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We investigate the dynamical properties of anyons confined in one-dimensional optical lattice
combined with a weak harmonic trap using the exact numerical method based on a generalized
Jordan-Wigner transformation. The evolving density profiles, momentum distributions, occupation
distributions, and occupations of the lowest natural orbital after quench of the harmonic trap,
are obtained for different statistical parameters. The density profiles of anyons display the same
behaviors irrespective of statistical parameter in the full evolving period. While the behaviors
dependent on statistical property are shown in the momentum distributions and occupations of
natural orbitals.
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I. INTRODUCTION

According to the quantum statistical property, parti-
cle is generally classified as boson and fermion. Wave
functions of identical bosons are symmetric under ex-
change while those of identical fermions are antisymmet-
ric under exchange. As a natural generalization, physi-
cist proposed that there exists anyon interpolating be-
tween Bose and Fermi statistics, which satisfies fractional
statistics [1]. It has become an important concept in
condensed matter physics [2–4] and has ever been used
for successfully explaining the fractional quantum Hall
effect (FQHE) [5]. Fractional statistics also play im-
portant roles in the theory for non-fermi liquid, Chern-
Simon theory, and other aspects [6, 7]. Another poten-
tial application of anyons is to realize the topological
quantum computation with non-abelian anyons [8, 9].
Besides the traditional two-dimensional electron system,
low-dimensional cold atoms provide also a popular plat-
form to realize the fractional statistics. It has been sug-
gested that anyons can be created, detected and ma-
nipulated in rotating Bose-Einstein condensates (BECs)
and cold atomic systems in optical lattices [10–12]. Re-
searches on anyons in cold atomic systems are not re-
stricted in the two-dimensional system, and the proposal
to realize anyons in the one-dimensional (1D) optical lat-
tice is also put forward recently by Keilmann et. al., who
proposed to create anyons by controlling the occupation-
dependent hopping amplitudes of bosons with assisted
Raman tunnelling [13]. Particularly, the statistical pa-
rameter can be tuned by controlling the relative phase of
external driving fields.

Since BECs are realized experimentally, great progress
has been made in studying the cold atomic systems
both experimentally and theoretically for their “purity”
and high controllability comparing with traditional con-
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densed matter systems. Due to the profound correlation
effects in low-dimensional systems, the low-dimensional
quantum gas has also attracted much attentions [14]. By
loading the cold atoms in anisotropic magnetic traps or
two-dimensional optical lattice potentials, the particle
motion is tightly confined in two directions to zero point
oscillations [15–17] and the strongly correlated Tonks-
Girardeau (TG) regime can be achieved [16, 17]. By
crossing the confinement-induced resonance (CIR) from
the TG gas, the super TG (sTG) gas is also accessible
[18]. The interaction between atoms can be tuned in the
full interacting regime via the Feshbach resonance and
the confinement-induced resonance by tuning the mag-
netic field. The excellent tunability of cold atoms makes
the cold atomic system to be a promising candidate to
realize fractional statistics.

Before the recent experimental proposal of Keilmann
et. al. [13], the 1D anyon gas has been investigated
theoretically in various 1D systems [19–22] including the
Bose quantum gas with a special interaction potential.
Particularly, Kundu proved that a 1D Bose gas interact-
ing through δ-function potential combined with double
δ-function potential and derivative δ-function potential
is equivalent to the anyon gas interacting via δ-function
potential [21]. This stimulated many research interests
in δ-anyon gas [22–32]. It turns out that the ground state
density distribution of a δ-anyon gas displays similar be-
haviors as that of Bose gas with the increasing interac-
tion. In the strong interacting regime the density distri-
bution shows the same behavior as the free fermion [33–
37], which is irrelevant to the statistical parameter. The
special property resulted from the fractional statistics
exhibits in the reduced one body density matrices and
the momentum distributions [38, 39]. The momentum
distribution of anyon differs from fermion’s oscillations
and boson’s single peak structure, which are symmetric
about the zero momentum. The momentum distribution
of anyons is asymmetric when the statistical parameters
deviate from the Bose and Fermi limit [27–31]. This spe-
cial behavior originates from that the reduced one body
density matrix is a complex Hermitian one rather than a
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real one for bosons and fermions.
While most studies have focused on the static proper-

