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Using quantum Monte Carlo simulations, we investigate the finite-temperature phase diagram
of hard-core bosons (XY model) in two- and three-dimensional lattices. To determine the phase
boundaries, we perform a finite-size-scaling analysis of the condensate fraction and/or the superfluid
stiffness. We then discuss how these phase diagrams can be measured in experiments with trapped
ultracold gases, where the systems are inhomogeneous. For that, we introduce a method based on
the measurement of the zero-momentum occupation, which is adequate for experiments dealing with
both homogeneous and trapped systems, and compare it with previously proposed approaches.
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I. INTRODUCTION

The description of strongly correlated bosonic sys-
tems is of fundamental interest in largely diverse phys-
ical situations ranging from low-temperature experi-
ments with superfluid helium1 to Josephson-junction
arrays,2 as well as magnetic insulators3 and ultracold
gases in optical lattices.4,5 The latter systems offer an
unparalleled playground to study fundamental models
widely considered in statistical and condensed-matter
physics. This is because of the high degree of con-
trol over the experimental parameters that determine
the Hamiltonian describing the system. In particu-
lar, the Bose-Hubbard model6,7 has been experimen-
tally realized in one,8 two,9,10 and three dimensions,11

where the superfluid-to-Mott-insulator transition has
been observed. Even though it has received less at-
tention, the superfluid-to-normal transition in the Bose-
Hubbard model has been investigated experimentally
in three dimensions,12 while in two dimensions it has
been realized in the form of a two-dimensional lattice
of Josephson-coupled Bose-Einstein condensates,14,15 as
well as in experiments with ultracold atoms in optical
lattices.13

Although experiments with ultracold atoms on optical
lattices are in some respects almost ideal realizations of
model Hamiltonians of interest, significant complications
arise because of the presence of a confining potential,
which leads to the coexistence of different phases in a sin-
gle experimental setup.16,17 Furthermore, the mesoscopic
size of the system in combination with the inhomogeneity
induced by the trapping potential produces a rounding
off of the otherwise sharp features present in an infinite
homogeneous system in the critical region.18–21 Thus the
understanding and assessment of criticality in such sys-
tems remains a challenging task.

The emergence of sharp features in the momen-
tum distribution as obtained from time-of-flight im-
ages has been frequently associated to the emergence of
superfluidity.11,22–25 However, this association may not

be accurate because sharp peaks in the momentum dis-
tribution already appear in the normal state, due to an
increasing correlation length when approaching a crit-
ical regime.26–28 More recently, new schemes to detect
criticality in trapped systems have been proposed. In
some of those studies, a detailed analysis of the momen-
tum distribution was used to define criteria that allow
one to extract reliable estimations of the critical points
from time-of-flight images.12,27,29 In addition to time-of-
flight images, high-resolution in situ imaging of the den-
sity profile of trapped systems has become a powerful in-
strument with which one can also study phase diagrams
of strongly correlated systems and quantum criticality.
Numerous theoretical and experimental studies based on
this idea have been carried out for systems in the presence
of an optical lattice30–33,35–41 and in absence of it.34,42–44

One important aspect that determines the nature of
the quantum phases and their associated order parame-
ters is the dimensionality d. Mermin, Wagner, and Ho-
henberg rigorously proved that at any nonzero temper-
ature, continuous symmetries cannot be spontaneously
broken in systems with sufficiently short-range interac-
tions in dimensions d ≤ 2.45,46 This implies that, at finite
temperature, Bose-Einstein condensation (BEC) cannot
occur in one and two dimensions. Two-dimensional Bose
systems, however, are marginal in the sense that fluctua-
tions are strong enough to destroy the fully ordered state
but are not so strong to suppress superfluidity. Thus
critical behavior develops in the Berezinskii-Kosterlitz-
Thouless (BKT) transition,47,48 where a superfluid phase
with quasi-long-range order competes with thermal fluc-
tuations and induces a continuous phase transition to
the normal fluid as the temperature is increased. In ad-
dition to low-temperature superfluidity, long-range or-
der can develop at zero temperature in two dimensions.
On the other hand, in three dimensions, the superfluid
transition is accompanied by the appearance of true
long-range order, implying that the system also exhibits
Bose-Einstein condensation. Such transition, which be-
longs to the three-dimensional XY universality class, is
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well understood in the sense that the critical exponents
have been determined experimentally and theoretically
with remarkably high accuracy in many different physi-
cal contexts.49–53,56

Here, we focus our study on the superfluid-to-normal
transition in a system of strongly interacting bosons in
two- and three-dimensional lattices. Specifically, we con-
sider the Bose-Hubbard model in the limit of infinite on-
site repulsion, i.e., the hard-core boson limit. We use
exact quantum Monte Carlo simulations to compute the
finite-temperature phase diagram as a function of chem-
ical potential. Accurate results are obtained through
finite-size scaling of the condensate fraction and/or the
superfluid stiffness obtained from our simulations. We
also determine the mean-field phase diagram, which is
qualitatively correct but quantitatively quite different
from the exact results. We then proceed to study the
superfluid-to-normal phase transition in two and three
dimensions in the presence of a confining potential, which
is required to describe experiments with ultracold gases.
We introduce a method to determine the critical temper-
ature, for any given density, that is based on the mea-
surement of the zero-momentum occupation as a function
of temperature. This method is in principle adequate for
experiments dealing with both homogeneous and trapped
systems. Furthermore, we compare our approach to other
recently proposed schemes based on the in situ density
images31 as well as on the shape of the low-momentum
part of the momentum distribution.29

The paper is organized as follows. In Sec. II, we intro-
duce the model and its phase diagram in two and three di-
mensions supplemented with the mean-field calculations.
Section III is devoted to the discussion of the techniques
to obtain the phase boundaries. In Sec. IV, we discuss
the possibility to have of Bose-Einstein condensation in
trapped two-dimensional systems as well as the methods
to determine the phase boundaries from experimentally
accessible quantities. Finally, in Sec. V, we draw our
conclusions.

