − ω2, ω2)
1
64

f12f122f2
1
32

f12f122f2
1
64

f12f122f2 0∗

(ω1 − ω2, ω1 + ω2)
1
64

f2
12f22

1
32

f2
12f22

1
64

f2
12f22 0∗

(ω1 − 2ω2, ω1 − ω2)
1
64

f12f122f2 0 3
64

f12f122f2 0

(ω1 − 2ω2, ω1 − 2ω2)
1

128
f2
122(f11 + f22)

1
128

f2
122(f11 − 2f22)

1
128

f2
122(2f11 + 5f22)

3
128

f2
122(f11 − 2f22)

(ω1 − 2ω2, 2ω1)
1

256
f11f

2
122

1
128

f11f
2
122

1
128

f11f
2
122

3
128

f11f
2
122

(ω1 − 2ω2, ω1)
1

128
f122f22(f122 + 2f1)

1
64

f22f
2
122

1
128

f122f22(5f122 + 6f1)
3
64

f22f
2
122

(ω1 + 2ω2, ω2)
1
64

f12f122f2 0 5
64

f12f122f2 0

(ω1 + 2ω2, ω1 + ω2)
1
64

f12f122f2 0 5
64

f12f122f2 0

(ω1 + 2ω2, 2ω1)
1
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f11f

2
122

1
128
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2
122
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128
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2
122
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128
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122

(ω1 + 2ω2, ω1 + 2ω2)
1

128
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1
128
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1
128

f2
122(6f11 + 7f22)

5
128
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122(f11 + 2f22)
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1

128
f122f22(f122 + 2f1)

1
64

f22f
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122

1
128

f122f22(7f122 + 10f1)
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f22f
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122
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FIG. 4:

FIG. 5:


