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We investigate the zero temperature quantum phases of a Bose-Bose mixture on a triangular
lattice using Bosonic Dynamical Mean Field Theory (BDMFT). We consider the case of total filling
one where geometric frustration arises for asymmetric hopping. We map out a rich ground state
phase diagram including xy-ferromagnetic, spin-density wave, superfluid, and supersolid phases. In
particular, we identify a stripe spin-density wave phase for highly asymmetric hopping. On top of
the spin-density wave, we find that the system generically shows weak charge (particle) density wave
order.

PACS numbers: 67.85.Hj, 67.60.Bc, 75.10.Jm, 67.85.Fg

I. INTRODUCTION

Geometric frustration arises when magnetic interac-
tions between different spins on a lattice are incompati-
ble with the underlying crystal geometry. Since the first
investigation of the Ising antiferromagnet on the triangu-
lar lattice [1], geometric frustration has been a constant
source of surprises that inspired the development of new
concepts [2, 3]. This provides strong motivation to study
the physics of frustration from the different perspective
provided by systems of ultra-cold atoms.

Recent experiments have made substantial strides in
this direction with the realization of non-bipartite trian-
gular [4, 5] and kagome [6] optical lattices. In this paper
we investigate the consequence of bringing a two com-
ponent bosonic mixture into the Mott insulating regime
on the triangular lattice. Deep in the Mott state, the
magnetic exchange interactions can include as the main
source of frustration a strong Ising antiferromagnetic ex-
change.

Our goal is to study how the magnetic phases evolve
when we increase the frustrating Ising interaction or ap-
proach closer to the transition to the superfluid phase,
such that the effective spin model with second-order ex-
change interactions no longer applies.

To answer this question we apply Bosonic Dynami-
cal Mean Field Theory (BDMFT) [7–9], which is non-
perturbative in the hopping amplitudes. We find that
even in the deep Mott regime, the standard spin exchange
model is invalid for extremely asymmetric hopping. In-
stead, we numerically identify a stripe spin-density wave
(SDW) phase (see Fig. 1a.2). This can be understood
within a higher-order effective spin-model (8) derived
from fourth order perturbation theory. The effective de-
scription shows that the stripe SDW is favored by the
higher-order density fluctuations of the “lighter” atoms
which remove the Ising-type frustration. Moreover, we
also find that on top of the spin-density wave, due to
asymmetry of the hopping amplitudes, the system de-
velops a weak charge-density wave in the total particle
density (see Fig. 3).

The paper is organized as follows. In Sec. II, we intro-

duce the system and model studied here, as well as the
theoretical approach used in our investigation. In Sec.
III, the main part of this paper, we present a detailed
discussion of the ground state properties of the system.
We conclude in Sec. IV.

II. MODEL AND METHOD

We consider two species (hyperfine states or isotopes)
of ultracold bosons loaded into a triangular optical lat-
tice. For sufficiently low filling this system can be de-
scribed by a two-component Bose-Hubbard model in the
lowest band approximation:

H = −
∑

〈i,j〉

(taa
†
iaj + tbb

†
ibj + h.c.) + U

∑

i

nainbi

+
1

2

∑

i;α=a,b

Vαniα(niα − 1)−
∑

i;α=a,b

µαnαi . (1)

Here 〈i, j〉 denotes nearest-neighbor sites, ai(a
†
i ), bi(b

†
i )

are bosonic annihilation (creation) operators of the two
species on site i in the Wannier representation, and nai ≡

a†iai, nbi ≡ b†ibi. The first term in Eq. (1) describes the
kinetic energy of each species with hopping amplitudes
ta and tb; the second and the third term represent the
on-site inter-species interaction U and the intra-species
interactions Va and Vb for species a and b, respectively;
finally, µa and µb denote the chemical potentials.

Previous studies on two-component ultracold bosons
in a square or a cubic optical lattice have revealed a rich
phase diagram [10]. Within the Mott insulator, at low
temperature quantum magnetism arises, in particular z-
antiferromagnetic and xy-ferromagnetic order. For total
filling one, the emergence of magnetic order can be eas-
ily understood if we note that in the deep Mott regime
(strong coupling limit) ta,b ≪ U, Va,b, the physics of the
two-component Bose-Hubbard Hamiltonian (1) is given
by an effective spin-1/2 XXZ model [10–12]

Heff = Jz
∑

〈ij〉

Sz
i S

z
j−J⊥

∑

〈ij〉

(Sx
i S

x
j +Sy

i S
y
j )−h

∑

i

Sz
i (2)
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where Si ≡ (a†i , b
†
i )(σ/2)

(

ai
bi

)

with σx, σy , σz being the

Pauli matrices and

Jz = 2
t2b + t2a

U
−

4t2a
Va

−
4t2b
Vb

, (3)

J⊥ =
4tatb
U

, (4)

h =
2t2a
Va

−
2t2b
Vb

+ (µa − µb). (5)

In the following discussion, we assume h = 0, i.e. van-
ishing spin imbalance (in the case of asymmetric hop-
ping ta 6= tb, the chemical potentials µa and µb are
tuned to achieve this). On bipartite lattices (e.g. square,
cubic) the system supports xy-ferromagnetic order for
J⊥ > Jz > 0, which is characterized by the local correla-
tor 〈a†b〉, and z-antiferromagnetic order for Jz > J⊥ > 0,
characterized by the order parameter ∆af = |〈Sz

α〉−〈Sz
ᾱ〉|

with α (α = −ᾱ) being the sublattice index.
We expect new interesting physics to emerge in a sys-

tem with triangular instead of bipartite optical lattice.
For antiferromagnetic exchange coupling Jz, it is impos-
sible to minimize the energy of the spin configuration
on each lattice bond, i.e. geometric frustration arises
and the system may develop exotic phases at low tem-
perature. We are particularly interested in the extremely
asymmetric hopping regime for the full range of couplings
from Mott insulator to superfluid. Since higher order
density fluctuations of the “lighter” species are expected
to become even larger than the low-order density fluctua-
tion of the “heavier” ones, their interplay with Ising-type
frustration in z allows the system to form novel phases.
Also frustration is expected to grow with increasing val-
ues of the hopping amplitudes since the exchange cou-
pling arises from the itinerancy of atoms. In the follow-
ing, we shall address these two aspects by mapping out
the ground state phase diagram for total filling one per
site via BDMFT.

Before going into a detailed discussion of the system’s
properties, let us at this point briefly introduce Bosonic
Dynamical Mean Field Theory (BDMFT) [7–9], which is
an extension of Dynamical Mean Field Theory (DMFT)
[13, 14], originally developed to treat strongly correlated
fermionic systems. It is non-perturbative, captures lo-
cal quantum fluctuations exactly and becomes exact in
the infinite-dimensional limit. Note that for antiferro-
magnetic exchange Jz the ground state of the system
may break the translational symmetry of the lattice.
We investigate this system using real-space BDMFT (R-
BDMFT) [15], which is a generalization of BDMFT to
a position-dependent self-energy and captures inhomo-
geneous quantum phases. Within BDMFT/R-BDMFT,
the physics on each lattice site is determined from a local
effective action which is obtained by integrating out all
the other degrees of freedom in the lattice model, exclud-
ing the lattice site considered. The local effective action
is then represented by an Anderson impurity model [7–
9]. We use Exact Diagonalization (ED) [16, 17] of the

effective Anderson Hamiltonian with a finite number of
bath orbitals to solve the local action (nbath = 4 bath
orbitals are chosen in the current work). Details of the
R-BDMFT method have been published previously [15].

III. RESULTS

Since we are mainly interested in the effects of ge-
ometric frustration, we focus on the parameter regime
Va = Vb ≫ U , where the leading exchange couplings be-
come Ising antiferromagnetic for highly asymmetric hop-
ping, resulting in Ising-type frustration. In our simula-
tions, the chemical potentials µa and µb are tuned to
equal particle number of both species (Na ≡

∑

i〈nia〉 =
Nb ≡

∑

i〈nib〉) and a total filling factor ρ =
∑

i〈nia +
nib〉/Nlat = 1 (Nlat is the number of lattice sites.). The
full range of interactions from strong coupling, deep in
the Mott phase, all the way to the superfluid at weak
coupling is investigated within BDMFT.