II. MODEL AND PHASE DIAGRAM

We consider a system of hard-core bosons on a d-
dimensional lattice with Ld sites. The Hamiltonian can
be written as

Ĥ = −t
∑

〈i,j〉

(

â†i âj +H.c.
)

−
∑

i

µin̂i , (1)

where â†i (âi) is the boson creation (annihilation) opera-

tor at a given site i, and n̂i = â†i âi is the local particle
number operator. The hard-core boson creation and an-

nihilation operators satisfy the constraint â†2i = â2i = 0,
which forbid multiple occupancy of lattice sites. The first
term in Eq. (1) is the kinetic energy, where t is the hop-
ping amplitude between neighboring sites i and j (〈i, j〉).
In experiments involving ultracold gases, a trap is re-
quired to confine the atoms. The effect is taken into
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FIG. 1. (Color online) Finite temperature phase diagram in
two and three dimensions, and the mean-field (MF) predic-
tion. In all dimensions, the phase diagram contains a super-
fluid (SF) lobe surrounded by the normal fluid (NF) phase.

account in the second term that contains µi = µ− V0r
2
i ,

where V0 is its strength and µ is the overall chemical po-
tential. ri is the distance from site i to the center of the
trap. In what follows, positions will be given in units
of the lattice spacing a and the energy in units of the
hopping amplitude t.
We recall that the Hamiltonian in Eq. (1) can be ex-

actly mapped to the extensively studied quantum XY
model57

Ĥ = −2t
∑

〈i,j〉

(

Sx
i S

x
j + Sy

i S
y
j

)

−
∑

i

µiS
z
i , (2)

where Sα
i is the αth component of the spin-1/2 spin oper-

ator at site i. In the spin language, the term proportional
to t describes a ferromagnetic exchange interaction, while
the one proportional to µi describes a magnetic field in
the z-direction at site i.
We study the Hamiltonian in Eq. (1), at finite tem-

perature T , by means of the stochastic series expansion
(SSE) quantum Monte Carlo method with operator-loop
updates.58–60 The determination of the phase diagrams
is carried out through a finite size scaling of the conden-
sate fraction and/or the superfluid stiffness ρs using peri-
odic boundary conditions. The numerically exact (QMC)
phase diagram in two and three dimensions, as well as
the the mean-field predictions, are presented in Fig. 1.
The finite-temperature phase diagram comprises an off-
diagonal long range ordered (ODLRO) low-temperature
superfluid lobe (quasi-ODLRO in 2D) surrounded by a
high-temperature normal phase with exponentially de-
caying correlation functions. The robustness of the su-
perfluid state is expected to be hindered as dimension-
ality is reduced because thermal and quantum fluctua-
tions have a stronger effect in low-dimensional systems.
Clearly, our results agree with that expectation. The
dissimilarity between the mean-field and the exact phase
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diagrams makes it clear that both thermal and quan-
tum fluctuations are strong and play an important role
even in three dimensions, where mean-field approaches
are generally considered to be a good approximation.
Details on the procedure to obtain the phase bound-

aries are provided in the following sections. Such proce-
dures are different in two and three dimensions because
of the different universality class of the phase transition.

III. HOMOGENEOUS SYSTEMS

A. Two dimensions

Our results for the two-dimensional phase diagram in
Fig. 1 are based on the fact that the model in Eq. (1)
undergoes a BKT transition as a function of the temper-
ature. This phase transition has been studied in great
detail the context of the two-dimensional quantum XY
model in Eq. (2) in the absence of a magnetic field.61–64

Kosterlitz and Thouless predicted that the superfluid
stiffness ρs jumps from zero to the value (2/π)Tc at the
critical temperature. Thus we consider measurements of
the superfluid stiffness ρs for different system sizes L as
a function of temperature. Within the SSE method, the
superfluid stiffness is computed by measuring the fluc-
tuation of the winding number W ;65 they are connected
through the relation ρs = 〈W 2〉/2β, where β = 1/T is
the inverse temperature.
Figure 2(a) shows results for the superfluid stiffness of

2D hard-core bosons at µ = 0 [or equivalently the spin
stiffness of the 2D XY model in Eq. (2)] as a function of
T for several system sizes. The observed slow approach
of the superfluid stiffness to the characteristic jump ex-
pected for the infinite system is due to strong finite-size
effects at the BKT transition. Finite-size scaling rela-
tions for the superfluid stiffness can be derived by in-
tegrating the Kosterlitz renormalization-group equations
[See, for instance, Refs. 64,67,68]. This procedure yields

ρs (T, L)π

2T
− 1 = c coth 2c (lnL+ l0), T < Tc

ρs (Tc, L)π

2T
− 1 =

1

2 (lnL+ l0)
, T = Tc

ρs (T, L)π

2T
− 1 = c cot 2c (lnL+ l0), T > Tc (3)

where c measures the distance from the critical point and
l0 depends only weakly on temperature. Close to the
critical point c ∼

√

|T − Tc|. In the limit 2c (lnL+ l0) ≪
1, a scaling form for the superfluid stiffness based on
Eq. (3) can be written as

ρs (T, L)π

T
−2 =

1

lnL+ l0
F
[

(lnL+ l0)
2
(T − Tc)

]

. (4)

From Eq. (3) in the limit 2c (lnL+ l0) ≪ 1, F (x) =
1 − (4/3)x. From Eq. (4), one can find the scaling
function F and critical temperature Tc by computing
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FIG. 2. (Color online) (a) Superfluid stiffness in 2D for µ =
0 and several values of L. The error bars (not shown) are
smaller than the point size used in the plot. (b) Data collapse
according to the relation in Eq. (4). The inset in (b) shows
the rescaled superfluid stiffness vs T .

xL = (lnL+ l0)
2 (T − Tc) /t and yL = ρs (T, L)π/T − 2

based on our Monte Carlo simulations for different L and
T . The adjustment of the constant l0 and critical tem-
perature Tc, such that the data produce the best possi-
ble collapse, yields a numerical estimate of the scaling
function F and the critical temperature itself. The re-
sult of the determination of the scaling function F is re-
ported in Fig. 2(b), where a plot of the yL as a function
of xL is presented. Notice that, as expected, the value
of F is very close to one for xL = 0. Furthermore, one
expects from Eq. (3) that a plot of the rescaled super-

fluid stiffness ρs (T, L)
∗
= ρs (T, L)

(

1 + 1
2[lnL+l0]

)−1

as

a function of the temperature T should become system
size independent at the critical temperature Tc. This
observation is confirmed in the inset of Fig. 2(b). Re-
markably, those curves intersect with the line (2/π)T
right at the critical temperature, in agreement with the
BKT scenario. Our result Tc/t = 0.685 ± 0.001 is
consistent with the best value reported in Ref. 64, for
which Tc/t = 0.6846 ± 0.0006.70 An analogous proce-
dure to the one just described is carried out for differ-
ent values of the chemical potential to complete the two-
dimensional phase diagram in Fig. 1. We should mention
that Eq. (3) predicts the value of the superfluid stiffness
in an infinite system at the critical temperature to be
ρs (Tc) /Tc = 2/π. However, in Ref. 66, it was shown
that the superfluid stiffness at the transition tempera-
ture is ρs (Tc) /Tc ≃ 0.63650, which is very close to the
result based on Eq. (3) [2/π ≃ 0.63662]. Detecting the
difference is beyond the accuracy of the present study.