ties of the 1D anyonic gas, its dynamics remains to be
investigated. The present paper shall study the evolving
dynamics of hard-core anyons (HCAs) confined in the
optical lattice with a weak harmonic trap after a sud-
den change of the harmonic trap. In Ref. [28], we have
extended the exact numerical method originally used to
treat hard-core bosons by Rigol and Muramatsu [40] to
study the ground state properties of hard-core anyons in
the optical lattice. Here, we further extend this method
to investigate the dynamics of HCAs. By evaluating the
exact time-dependent one-particle Green’s function, we
obtain the reduced one body density matrix (ROBDM)
and thus the density profiles and the momentum dis-
tributions at arbitrary time. The dynamical properties
induced by anyonic statistics shall be displayed in the
momentum distribution. It is deserved to mention that
although we only discuss the hard-core anyons which can
be exactly treated in the present work, the general case
with more than one anyons occupying the same site can
be also considered by using the mean field theory, for
which the corresponding ground state density profiles de-
pend on the statistical parameter as observed in Ref. [13].
The paper is organized as follows. In Sec. II, we give a

brief review of the 1D anyonic model and introduce the
numerical method. In Sec. III, we present the density
profiles, momentum distributions, occupation distribu-
tions, and the occupations of the lowest natural orbital
for different statistics parameters. A brief summary is
given in Sec. IV.

II. FORMULATION OF MODEL AND METHOD

We consider N hard-core anyons confined in an optical
lattice of L sites with a weak harmonic trap and the
second quantized Hamiltonian can be formulated as

HHCA = −t

L
∑

l=1

(

a†l+1al +H.C.
)

+

L
∑

l=1

Vla
†
lal. (1)

Here the harmonic potential Vl = V0(l− (L+1)/2)2 with
the strength of the harmonic trap V0. The anyonic oper-

ator a†l (al) creates (annihilates) an anyon on site l and
satisfies the generalized commutation relations

aja
†
l = δjl − e−iχπǫ(j−l)a†l aj ,

ajal = −eiχπǫ(j−l)alaj (2)

for j 6= l, where the sign function ǫ(x) gives -1, 0 or
1 depending on whether x is negative, zero, or positive
and χ is the parameter related with fractional statis-
tics. The generalized commutation relations reduce to
fermionic commutation for χ = 0 and reduce to bosonic
commutation for χ = 1, while for anyons satisfying frac-
tional statistics χ changes in between them. The hard-
core interactions between anyons restricts the additional

condition a2l = a†2l = 0 and
{

al, a
†
l

}

= 1. In the Hamilto-

nian t denotes the hopping amplitude between the near-
est neighbor sites, which can be tuned by changing the
strength of the optical lattice.
In order to solve the model of hard-core anyons, we ex-

tend the numerical method to investigate the hard-core
bosons in optical lattices developed by Rigol and Mu-
ramatsu. We can map the above model into the polar-
ized fermionic Hamiltonian using the generalized Jordan-
Wigner transformation [28]

aj = exp



iχπ
∑

1≤s<j

f †
sfs



 fj , (3)

a†j = f †
j exp



−iχπ
∑

1≤s<j

f †
sfs



 , (4)

where f †
j (fj) is creation (annihilation) operator for

fermions. The above Hamiltonian of system with N
anyons is transformed into a fermionic one with NF = N
fermions

HF = −t
L
∑

l=1

(

f †
l+1fl +H.C.

)

+
L
∑

l=1

Vlf
†
l fl, (5)

where the fermionic operator satisfy the Fermi anti-
commutation relation

{

fi, f
†
j

}

= δij , {fi, fj} =
{

f †
i , f

†
j

}

= 0. (6)

The original question about anyons now can be inves-
tigated by solving the model on the polarized fermions
in optical lattice. We can obtain the exact many body
wavefunction of polarized fermions with the diagonalized
method and therefore the ground state and interesting
physical phenomena of hard-core anyons.
The equal-time Green’s function for the hard-core

anyons at time τ should be expressed as

Gjl (τ) =
〈

ΨHCA (τ)
∣

∣

∣aja
†
l

∣

∣

∣ΨHCA (τ)
〉

(7)

= 〈ΨF (τ)| exp



iχπ

j−1
∑

β

f †
βfβ



 fjf
†
l

× exp

(

−iπ

l−1
∑

γ

f †
γfγ

)

|ΨF (τ)〉

=
〈

ΨA
F (τ) |ΨB

F (τ)
〉

with

〈

ΨA
F (τ)