Our main results are summarized in Fig. 1a, which
shows the ground state phase diagram for large intra-
species interaction strengths (Va,b/U = 48). Two dif-
ferent magnetic phases are found in the Mott insulator.
When ta and tb are of comparable magnitude, the lead-
ing exchange coupling is ferromagnetic in the xy-plane,
and the system is in the xy-ferromagnetic phase, char-
acterized by a uniform magnetization in the xy-plane.
On the other hand, for sufficiently large asymmetry be-
tween the two hopping amplitudes, we observe two types
of spin-density wave (SDW) phases (see insets (a.1) and
(a.2) in Fig. 1a), which break the translation symmetry
of the lattice. All of these spin-ordered phases are found
to persist up to the superfluid transition. For large hop-
ping the ground state breaks U(1) symmetry and devel-
ops superfluid order 〈a〉,〈b〉. Depending on the relative
magnitude of ta and tb, the system can also exhibit addi-
tional charge-density wave order in each species, leading
to a supersolid. In the following subsections we discuss
detailed properties of the different phases.

A. Spin-density wave (SDW) in the Mott-insulator
region

Let us now discuss the origin of the two different SDW
phases found in the asymmetric hopping regime.

1. “3-sublattice” SDW

In the less asymmetric hopping regime of the SDW
phase region (yellow area in the phase diagram Fig. 1a),
the SDW features a 3-sublattice structure (see Fig. 2b)
ordering at the wave vectors ±Q = (±4π/3, 0). The
emergence of this type of SDW can be understood from a
spin-wave theory of the spin-1/2 XXZ model (2), which
shows that the uniform xy-ferromagnetic phase develops
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FIG. 1: (Color online) (a) Ground state phase diagram at
unit filling ρ = 1, with Va = Vb = 48U , obtained from cal-
culations on a 6 × 6 triangular lattice. We observe four ma-
jor different phases, which are the homogeneous superfluid
(HSF), xy-ferromagnet, spin-density wave (SDW), and super-
solid (SS). In the SDW region, the area where the SDW has
a 3-sublattice structure is marked in yellow, while the area
featuring the stripe SDW is marked red. The insets (a.1)
and (a.2) show the corresponding z-magnetization distribu-
tion 〈Sz

i 〉. The small blue area indicates a coexistence region
of HSF and stripe SDW phases. (b) The triangular lattice
considered here with sublattice indices A,B,C marked near
the corresponding lattice sites. a1 and a2 are the two lat-
tice vectors. (c) tb dependence of the 3-sublattice SDW order
parameter at fixed 9ta/U = 0.6.

an instability at ±Q = (±4π/3, 0) towards 3-sublattice
ordering with increasing Jz/J⊥ [18, 19]. Here, we choose
the order parameter of the 3-sublattice SDW phase as

φ ≡ 〈Sz
A〉+ 〈Sz

B〉e
i2π/3 + 〈Sz

C〉e
i4π/3 (6)

where 〈Sz
A,B,C〉 is the z-magnetization on the sites of

the A,B, and C sublattice respectively. φ is the Fourier
transform of the z-magnetization distribution 〈Sz

i 〉 at the
wave vector Q. In Fig. 1b, at fixed ta, the tb dependence
of |φ| is shown, indicating a second order phase transition
from the 3-sublattice SDW to an xy-ferromagnet.

Let us mention that previous investigations of the spin-
1/2 XXZ model in the large Jz/J⊥ region have revealed

that the z-magnetization favors a different 3-sublattice
patten of (〈Sz

A〉 = ±2m, 〈Sz
B〉 = ∓m, 〈Sz

C〉 = ∓m) in
the thermodynamic limit [20, 21], where m is a positive
number characterizing the strength of the magnetization.
However, although the effective spin-1/2 XXZ model is
a reasonable description of the original two-component
Bose-Hubbard model (1) in the strong coupling limit,
one can not exclude the influence of higher order terms
neglected in it. As a matter of fact, even within the
spin-1/2 XXZ model itself, although (±2m,∓m,∓m) is
favored in the thermodynamic limit, a metastable pat-
tern (±m,∓m, 0) is also found in quantum Monte Carlo
simulations on finite-sized lattices [20, 21], moreover a
variational study shows that the energies corresponding
to these two patterns are very close to each other [22].
In our simulations, we find that the system is close to a
(±m,∓m, 0) configuration (see Fig. 2b), which could in-
dicate that the effective spin-1/2XXZ model plus higher
order corrections favors this pattern.