1. Critical value from dn0/dT

We now briefly discuss the behavior of the occupation
of the zero momentum state [nk=0 ≡ n0] in the critical re-
gion and address the determination of the transition tem-
perature from it. In a homogeneous and infinite 3D sys-
tem, BEC is identified by a macroscopic occupation of n0.
However, as mentioned before, thermal fluctuations in
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2D destroy Bose-Einstein condensation. Nonetheless, as
the superfluid transition is approached from the normal
phase, n0 diverges [see inset in Fig. 3(a)]. Indeed, from
the Fourier transform of the one-body density matrix in

the long-distance limit 〈â†i âi+r〉 ∝ r−1/4 exp (−r/ξ), one
can extract the behavior of n0 as Tc is approached

n0 ∼ ξ7/4. (5)

We assume the essential singularity of the correlation

length ξ ∼ eb/
√
T−Tc

1/2

, where b is a chemical-potential
dependent scaling factor. From Eq. (5) it follows that,
not only does n0 diverge at Tc but also its derivative with
respect to T

dn0

dT
∼ −ξ7/4 ln3 ξ

b2
(6)

In a finite system, when T is close to Tc, the role of the
correlation length is taken over by L when ξ & L. This
occurs at a characteristic temperature T ∗ (L) given by

T ∗ (L) = Tc + b′/ ln2 L, (7)

where b′ is a non-universal factor related to b. At that
temperature, the derivative in Eq. (6) scales with the
system size as

dn0

dT

∣

∣

∣

∣

T∗(L)

∼ −L7/4 ln3 L

b2
. (8)

Below T ∗(L), n0 cannot vary as fast as right above
T ∗(L) because the exponential increase of the correla-
tion length is truncated by L. Below T ∗(L), the vari-
ation of n0 comes mainly from the temperature depen-
dence of the anomalous exponent, which is not as strong
as the variation due to the exponential behavior of the
correlation length. Consequently, dn0/dT should ex-
hibit a sharp minimum at the size-dependent temper-
ature T ∗ (L). Moreover, in a finite system, n0 cannot
grow indefinitely as the temperature is lowered. With
decreasing temperature (T → 0), n0 must approach its
(finite) T = 0 value, which implies that dn0/dT → 0.
Figure 3(a) depicts the derivative of the n0 for different

system sizes vs T . The divergence of dn0/dT is apparent.
A sharp minimum develops and its location T ∗ (L) ap-
proaches Tc as the system size increases. This is expected
from the finite-size relation in Eq. (7). The scaling of the
height of this minimum is studied in Fig. 3(b), where we
plot the absolute value of dn0/dT |T∗(L) vs L. The data
follows the scaling relation in Eq. (8), as made evident
by a fit to the function g(L) = a0 + a1L

7/4 ln3(a2L). In
the inset in Fig. 3(b), we show the finite-size scaling of
T ∗ (L). We observe that T ∗ (L) is consistent with the
scaling relation in Eq. (7), which we use to obtain the
critical temperature in the thermodynamic limit. We find
Tc/t = 0.701± 0.007. This value is compatible with the
one found by performing the finite-size scaling of the su-
perfluid stiffness. While this approach is obviously less
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FIG. 3. (Color online) (a) Derivative of the zero-momentum
occupation n0 with respect to the temperature for different
values of L. The inset shows n0 vs T . (b) Finite-size scaling
of the height of the negative peak in dn0/dT . The continuous

line is a fit to the function g(L) = a0 + a1L
7/4 ln3(a2L). The

inset shows the finite-size scaling of T ∗ (L).

accurate than the one discussed before for ρs, among
other things because a numerical derivative is involved,
the fact that it works extremely well is very important for
trapped ultracold gases experiments where the superfluid
density cannot be measured.
We note at this point that, in the determination of

Eq. (8), we have neglected multiplicative logarithmic cor-
rections that affect the behavior of the zero-momentum
occupation and thus its derivative with respect to the
temperature.71,72 In fact, the exponent of the logarithm
in Eq. (8) gets modified to

dn0

dT

∣

∣

∣

∣

T∗(L)

∼ −L7/4 ln3−2r L

b2
, (9)

with r = −1/16.72 However, this correction does not af-
fect the determination of the critical temperature, which
is based on the location of the position of the peak in the
numerical derivative and the scaling relation in Eq. (7).
Furthermore, the correction to the exponent of the loga-
rithm is very small and, at least within the precision of
our simulations, its effect is hardly detectable.

B. Three dimensions

In order to determine the 3D phase diagram, we fol-
low the same procedure as in 2D. In 3D, however, the
superfluid-to-normal transition belongs to the 3D XY
universality class. This transition, for the model in
Eq. (1), has been also studied using QMC simulations
in the past. Tc for BEC was evaluated as a function of
the density in Ref. 73. The onset of magnetization as
a function of the magnetic field [or, in the bosonic lan-
guage, the density as a function of the chemical poten-
tial] was investigated in Ref. 74. Furthermore, the fate
of the superfluid phase under the effect of an additional
ring-exchange term was studied in Ref. 75. Here, we de-
termine the full phase diagram (shown in Fig. 1) as a
function of the temperature and the chemical potential.
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tem for µ = 0 and several values of L. (b) Data collapse
according to the relation in Eq. (12). The inset shows the
rescaled superfluid stiffness as a function of T .