∣

∣ =



f †
j exp



−iχπ

j−1
∑

β

f †
βfβ



 |ΨF (τ)〉





†

,

∣

∣ΨB
F (τ)

〉

= f †
l exp

(

−iχπ

l−1
∑

γ

f †
γfγ

)

|ΨF (τ)〉 .
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Here |ΨHCA (τ)〉 is the wavefunction of hard-core anyons
at time τ in a system with Hamiltonian HHCA, and
|ΨF (τ)〉 is the corresponding one for the equivalent po-
larized fermions. For the polarized fermions, the time
evolution of their initial wavefunction

∣

∣ΨI
F

〉

is given by

|ΨF (τ)〉 = e−iτHF /h̄
∣

∣ΨI
F

〉

. (8)

While the matrix representation of initial wavefunction
can be expressed as

∣

∣ΨI
F

〉

=

Nf
∏

n=1

L
∑

l=1

P I
lnf

†
l |0〉 (9)

so that

|ΨF (τ)〉 = e−iτHF /h̄

Nf
∏

n=1

L
∑

l=1

P I
lnf

†
l |0〉

=

Nf
∏

n=1

L
∑

l=1

Pln (τ) f †
l |0〉 .

Thus the fermionic time-dependent wavefunction can be
expressed as an L ×Nf matrix P(τ). The matrix P (τ)
can be evaluated as

e−iτHF /h̄
P

I = Ue−iτD/h̄U †
P

I , (10)

where U is an unitary transformation diagonalizing the
Hamiltonian HF , i.e., U †HFU = D with the diagonal
matrix D. After an easy evaluation the state

∣

∣ΨA
F

〉

reads

∣

∣ΨA
F (τ)

〉

=

Nf+1
∏

n=1

L
∑

l=1

P ′A
ln (τ) f †

l |0〉

with

P ′A
ln (τ) = exp (−iχπ)Pln (τ) for l ≤ j − 1

P ′A
ln (τ) = Pln (τ) for l ≥ j

for n ≤ Nf and P ′A
jNf+1 (τ) = 1 and P ′A

lNf+1 (τ) = 0

(l 6= j). The state
∣

∣ΨB
F

〉

has the same form with the
replace of j by l. The time-dependent Green’s function
is a determinant dependent on the L× (Nf + 1) matrices
P

′A (τ) and P
′B (τ)

Gjl (τ) =
〈

ΨA
F (τ) |ΨB

F (τ)
〉

= det
[

(

P
′A (τ)

)T
P

′B (τ)
]

.

In the present paper we will focus on the time evolution of
the density profile and momentum distribution for hard-
core anyons with different statistical parameter χ. The
ROBDM can be evaluated by Green’s function

ρjl (τ) =
〈

a†jal

〉

= δjl (1−Gjl (τ))− (1− δjl)e
−iχπGjl (τ) .

The diagonal part of ROBDM is the density profile and
its Fourier transformation is defined as the momentum
distribution

n(k) =
1

2π

L
∑

j,l=1

e−ik(j−l)ρjl(τ). (11)
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FIG. 1: (color online) The evolving of density distribution for
50 hard-core anyons in the optical lattice of 500 sites with
V I

0 = 1.0 × 10−3t and V0 = 1.0 × 10−8t. Times (τ ) are in
units of h̄/t.

The natural orbitals φη are defined as the eigenfunctions
of the one-particle density matrix

L
∑

l=1

ρjlφ
η
l = ληφ

η
j , j = 1, 2, ...L, (12)

and can be understood as the effective single-particle
states with occupations λη.

III. DYNAMICS OF DENSITY PROFILE AND

MOMENTUM DISTRIBUTION

In the present paper we investigate the dynamics of
hard-core anyons in the optical lattice. Initially we con-
fine the anyons in optical lattice with a strong harmonic
trap and then turn off the harmonic trap or reduce the
strength of harmonic trap. The trapped anyons will
evolve in the optical lattice. For convenience we set lat-
tice constant a as 1, the unit of k is 1/a and the unit of
time is h̄/t.
In Fig. 1, 2, 3 and 4, we show the evolution of 50

anyons in the optical lattice of 500 sites which is initially
trapped by an external harmonic trap with the strength
of V I