2. Stripe SDW

In the extremely asymmetric hopping region (area
marked in red in the phase diagram Fig. 1a), we observe
that another type of SDW phase arises in the system.
The z-magnetization distribution is then characterized
by a stripe pattern, shown in Fig. 2c. The transition
from the stripe SDW phase to the homogeneous super-
fluid is of first order, which leads to small coexistence
regions (blue areas in Fig. 1a).

To understand the appearance of this stripe SDW, we
notice that in this regime the hopping amplitude of one
species dominates. Without loss of generality, in the fol-
lowing discussion we assume ta ≫ tb, which indicates
that the b species can be considered as almost immo-
bile scattering centers. If we assume that the effective
spin-1/2 XXZ model (2) description still holds true in
this case (in principle the neglected higher order terms
may be relevant), the longitudinal exchange coupling Jz
is then much larger than the transverse one J⊥, hence
the spin-1/2 XXZ model approximately reduces to an
antiferromagnetic Ising model. From investigations of
the antiferromagnetic Ising model on a triangular lattice
[1], we know that the stripe pattern of the magnetization
is one of an infinite number of degenerate ground state
configurations. However, here we observe no other pat-
terns in our simulation except the stripe configuration.
This indicates that for quantitative insight one needs to
go beyond the spin-1/2 XXZ model description, which
we will do in the following.

We notice that for extremely asymmetric hopping, to-
gether with the condition that the intra-species interac-
tions are much larger than the inter-species interactions,
i.e. Va,b ≫ U , the two-component Bose-Hubbard model
(1) can be simplified to a bosonic Falicov-Kimball model
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with itinerant hard-core bosons

HBFK = −
∑

〈i,j〉

(taa
†
iaj+h.c.)+U

∑

i

nainbi−
∑

i;α=a,b

µαnαi .

(7)
At zero temperature, integrating out the itinerant
bosonic degree of freedom under the assumption ta ≪ U ,

we end up with an effective classical spin Hamiltonian
representing the density-density interactions of the im-
mobile b species, which is accurate to the order O(t5a/U

4)
[23] and reads

HBFK
eff (s;µα) = −

1

2
(µb − µa)

∑

i

si −
1

2
(µa + µb + U +

3

2

t3a
U2

)Nlat +
∑

〈i,j〉

[

t2a
4U

+
t3a
4U2

−
t4a
8U3

]

sisj

+
∑

〈〈i,j〉〉

5t4a
16U3

sisj +
∑

〈〈〈i,j〉〉〉

t4a
8U3

sisj −
∑

P

t4a
16U3

(5 + sP ) , (8)

where Nlat is the number of lattice sites, 〈〈i, j〉〉 and
〈〈〈i, j〉〉〉 denote next-nearest neighbor and next-next-
nearest neighbor sites respectively (see Fig. 2d). The

Ising pseudo spin si is defined as si ≡ (−1)n
b

i
+1. P de-

notes the plaquettes made up of two triangles sharing an
edge and sP ≡ sP1sP2sP3sP4 is the product of the spins
on all sites in the plaquette. Detailed studies of the model
(8) in Ref. [23] show that at the filling Na = Nb = N/2,
the ground state of the above classical spin Hamiltonian
HBFK

eff (s;µα) is non-degenerate and has a stripe pattern
configuration of the Ising pseudo spins similar to that
observed in our numerical BDMFT simulations. From
(8) we observe that in the leading order O(t2a/U) the
classical spin model shows an Ising-type frustration on
the triangular lattice, however the frustration is removed
by next-nearest neighbor and next-next-nearest neighbor
effective spin interactions which originate from higher-
order density fluctuations of the mobile particles (the a
species atoms in this case).