We begin by considering measurements of the superfluid
stiffness. In d > 2 dimensions, as the critical temperature
is approached, the superfluid stiffness vanishes continu-
ously as76

ρs ∼ |Tc − T |(d−2)ν , (10)

where the exponent ν determines how the correlation
length diverges when approaching the critical temper-
ature, i.e.,

ξ ∼ |T − Tc|−ν . (11)

As a result, at the critical temperature, the superfluid
stiffness scales with the linear size of the system as
ρs ∼ L2−d. This, in turn, allows one to write the scaling
hypothesis for the superfluid stiffness as a function of the
system size and the temperature as

ρsL
d−2 = F

(

|T − Tc|L1/ν
)

, (12)

which we utilize to determine the critical temperature.
In Fig. 4(a), we show results for the superfluid stiffness
in a 3D lattice vs T for different system sizes.
We numerically extract the scaling function F by

studying the rescaled superfluid stiffness [l.h.s. in
Eq. (12)] vs the rescaled temperature (T−Tc)L

1/ν . Clas-
sical Monte Carlo simulations yield the correlation length
exponent ν = 0.6717 ± 0.0001,52 and ν = 0.6717 ±
0.0003,53 which we use to produce the collapse presented
in Fig. 4(b). With ν at hand, it is enough to fix Tc such
that the best collapse of the data is achieved. Further-
more, the inset shows the rescaled superfluid stiffness as
function of temperature, which becomes system-size in-
dependent at the critical temperature, as implied by the
scaling hypothesis in Eq. (12). Our best estimation of the
critical temperature for µ = 0 is Tc/t = 2.0169± 0.0005
(to be compared with Tc/t = 1.94 from Ref. 73 and more
recently with Tc/t = 2.016±0.004 from Ref. 54). We per-
form a similar analysis for different values of the chem-
ical potential to complete the three-dimensional phase
diagram in Fig. 1.
Additionally, since the superfluid-to-normal phase

transition in our model in 3D is accompanied by the
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FIG. 5. (Color online) (a) Condensate fraction in 3D for µ = 0
and several values of L. (b) Data collapse according to the
relation in Eq. (14). The inset shows the rescaled condensate
fraction as a function of T .

emergence of true long-range order, one can study the
transition by computing the condensate fraction f0 as-
sociated with the appearance of BEC. Following Pen-
rose and Onsager,77 the condensate fraction is defined
as the ratio of the largest eigenvalue of the one-body
density matrix to the total number of particles Nb. For
the system under consideration, condensation occurs to
the zero-momentum state due to translational invariance,
thus the condensate fraction is f0 = n0/Nb. The behav-
ior of n0 can be obtained from the Fourier transform of
the one-body density matrix in the long-distance limit,
which in 3D is given by

〈â†i âi+r〉 ∝ r−(1+η) exp (−r/ξ) . (13)

η is the correlation function exponent, also known as
anomalous scaling dimension. On approach to Tc, n0

diverges with the correlation length as29

n0 ∼ ξ2−η. (14)

In a finite system, this relation implies that the con-
densate fraction vanishes at the critical point as f0 ∼
L−(1+η), which we adopt to formulate the following scal-
ing hypothesis for the condensate fraction

f0L
1+η = F

(

|T − Tc|L1/ν
)

. (15)

In the determination of Tc through the scaling relation
in Eq. (15), we use the value η = 0.0381± 0.0002.52 The
results are summarized in Fig. 5, where a plot of the
condensate fraction versus T is shown in panel (a). In
Fig. 5(b), the data collapse of the rescaled condensate
fraction f0L

1+η vs the rescaled temperature is apparent.
Furthermore, in the inset, one can observe that curves of
the rescaled condensate fraction vs T become system-size
independent at Tc, as implied in Eq. (15). This procedure
results in a Tc/t = 2.0167± 0.0005 for µ = 0, which is in
remarkably good agreement with our previous estimate
using the superfluid stiffness.
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1. Critical value from dn0/dT

Similarly to the 2D case, dn0/dT diverges in the vicin-
ity of the superfluid-to-normal phase transition. It di-
verges with the correlation length as

dn0

dT
∼ −ξ2−η+1/ν . (16)

Also, as in 2D, in a finite 3D system at a temperature
T ∗ (L) close to Tc, the role of the correlation length is
taken over by L when ξ & L. The characteristic temper-
ature T ∗ (L) is given by

T ∗ (L) = Tc + c′/L1/ν, (17)

where c′ is a non-universal factor. At T ∗ (L), dn0/dT
scales with the system size as

dn0

dT

∣

∣

∣

∣

T∗(L)

∼ −L2−η+1/ν . (18)

Furthermore, in a finite system, dn0/dT reaches its min-
imum value at T = T ∗ (L) because the divergence of the
correlation length can no longer be sustained. This is
expected from the behavior of n0 vs T , shown in the in-
set in Fig. 6(a), where n0 is first seen to increase as the
temperature is lowered and then to saturate as T → 0.
The changes observed dn0/dT in that low temperature
regime originate in the smooth dependence of the corre-
lation function exponent on the temperature, as opposed
to the fast change produced by the strong divergence of
the correlation length. Hence, once again, dn0/dT ex-
hibits a sharp minimum at the size-dependent tempera-
ture T ∗ (L) in Eq. (17) and then goes to zero.
In Fig. 6(a), we display results for dn0/dT vs T for

different system sizes. The divergence in the derivative,
anticipated by Eqs. (16) and (18), is confirmed by the
presence of sharp minima that grow with system size.
The finite-size scaling of the height of the sharp minimum
in Eq. (18) is presented in Fig. 6(b), where we plot the
logarithm of the maximum height of |dn0/dT | vs lnL.

According to Eq. (18), such a plot should turn into a
straight line with a slope given by m = 2 − η + 1/ν.
A fit of our data to the function g(lnL) = a0 + a1 lnL,
yields a1 = 3.47± 0.01. The scaling relation Eq. (18) is
thus confirmed as our value of a1 is compatible with the
exponents from Ref. 52, which yield m = 3.450. The size
dependence of the position of the peaks anticipated in
Eq. (17) is verified in the inset of Fig. 6(b). Within this
procedure, we find that the critical temperature in the
thermodynamic limit is Tc/t = 2.012± 0.002, which is in
relatively good agreement with the one obtained through
the finite-size scaling of both the superfluid stiffness and
the condensate fraction.
We conclude this section by mentioning that, in deter-

mining the critical temperature, we have used the lead-
ing scaling forms and subleading corrections to scaling
have been neglected. For the 3D XY universality class,
such corrections have been reviewed in Ref. 78. We note
that, in our calculations, there is an excellent collapse
of the data, which suggests that the effects of the sub-
leading corrections to scaling are small. Furthermore,
the most accurate results obtained for Tc follow from
completely independent measurements, i.e., the super-
fluid and condensate fractions. They agree within the
error bars, which further supports the relevance of the
scaling relations used.