0 = 1.0× 10−3t and then is released to a very weak
trap with V0(0) = 1.0×10−8t at τ = 0. For the simplicity
of calculation we use the very weak trap with strength
of 1.0 × 10−8t rather than completely turnning off the
trap. There are no essential difference between them in
the present investigation. The evolution of density dis-
tribution is shown in Fig. 1. It turns out that the den-
sity distribution of anyons does not display any different
dynamical property from those of bosons and fermions.
We cannot distinguish the statistical properties by the
density distribution in real space. Similar to hard-core
bosons and polarized fermions, anyons expand in the op-
tical lattice and gradually populate in the full lattice.
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FIG. 2: (color online) The momentum distributions for 50
hard-core anyons in the lattice of 500 sites with V I

0 = 1.0 ×

10−3t and V0 = 1.0 × 10−8t. (a) τ = 0, (b) τ = 20, (c)
τ = 50,(d) τ = 100. Times (τ ) are in units of h̄/t.

The density of anyons at the center reduces faster than
the density at the border because anyons locating in sites
of high density posses higher energy. As evolving time
is long enough, anyons homogeneously distribute in the
middle regime while its density distribution shows peaks
at the border regime.

The corresponding momentum distribution is dis-
played in Fig. 2. Initially bosons and fermions distribute
symmetrically about the zero momentum and anyons
(0 < χ < 1) exhibit the asymmetrical momentum distri-
bution. After the harmonic trap is turned off, momentum
distributions for anyons with different statistical param-
eters show different evolving properties. When χ = 0.0,
fermions do not show obvious change of momentum dis-
tribution during the time evolution (In fact the slight
change happens according to the numerical data). As
the statistical parameter deviates from χ = 0, the mo-
mentum distribution of anyon evolves from the asymmet-
rical structure of a single peak to the structure similar to
that of fermions but with two asymmetrical peaks. As
statistical parameter increases, these two peaks become
more and more obvious. For the case of χ = 1 (hard-
core bosons), the momentum distribution evolves to the
structure of symmetrical double peaks. When the evolv-
ing time is long enough, the momentum distributions of
anyons with different statistical parameters (0 ≤ χ ≤ 1)
exhibit identical behavior in the middle regime.

In Fig. 3 we show the occupation distribution of natu-
ral orbitals for the same system as above. In the full evo-
lution period the occupation distribution of each orbital
does not change qualitatively. In the Bose limit, hard-
core bosons occupy the lower natural orbitals and the oc-
cupation distribution displays the single peak structure.
In the Fermi limit, each fermion occupies one natural or-
bital and at any time the occupation distribution seems
like a step-function. While for anyons in between these
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FIG. 3: (color online) The occupation distributions for 50
hard-core anyons in the lattice of 500 sites with V I

0 = 1.0 ×

10−3t and V0 = 1.0 × 10−8t. (a) τ = 0, (b) τ = 100. Times
(τ ) are in units of h̄/t.
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FIG. 4: (color online) The occupations of the lowest natural
orbital for 50 bosons in lattice of 500 sites. V I

0 = 1.0× 10−3t
and V0 = 1.0× 10−8t. Times (τ ) are in units of h̄/t.

two limits, the occupations of higher natural orbitals in-
crease as the statistical parameter evolves from the Bose
limit to the Fermi limit. We also display the evolution
of the occupation of the lowest natural orbital in Fig. 4.
It is shown that the occupation is time independent in
the Fermi limit and as deviating from the Fermi limit
the occupation increases during the time evolution. The
increase is more obvious for the bigger statistical param-
eter. When the evolving time is long enough, the occu-
pation of the lowest natural orbital tends to a constant.

If the initially confined hard-core anyons in the optical
lattice evolve under a sudden quench to a weaker har-
monic trap rather than turning off the harmonic poten-
tial, the situation will be different. Anyons with different
statistical parameters always exhibit the same density
distributions, and we also cannot determine the statisti-
cal properties according to evolving properties of den-
sity profiles. In Fig. 5 we display the evolving den-
sity distributions of 50 anyons in the optical lattice of
300 sites combined with a weaker harmonic potential
(V0 = 2.0 × 10−4t). Initially, anyons distribute in the
middle regime of the harmonic trap. After the harmonic
potential becomes weak, anyons shall expand firstly. The
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FIG. 5: (color online) The density distribution of 50 hard-core
anyons in the optical lattice of 300 sites with V I