3. Weak charge-density wave (CDW) on top of SDW phase

In the the SDW region we also observe a weak
charge-density wave (CDW) of the total density ρi =
〈
∑

α=a,b nαi〉 forming on top of the SDW (see Fig. 3b).
Specifically, we found that for ta > tb, those lattice sites
with a negative z-magnetization have a larger total den-
sity ρi, while for ta < tb, those sites with a positive z-
magnetization have the larger density.

The origin of this weak CDW can be easily understood
by investigating a simplified two-site two-component
Bose-Hubbard model

HTT = −(taa
†
LaR + tbb

†
LbR + h.c.) + U

∑

i=L,R

nainbi

+
1

2

∑

i=L,R;α=a,b

Vαniα(niα − 1) . (9)

FIG. 2: (Color online) (a–c) z-magnetization distribution
〈Sz

i 〉 for different Mott-insulating phases with quantum mag-
netic order. (a) xy-ferromagnet for 9ta/U = 0.6 and 9tb/U =

0.14. (b) 3-sublattice SDW for 9ta/U = 0.7 and 9tb/U = 0.1.
(c) Stripe SDW for 9ta/U = 0.7 and 9tb/U = 0.05. In
all the three cases, we set Va,b/U = 48. (d) Schematic fig-
ure where nearest neighbor, next-nearest neighbor, and next-
next-nearest neighbor sites in a triangular lattice are indicated
by the purple solid line, red dashed line, and blue dash-dotted
line respectively.

Since the onsite interaction is much larger than the ki-
netic energy, we treat the hopping terms as perturba-
tions. Since we are investigating the CDW on top of
the SDW, we assume a simple symmetry-broken state
∣

∣

∣
Ψ

(0)
G

〉

= a†Lb
†
R |0〉 as the unperturbed ground state,

which implies that the L and R sites have equal total
density (ρL = ρR = 1) but opposite z-magnetization
(〈Sz

L〉 = −〈Sz
R〉 = 1/2). If we take into account the hop-

ping terms to first order, the ground state has the form

∣

∣

∣
Ψ

(1)
G

〉

=
Ua†Lb

†
R |0〉+ tba

†
Lb

†
L |0〉+ taa

†
Rb

†
R |0〉

√

U2 + t2a + t2b
, (10)



5

and the total density on the site L and R is

ρL ≈ 1− δ, (11)

ρR ≈ 1 + δ, (12)

where δ = (t2a − t2b)/(U
2 + t2a + t2b), indicating that the

weak CDW order on top of the SDW originates from the
asymmetry of the hopping amplitudes, i.e. the “lighter”
species can more easily delocalize to neighboring sites.
Fig. 3 shows the amplitudes of the stripe SDW and the
CDW orders as a function of ta at fixed tb. Those ampli-
tudes are defined by δρ ≡ ρ+−ρ− and Sz

stripe ≡ Sz
+−Sz

−

for CDW and SDW order respectively, where ρ+(ρ−) is
the total particle density per site on the stripe with higher
(lower) density and Sz

+(Sz
−) is the z-magnetization per

site on the stripe with positive (negative) value.
More generally we can analyze the emergence of the

CDW within a Ginzburg-Landau framework. We assume
spin density wave order at wavevectors Q and −Q, and
study its interaction with a putative CDW order param-
eter. The lattice translation and Ising spin symmetries of
the problem determine the allowed coupling terms that
affect the CDW order, given in the following expansion
of the free energy

F = αs|S
z
Q|2 + αρ1|ρQ|2 + αρ2|ρ2Q|2

+β1(S
z
QSz

Qρ−2Q + h.c.)

+β2|S
z
Q|2|ρQ|2 + β3

[

(Sz
−Q)2(ρQ)2 + h.c.

]

+γs|S
z
Q|4 + γρ1|ρQ|4 + γρ2|ρ2Q|4, (13)

where the α’s, β’s, and γ’s are GL coefficients. The cru-
cial point is that symmetry allows a linear coupling of a
charge density wave at ±2Q to the square of the SDW
order parameter (coupling β1 above). Therefore a SDW
order at ±Q will necessarily produce CDW at ∓2Q. The
opposite is not true, that is CDW order will not produce
SDW in general. This is because a quadratic-linear cou-
pling to the SDW is prohibited by the Ising spin symme-
try.