C. Mean field

To gain an understanding of the effects of quantum
fluctuations in our systems, we have also calculated the
mean-field phase diagram for this model. We utilize the
standard decoupling of the kinetic energy term in the
Hamiltonian in Eq. (1)79

â†i âj ≃ â†iΦj + âjΦ
∗
i − Φ∗

iΦj , (19)

where Φi = 〈âi〉 is the condensate order parameter, to
be determined self-consistently. The angle brackets de-
note the usual thermal average. The above mean-field
decoupling allows one to write a mean-field Hamiltonian
for Eq. (1) as

ĤMF = −t
∑

〈i,j〉

(

â†iΦj +Φ∗
i âj − Φ∗

iΦj

)

+H.c.−
∑

i

µin̂i.

(20)

For homogeneous systems, i.e., V0 = 0, Eq. (20) can
be recast in the following manner,

ĥMF = −2dtΦ
(

â† + â
)

− µn̂, (21)

where ĥMF is the mean-field Hamiltonian per lattice site.
Note that in this case the superfluid order parameter can
be taken to be real. The corresponding partition function
at finite inverse temperature β is

Z = 2e−β µ
2 coshβ

√

µ2

4
+ (2dtΦ)

2
. (22)
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A self-consistency condition for the superfluid order
parameter can be derived by noting that

dZ

dΦ
= 4βdt〈â〉Z. (23)

Using the relation (23), we arrive at the equation that
determines the order parameter Φ,

√

µ2

4
+ (2dtΦ)

2
= dt tanhβ

√

µ2

4
+ (2dtΦ)

2
, (24)

which is valid whenever Φ > 0. We solve Eq. (24) numer-
ically and determine the superfluid region, Φ > 0, as a
function of the temperature and the chemical potential.
The phase boundaries are determined as the values of µ
and T for which Φ → 0. For µ = 0, Eq. (24) reduces to

2Φ = tanhβ 2dtΦ, (25)

which is the equation that determines the mean-field
magnetization of the Ising model in the absence of a
magnetic field. The critical temperature is of course
Tc/td = 1, quite different from the results of our quantum
Monte Carlo simulations in two and three dimensions.

IV. TRAPPED SYSTEMS

In experiments involving ultracold atoms, an addi-
tional trapping potential is necessary to contain the gas.
While a qualitative (and sometimes a reasonably good
quantitative) description of the trapped system can be
obtained within the local density approximation (LDA)
from the properties of the homogeneous system, this ap-
proximation may breakdown in regimes of interest. In
particular, the latter occurs at criticality, where the cor-
relation length diverges and deviations from the LDA
description can be large.29 Furthermore, as we explain
below, in trapped 2D systems care needs to be taken
with the application of the Mermin-Wagner-Hohenberg
theorem. Therefore, we focus our attention on those two
aspects, namely, the possibility to have BEC in presence
of an additional external confining potential in 2D, and
the study of criticality in 2D and 3D.

A. Absence of BEC in interacting 2D systems

We mentioned in the introduction that homogeneous
2D systems are special because thermal fluctuations de-
stroy any order at finite temperature. However, har-
monically confined non-interacting bosons can undergo
BEC at finite temperature.80 In this case, the argu-
ments by Mermin, Wagner, and Hohenberg are not vi-
olated because condensation does not occur to the zero-
momentum state but to a single-particle eigenstate of the
trapped system. One can then wonder whether finite-
temperature BEC persists in the presence of interactions.

By following analogous arguments to those in Ref. 81,
we show below that interactions do preclude the forma-
tion of a condensate in the Bose-Hubbard model in the
presence of the trap. This is so because there is a close
connection between the formation of a condensate and
the macroscopic population of the zero-momentum occu-
pation, which is forbidden in 2D at finite temperature.
Generally speaking, the emergence of BEC is estab-

lished through the evaluation of the condensate fraction
f0, which is defined as the ratio of the largest eigenvalue
of the one-body density matrix nM to the total number
of particles Nb,

f0 =
nM

Nb
. (26)

If after taking the appropriate thermodynamic limit f0
remains finite, then the system exhibits BEC. Otherwise,
if it becomes zero, there is no condensation.77

Alternative forms of the criteria expressed through
Eq. (26) can be useful when the system is not spatially
uniform; they are based on the following inequality,77

n2
M ≤

∑

a

n2
a ≤ nM

∑

a

na = nMNb, (27)

where na are the eigenvalues of the one-body density ma-
trix ρij . We define the quantity

A2 = N−2
b

∑

i,j

|ρij |2, (28)

which is just a lattice version of its analogous defined on
the continuum in Ref. 77. It follows from Eqs. (27) and
(28) that

f2
0 ≤ A2 ≤ f0. (29)

Therefore, if A2 remains finite in the thermodynamic
limit the system exhibits BEC. A further criterion can
be defined and it depends on the quantity

A1 =
(

NbL
d
)−1 ∑

i,j

|ρij |. (30)

Notice that
(

A1Nb/L
d
)2

is the square of the mean value

of the function |ρij |, while A2

(

Nb/L
d
)2

is the mean value

of |ρij |2. Since the variance of the function |ρij | is either
positive or zero, it follows that

A2
1 ≤ A2. (31)

Now, since ρij is a positive-semi-definite Hermitian ma-
trix, its elements satisfy77,84

|ρij | ≤
√
ρii ρjj ≤

1

2
(ρii + ρjj) ≤ αNb/L

d, (32)

where αNb/L
d is an upper bound of the local density ρii.