0 = 1.0×10−3t
and V0 = 2.0× 10−4t. Times (τ ) are in units of h̄/t.
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FIG. 6: (color online) The momentum distribution of 50
anyons in the optical lattice of 300 sites with V I

0 = 1.0×10−3t
and V0 = 2.0 × 10−4t. (a) τ = 0, (b) τ = 30, (c) τ = 60, (d)
τ = 80, (e) τ = 100, (f) τ = 120. Times (τ ) are in units of
h̄/t.

central density decreases faster than the boundary den-
sity such that the density profiles behave as a Fermi-like
distribution at τ = 60. Then anyons shall contract be-
cause of the confinement of harmonic trap. With the
time evolution anyons redistribute in the middle regime
of the trap.

During the expansion, momentum distributions show
rich dynamical structures (Fig. 6). In the Bose limit,
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FIG. 7: (color online) The occupation of the lowest natural
orbital for 50 anyons in the optical lattice of 300 sites with
V I

0 = 1.0 × 10−3t and V0 = 2.0 × 10−4t. Times (τ ) are in
units of h̄/t.

the momentum distribution firstly evolves from the orig-
inal structure of a single peak to the structure of double
peaks, and then back to the structure of a single peak at
τ = 60. During the later period momentum distribution
shall behave as the single peak and double peaks alter-
nately. In the Fermi limit the momentum distribution
does not keep its original profile as shown in Fig. 2 and
shall exhibit the oscillating behavior. Contrary to the
evolution of density distribution, the momentum distri-
bution contracts firstly and at τ = 60 (Fig. 6c) displays
the step-function profile in the region of−π/4 ≤ k ≤ π/4.
Then it gradually expands to the region of higher momen-
tum and at τ = 120 (Fig. 6f) momentum distribution
almost recovers to the behavior at τ = 0.0. For anyon
gas in between (0 < χ < 1), its asymmetric momentum
distribution also shows the oscillating behavior. For the
case of bigger statistical parameter asymmetric double
peaks are displayed and for the case of smaller statistical
parameter momentum distribution exhibits the behavior
similar to those of fermions.

The evolution of occupation for anyons in the optical
lattice with a weak harmonic potential is similar to the
case only confined in the optical lattice. The occupation
distribution always exhibits the same behaviors qualita-
tively as those at the initial time. But the occupation of
the lowest natural evolves with time, which is displayed
in Fig. 7. It is shown that in the Fermi limit the oc-
cupation is time-independent and as deviating from the
Fermi limit it shall oscillate with the time evolution. It
does not increase monotonously rather than fluctuates
with the time evolution. The bigger the statistical pa-
rameter, the stronger the oscillation amplitude.

In order to investigate the dynamical properties of
anyons in the Mott regime, we initially prepare a Mott
state by superimposing the optical lattice with a tight
harmonic potential and then turn off it at τ = 0.0. The
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FIG. 8: (color online) The momentum distribution of 50
anyons in the lattice of 300 sites with V I

0 = 1.0 × 10−2t and
V0 = 1.0×10−8t. (a) τ = 0, (b) τ = 10, (c) τ = 30,(d) τ = 60.
Inset: Density distributions for the same system. Times (τ )
are in units of h̄/t.

dynamical evolutions of the Mott state are displayed
in Fig. 8. Initially, the momentum distributions for
anyons with different statistical parameters exhibit be-
haviors similar to that of fermions. There are only tiny
differences in the regime close to zero momentum. After
the harmonic trap is turned off, the momentum distri-
bution of anyons in the Fermi limit always preserves its
initial profile. Anyons deviating this limit still display
Fermi-like momentum distributions in the full momen-
tum regime, but the structure of double peaks appears
at a particular regime. In the full evolving period anyons
in the Bose limit show the sharpest peaks, and as statis-
tical parameter decreases (close to the Fermi limit) the
peaks become smaller. It is same as before that anyons al-
ways exhibit the asymmetrical momentum distributions
except of the Bose limit and the Fermi limit. We also
display the evolving density profiles in the inset, which
are independent of the statistical parameter. At the be-
ginning anyons are confined in the central regime with
an anyon per site. After the harmonic trap is turned off,
anyons expand in the lattice with side peaks appearing.

IV. CONCLUSIONS

In summary, in the present paper we have developed
the exact numerical method to deal with the dynamics

of hard-core anyons confined in the optical lattice super-
imposed with a weak harmonic potential. By evaluat-
ing the exact time-dependent one-particle Green’s func-
tion, we obtain the density profiles, momentum distri-
butions, occupation distribution, and the occupation of
the lowest natural orbital in the full evolving period. It
is shown that the evolving property of density profiles
is independent on the statistical parameter of anyons.
As the harmonic trap is turned off anyon shall expand
in the optical lattice and distribute gradually in the full
lattice. The dynamical properties of momentum distri-
butions and occupation distributions of natural orbitals
depend on statistical parameter of anyons. In the Bose
limit, momentum distribution always displays the struc-
ture of double peaks. As deviating from the Bose limit,
the double peaks become smaller and in the Fermi limit
the double peaks disappear. When the evolving time is
long enough, anyons display the same momentum dis-
tribution irrespective of the statistical parameter in the
regime nearby the zero momentum. If the anyon gas
is initially in the Mott regime, during the full evolving
period it is always in the Mott regime, but at the particu-
lar momentum position double peaks appear. When the
harmonic trap is replaced with a weaker one, the density
profiles of anyons exhibit the breathing behavior. The
momentum distributions of bosons alternatively display
the structure of a single peak and double peaks, while
fermions contract and expand in the k-space with the
time evolution. For anyon interpolating between these
two limit, momentum distribution also repeats its be-
havior at regular intervals dependent on the statistical
parameter. The interval time is the longest for fermions
and is the shortest for bosons. The occupation distri-
butions of natural orbitals do not change qualitatively
with the time evolution but the occupation of the lowest
natural orbital evolves with time for anyon gas deviat-
ing the Fermi limit. When the harmonic trap is turned
off, the occupation of the lowest natural orbital increases
and gradually arrives at the biggest value. When the
harmonic trap becomes weaker rather than being turned
off, it shall fluctuate with the time evolution.
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Hart, G. Pupillo, H.-C. Nägerl,Science 325, 1224 (2009).

[19] F. D. M. Haldane, Phys. Rev. Lett. 67, 937 (1991).
[20] J. X. Zhu and Z. D. Wang, Phys. Rev. A 53, 600 (1996).
[21] A. Kundu, Phys. Rev. Lett. 83, 1275 (1999).
[22] M. D. Girardeau, Phys. Rev. Lett. 97, 210401 (2006).
[23] M. T. Batchelor, X. W. Guan, N. Oelkers, Phys. Rev.

Lett. 96, 210402 (2006); M. T. Batchelor, X. W. Guan,
J. S. He, J. Stat. Mech. P03007 (2007); M. T. Batchelor,
X. W. Guan, Phys. Rev. B 74, 195121 (2006); M. T.

Batchelor, A. Foerster, X. W. Guan, J. Links, and H. Q.
Zhou, J. Phys. A: Math. Theor. 41, 465201 (2008).

[24] O. I. Patu, V. E. Korepin and D. V. Averin, J. Phys. A
40, 14963 (2007).

[25] P. Calabrese and M. Mintchev, Phys. Rev. B 75, 233104
(2007).

[26] R. Santachiara, R. F. Stauffer and D. Cabra, J. Stat.
Mech. L05003 (2007).

[27] Y. Hao, Y. Zhang, and S. Chen, Phys. Rev. A 78, 023631
(2008).

[28] Y. Hao, Y. Zhang, and S. Chen, Phys. Rev. A 79, 043633
(2009).

[29] R. Santachiara and P. Calabrese, J. Stat. Mech. P06005
(2008).

[30] O. I. Patu, V. E. Korepin, and D. V. Averin, J. Phys. A
41, 145006 (2008); J. Phys. A: Math. Theor. 41 255205
(2008).

[31] A. del Campo, Phys. Rev. A 78, 045602 (2008).
[32] L. Amico, A. Osterloh, and U. Eckern, Phys. Rev. B 58,

R1703 (1998).
[33] M. D. Girardeau, J. Math. Phys. 6, 516 (1960).
[34] Y. Hao, Y. Zhang, J. Q. Liang, and S. Chen, Phys. Rev.

A 73, 063617 (2006).
[35] Y. Hao, Y. Zhang, and S. Chen, Phys. Rev. A 76, 063601

(2007).
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