By summing over i and j in Eq. (32) and the square of
it, we find a lower bound for A1

A2 ≤ αA1. (33)
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So long as the local density ρii remains finite through-
out the whole system, α can be taken to be finite and
independent of Nb/L

d. This, in turn, implies that if
A1 > 0, then BEC takes place; otherwise if A1 = 0, no
BEC occurs.77 Notice that if ρij ≥ 0, A1 coincides with
the ratio of the zero-momentum occupation to the total
number of particles, i.e., the fraction of particles in the
system that condense to the zero-momentum state. Since
in two dimensions n0/Nb vanishes because of the Mermin,
Wagner, and Hohenberg theorem, then A1 is zero too. In
the specific case of the Bose-Hubbard model in presence
of an inhomogeneous potential in thermal equilibrium,
we have that ρij ≥ 0. Furthermore, the density is fi-
nite everywhere across the system because of the on-site
interaction, implying that A1 = 0.
Hence, even in the presence of the trap, there is no

condensation in the 2D Bose-Hubbard model at finite T .
Note that this argument does not preclude condensation
in the non-interacting limit, where the density can di-
verge at the minimum of the inhomogeneous potential in
the thermodynamic limit and BEC can indeed occur to
the lowest single-particle eigenstate, but not to the zero-
momentum state. Moreover, the criteria above implies
that for the Bose-Hubbard model in d > 2 in thermal
equilibrium, condensation to any state has to be accom-
panied by condensation to the zero-momentum state.
In our proof, we have stated that for the Bose-Hubbard

model in thermal equilibrium ρij ≥ 0 holds. We now
present two independent arguments for why ρij ≥ 0.
The first one is based on the fact that the matrix ele-
ments of the von Neumann’s statistical operator in the
position representation are strictly positive.82 Since the
one-body density matrix corresponds to a partial trace of
the von Neumann’s statistical operator,77 it follows that
its elements are positive too. A rather technical, but yet
rigorous, argument is based on the series expansion rep-
resentation of the one-body density matrix that we used
in our Monte Carlo implementation. Within this repre-
sentation, the measurements of the one-body density ma-
trix are based on the extension of the configuration space
where these off-diagonal quantities are well defined.60 In
such extended space, the one-body density matrix is rep-
resented as the sum of strictly positive matrix elements
(hence ρij ≥ 0) which are, in turn, efficiently sampled
sampled during the construction of the loop operators in
the directed-loop update algorithm.83

B. Two dimensions

1. Local compressibility

Exactly as in the homogeneous system, even though
there is no condensation in 2D, a superfluid phase is
expected in the trapped system at low temperatures.
Because of the inhomogeneity introduced by the con-
fining potential, coexistence of space separated normal
and superfluid domains can occur at intermediate tem-

perature. In that case, there must be a region in the
trap where superfluid-like domains transition into nor-
mal ones. Within the LDA, this region is such that the
local chemical potential µi coincides with the critical µ of
the bulk system for the normal-to-superfluid phase tran-
sition.
Based on this idea, Zhou and collaborators proposed

a method to identify the phase boundaries of the homo-
geneous system from a high-resolution scan of the local
density ρ(r) across the confined system.31 This method
requires the determination of the local compressibility
defined as

κdiff (r) = − 1

2V0r

dρ (r)

dr
, (34)

and relies on the expectation that the local density profile
ρ(r), as well as the local compressibility κdiff (r), can be
well approximated by their bulk values through the LDA.
The existence of sharp features in the local compressibil-
ity at specific locations in the trap is then associated with
phase transitions occurring in the homogeneous system
as function of the chemical potential. This method is ex-
pected to be accurate in the limit of very shallow traps
where the contribution from density gradients due to the
trapping potential are small.85

In Fig. 7, we present QMC results for the density
profile of a 2D trapped system, as well as the local
compressibility, as a function of the distance from the
center of the trap. The expected sharp features in
the local compressibility due to critical fluctuations are
smoothed by finite-size effects. They are replaced by a
rounded maximum, which can be associated with the
superfluid-to-normal transition.85 The location of the
maximum rc is connected to the critical chemical po-
tential through µc = µ− V0r

2
c . For the case in Fig. 7, we

get µc/t = −3.57 ± 0.03. This value is to be contrasted
with µc/t = −3.5, which we obtained in the homogeneous
system calculations. As T increases, however, the agree-
ment between the estimates of the critical chemical po-
tential based on the local compressibility and the results
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FIG. 7. (Color online) (a) Two-dimensional density at T/t =
0.2012 and a trapping potential V0/t = 0.0003, for µ = 0 in
the center of the trap. (b) The corresponding density profile
ρ(r), as well as the local compressibility κdiff (r), as a function
of the distance from the center of the trap r. All distances x,
y, and r are measured in units of a while the local compress-
ibility is measured in units of 1/t
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FIG. 8. (Color online) (a) n0 as a function of T and β in a
trapped 2D system with V0/t = 0.00125, µ = 0 in the center
of the trap, and L = 128. (b) Derivatives of n0 with respect
to β and with respect to T .

of the homogeneous system worsens. For instance, for
T/t = 0.4562, we find that µc/t = 2.99±0.04, as opposed
to the homogeneous system result where µc/t = 2.5. This
occurs presumably because, closer to the tip of the super-
fluid lobe, critical fluctuations are stronger, thus larger
violations of the LDA are expected.

2. Momentum distribution function

Another quantity that can be measured in experiments
with ultracold atoms is the momentum distribution func-
tion. At fixed chemical potential (µ ≤ 0), when lowering
T , the normal-to-superfluid crossover in the trapped sys-
tem proceeds via the creation and growth of a superfluid
domain in the center of the trap. (The rate of growth of
the superfluid domain will depend on the functional form
and strength of the confining potential.) Hence, the zero-
momentum state becomes increasingly populated. As fol-
lows from the discussion for finite homogeneous systems,
it is expected that as T decreases and approaches Tc for
the normal-to-superfluid transition in the center of the
trap, the rate of growth of n0 will increase. Below Tc, on
the other hand, dn0/dT will eventually decrease because
of the finite extend of the system imposed by the confin-
ing potential. If T is lowered well below Tc, almost the
entire system will become superfluid and the observables
will saturate their (finite) zero-temperature values.
Hence, just as in the homogeneous case, one can at-

tempt to estimate Tc for the superfluid-to-normal phase
transition for the density in the center of the trap by
measuring the temperature at which the rate of change
of n0 is extremal. This approach provides an accurate
estimate for the homogeneous system and it is expected
to be accurate in confined systems with shallow trap-
ping potentials. Figure 8(a) depicts the evolution of n0

vs T as well as the inverse temperature β of a harmoni-
cally confined 2D system with V0/t = 0.0015 (L = 128)
and µ = 0 in the center of the trap. In Fig. 8(b), we
show dn0/dT which, as expected, exhibits a minimum
located at T/t = 0.66 ± 0.02. This temperature is com-
patible with the value of Tc/t obtained for the homoge-

neous case where, after a finite-size scaling, we obtained
Tc/t = 0.685 ± 0.001. Our estimate derived from the
study of a single trapped system is about 4% off the value
of the homogeneous system.
One can perform the same analysis based on measure-

ments of n0, but now as a function of the inverse tem-
perature β. In that case, one expects a maximum in
the derivative dn0/dβ instead of a minimum. In gen-
eral, for finite and not very large systems, the position of
such maximum βc will not coincide with 1/Tc obtained
from the minimum of dn0/dT . Overall, we find that, for
the system sizes available to our QMC simulations, the
analysis based on dn0/dβ provides more accurate esti-
mates of the critical temperature than the one based on
dn0/dT . Furthermore, the maximum found in dn0/dβ
is consistently sharper and better defined with respect
to the minimum found for dn0/dT which instead is shal-
lower and broader, thus harder to detect and numerically
less reliable.
Based on measurements of dn0/dβ presented in Fig.

8(b) on the same system with V0/t = 0.0015 (L = 128),
µ = 0, we find Tc/t = 0.72 ± 0.02, which is also very
close to the critical temperature of the homogeneous sys-
tem. When the maximum is sharply defined, in the limit
of very shallow traps with large numbers of bosons, the
two approaches are expected to coincide (i.e., their differ-
ence is due to finite size effects). As a matter of fact, for
the homogeneous 2D and 3D systems in Sec. III, where
the minima of dn0/dT are sharp, we find that the anal-
ysis using dn0/dT and dn0/dβ yield essentially the same
results for Tc. In Appendix A, we provide an analytic un-
derstanding of this in terms of a simple function. There-
fore, for the determination of the phase diagram based
on measurements in harmonically confined systems, we
consider only measurements based on dn0/dβ.
In Fig. 9, we summarize our results for the determina-

tion of the critical parameters with the local compressibil-
ity as well as with the derivative of the zero-momentum
occupation with respect to β, and contrast them with
the phase diagram of the homogeneous system. Clearly,
all methods work well for large values of µ/t and small
values of Tc/t (equivalent to approaching the continuum
limit in a lattice system). Close to the tip of the su-
perfluid region, the method based on n0 performs much
better than the one based on κdiff (r).
At the tip of the superfluid lobe, where the size ef-

fects are expected to be the strongest, we observe that
as the size of the system is increased (or the strength
of the trap is decreased), keeping constant the chemical
potential in the center of the trap, the estimate of the
critical temperature decreases approaching the result in
homogeneous systems.

C. Three dimensions

We now turn our attention to the study of criticality
in 3D trapped systems. We make use of the same ideas
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FIG. 9. (Color online) Estimate of the critical points based
on the local compressibility (black dots based on a system
with L = 256) as well as the derivative of the zero-momentum
occupation with respect to β (red diamonds based on a system
with L = 128). At the tip of the superfluid lobe we include
further results for different system sizes and trap strengths
(yellow pentagon L = 32, blue triangle L = 64, violet empty
circle L = 256). The phase diagram of the homogeneous
system is also shown.

developed for 2D system to extract the critical param-
eters, i.e., measurements based on the zero-momentum
occupation as well as on the local compressibility.
Additionally, in 3D, we can utilize a method that is

based on the analysis of the shape of the central peak
the momentum distribution. With it, one can construct a
quantity that exhibits a minimum at the critical point.29

The idea behind this method is that, close to criticality,
the momentum distribution develops a bimodal structure
whose evolution as a function of temperature contains in-
formation about the formation of a superfluid region in
the center of the trap. At Tc, when a superfluid domain
begins to form, the major contribution to the occupation
of the zero-momentum state comes from regions that are
not critical, i.e., from regions that are far away from the
center of the trap. However, the derivatives of the mo-
mentum distribution dmnk/dk

m are critical, in the sense
that they can be understood in terms of a LDA integral
that diverges at the center of the trap, where the system
is critical. Based on that idea, the following quantity was
devised in order to extract the critical temperature29

Q (T ) = (n0 − nkmax
) (kmax)

s, (35)

where kmax is the momentum at which |dnk/dk| is max-
imum and the exponent s > 2 − η. In Ref. 29, it was
shown that Q (T ) should exhibit a minimum at the crit-
ical temperature Tc.
We plot Q (T ) vs T in Fig. 10(a). Q (T ) exhibits a

minimum at Tc/t = 2.04 ± 0.03. In the inset, we show
the evolution of the momentum distribution function as
the temperature of the system is reduced. This result is
compatible with the critical temperature found for the
homogeneous system Tc/t = 2.0169± 0.0005. In princi-
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FIG. 10. (Color online) (a) The quantity Q (T ) as a function
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shown in the inset. The exponent in Eq. (35) has been set
to s = 3. (b) Derivatives of n0 with respect to β and with
respect to T . The three-dimensional system is prepared with
V0/t = 0.04, µ = 0, and L = 32.

ple, similar ideas as the ones presented in Ref. 29 could
be used to devise a quantity Q (T ) to locate the critical
parameters in 2D. In that case, however, the structure of
the momentum distribution is different because the tran-
sition is in another universality class. As a result, the
LDA integrals for the central peak and the derivatives of
the momentum distribution get substantially modified.
We find that both the central peak and the derivatives of
nk are critical in 2D, because the LDA integrals of those
quantities diverge in center of the trap where the system
is critical. Hence, one cannot define a Q (T ), as done in
3D, that will exhibit a minimum at Tc.

In Fig. 10(b), we also display results obtained for
dn0/dβ (dn0/dT ) in the same system. The tempera-
ture at which the maximum (minimum) occurs for those
quantities exhibits a larger deviation from Tc, from the
homogeneous case, than Q(T ). However, with increasing
system size, we find that the maxima of dn0/dβ (minima
of dn0/dT ) slowly approach the homogeneous result. In
experiments, where the system sizes are much larger than
the ones studies here, we expect that dn0/dT and dn0/dβ
will both produce accurate results for Tc.

In Fig. 11, we present a summary of our estimates of
the critical parameters based on the local compressibility,
the derivatives of n0 with respect to β, and on Eq. (35).
The method based on Q (T ) is found to be more accu-
rate than the ones based on dn0/dβ and the local com-
pressibility. This is understandable because the former
approach uses precise information of the nature and uni-
versality class of the transition in 3D. Nevertheless, as
argued before, we anticipate that if one decreases the
strength of the confining potential and increases the num-
ber of bosons, as to reach the system sizes that are stud-
ied experimentally, dn0/dβ will provide accurate results
(at least similar to the ones obtained in 2D). This effect
is studied in Fig. 11 where we show the evolution of the
critical temperature at the tip of the lobe as a function
of system size. As the strength of the confining poten-
tial is decreased and the size of the system is increased,
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FIG. 11. (Color online) Estimates of the critical points based
on the local compressibility (black dots based on a system
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The phase diagram of the homogeneous is also drawn with
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the estimate of the critical temperature based on dn0/dβ
tends to increase and approach Tc in the homogeneous
system. The method based on the local compressibility
is found to be inadequate close to the tip of the lobe.
This is because the maximum of κdiff (r) becomes very
broad and finite size effects are stronger. In that regime,
one also needs a higher accuracy in the determination
of the density in order to accurately compute the local
compressibility. In spite of this, in 3D, the method based
on the local compressibility yields more accurate results
than in 2D (compare Figs. 9 and 11).

V. CONCLUSIONS

We have presented a detailed study of the finite tem-
perature phase diagram of strongly correlated bosons in
the hard-core limit (or the XY model) in two and three
dimensions. The critical parameters in the homogeneous
case were determined through a finite-size scaling analy-
sis of the superfluid stiffness and the condensate fraction.
We introduced an approach to estimate the critical tem-
perature from measurements of n0 in finite systems. It
makes use of the behavior of the derivative dn0/dT and
we derived finite-size scaling relations that can be used to
extrapolate the results to the thermodynamic limit. This
approach can be applied to systems that exhibit a diverg-
ing zero-momentum occupation in any dimension, irre-
spective of the universality class to which the transition
belongs. We showed that this method is also accurate
in 2D, where the system does not exhibit BEC. Further-
more, we computed the phase diagram using mean-field

theory and found it to be quantitatively quite different
from the results of numerically exact QMC simulations
in 2D and 3D. Hence, for this model, thermal and quan-
tum fluctuations are strong even in three dimensions, and
mean-field theory is a poor approximation.
In presence of an additional confining potential, we

proved that the Bose-Hubbard model does not exhibit
finite-temperature BEC in two dimensions, provided that
density remains finite across the entire system in the
thermodynamic limit. Moreover, we considered measure-
ments of the critical temperature and chemical poten-
tial of the homogeneous system based on experimentally
measurable quantities such as the momentum distribu-
tion function and the local density profile. The accuracy
of each method discussed depends on dimensionality of
the system and the range of temperatures and chemi-
cal potentials considered. In two dimensions, we found
that the approach introduced in this work, based on the
derivatives of n0 with respect to β, is accurate in nearly
all regions of the phase diagram. A method based on the
measurement of the local density was found to be reliable
when Tc is low, while close to the tip of the superfluid
lobe this approach is less effective even when the trap
is very shallow. This can be understood to be due to
the strong deviations from the LDA close to the tip of
the superfluid lobe. A quantitative account of these de-
viations based on trapped finite-size scaling as presented
in Ref. 86 and 87 would in principle allow one to per-
form an accurate size-scaling analysis in presence of the
confining potential which might potentially improve the
capabilities of the methods based on the measurements
of the density profile. The accuracy of the latter method
improves in 3D, but still remains inadequate as one ap-
proaches the tip of the superfluid lobe. In three dimen-
sions, the approach based on Q (T ) was found to be the
most accurate.
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Appendix A: Differences between dn0/dT and dn0/dβ

We briefly illustrate, by means of a simple analysis,
why the estimate of the critical temperature based on
dn0/dT differs from the estimate based on dn0/dβ. We
also discuss under which conditions the two estimates
should approach each other.
We consider n0(β) to be the zero momentum occu-

pation in the vicinity of βc. Its first derivative, which
exhibits a maximum at β∗, can be written as

dn0

dβ
= d0 + a (β − β∗)2 , (A1)
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where the curvature of the parabola is a < 0, the height of
the maximum is d0, and β is assumed to be very close to
β∗. If instead we now compute dn0/dT , we anticipate a
minimum of this function located at a temperature T ∗ 6=
1/β∗ given by

1

T ∗ =
3aβ∗ − |a|

√

β∗2 − 8d0
a

4a
. (A2)

In general, the position of the minimum as a function
of T depends on the position of the maximum β∗, its
curvature a, and its height d0. However, in the limit
of very large system sizes and very shallow traps, one
expects the maximum of the derivative dn0/dβ to be very
sharp. In our simple example, this regime corresponds to
a large value of the curvature, i.e., |d0/a| ≪ β∗2, which
implies that T ∗ ≃ 1/β∗.
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30 S. Fölling, A. Widera, T. Müller, F. Gerbier, and I. Bloch,

Phys. Rev. Lett. 97, 060403 (2006).
31 Q. Zhou, Y. Kato, N. Kawashima, and N. Trivedi, Phys.

Rev. Lett. 103, 085701 (2009).
32 T.-L. Ho, and Q. Zhou, Nat. Phys. 6, 131 (2010).
33 S. Nascimbène, N. Navon, F. Chevy, and C. Salomon, New

J. Phys. 12, 103026 (2010).
34 E. Duchon, Y. Kato , N. Trivedi, arXiv:1112.0592 (2011).
35 P. N. Ma, L. Pollet, and M. Troyer, Phys. Rev. A 82,

033627 (2010).
36 W. S. Bakr, A. Peng, M. E. Tai, R. Ma, J. Simon, J. I.

Gillen, S. Folling, L. Pollet, and M. Greiner, Science 329,
547 (2010).

37 X. Zhang, C.-L. Hung, S.-K. Tung, N. Gemelke, and C.
Chin, New J. Phys. 13, 045011 (2011).

38 S. Fang, C.-M. Chung, P. N. Ma, P. Chen, and D.-
W. Wang, Phys. Rev. A 83, 031605(R) (2011).

39 K. R. A. Hazzard, and E. J. Mueller, Phys. Rev. A 84,
013604 (2011).

40 N. Gemelke, X. Zhang, C.-L. Hung, and C. Chin, Nature
460, 995 (2009).

41 J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau,
I. Bloch, and S. Kuhr, Nature 467, 68 (2010).
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