Let us first describe the implications of this fact in
the case of the 3-sublattice SDW with wavevector Q =
(±4π/3, 0). In this case the CDW induced by the cubic
coupling is of wavevector −2Q = −sgn(Qx)(4π, 0) + Q,
which in the lattice is equivalent to Q. This explains,
from a very general argument, why a CDW at Q must
be produced in this case.

Let us move on to consider the case of the stripe SDW
having a wavevector Q = ±K/2 with K being a recip-
rocal lattice vector. The coupling to ρ2Q is then equiv-
alent on the lattice to a coupling to the average density
ρQ=0 that can be absorbed into the chemical potential
term. As a consequence, the only non-trivial CDW’s are
the ones at ±Q and induced by the SDW order at ±Q

through the next order terms quadratic in the CDW.
To briefly summarize, both 3-sublattice SDW and

stripe SDW induce CDW at the same wave vector, which
is consistent with our simulations (see Fig. 3b, which
shows a stripe SDW with a large SDW order induces a

FIG. 3: (Color online) (a) In the stripe SDW phase region, we
show the CDW order (blue solid line) and SDW order (black
dashed line) as a function of ta when 9tb/U = 0.01 is kept
fixed. (b) The total density (ρi) (upper panel) and the z-
magnetization (〈Sz

i 〉) distribution (lower panel) for Va,b/U =

48, 9ta/U = 0.7, and 9tb/U = 0.01 .

CDW at the same wave vector). However, in the case of
a stripe SDW the CDW is induced by coupling to |ρQ|2

rather than by linear coupling. It therefore requires a
critical strength of the stripe SDW to change the sign of
the coefficient of |ρQ|2 and induce CDW order.

B. Superfluid and supersolid in the large-hopping
region

At sufficiently large hopping amplitudes, the ground
state of the system breaks U(1) symmetry and devel-
ops superfluid long-range order characterized by non-
zero values of 〈a〉 or 〈b〉. In the region where the hop-
ping amplitudes ta and tb are comparable to each other,
we observe a second order phase transition from xy-
ferromagnetism to the homogeneous superfluid (HSF).
On the other hand, for highly asymmetric ta and tb, in-
creasing the hopping amplitudes can first drive the sys-
tem from the SDW into a supersolid, which is charac-
terized by coexisting superfluid and CDW order. In the
supersolid phase, the lighter species develops superfluid
order, i.e. 〈α〉 6= 0, while the heavier species remains
insulating, i.e. 〈ᾱ〉 = 0, where α(ᾱ) denote the annihi-
lation operator of the lighter/heavier species and both
species have CDW order in their density distribution re-
spectively. When the hopping amplitudes are further in-
creased, a transition from the supersolid to a homoge-
neous superfluid is observed.

IV. CONCLUSION

We have investigated zero temperature quantum
phases of Bose-Bose mixtures in a triangular lattice us-
ing real-space Bosonic Dynamical Mean Field Theory.
A rich phase diagram including xy-ferromagnet, spin-
density wave, superfluid, and supersolid phases is found.
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In the strong coupling regime, although an effective spin-
1/2 XXZ model gives qualitative insight, interesting
phases beyond this effective description are found: A
stripe spin-density wave is identified for highly asymmet-
ric hopping, which originates from the interplay between
classical geometric frustration and higher order density
fluctuations of the lighter species. Moreover, on top of
the spin-density wave, due to asymmetric hopping am-
plitudes, the system shows a weak charge-density wave
in the total particle density distribution.

Acknowledgments

L. He acknowledges useful discussions with S. D. Hu-
ber, A. Sotnikov, D. Cocks and I. Titvinidze and the hos-

pitality of the Department of Condensed Matter Physics,
Weizmann Institute of Science, where parts of this work
were done. This work was supported by the Deutsche
Forschungsgemeinschaft via the DIP project HO 2407/5-
1, Sonderforschungsbereich SFB/TR 49, Forschergruppe
FOR 801, ISF grant 1594/11 (E. A.) and by the China
Scholarship Fund (Y. L.). W. H. acknowledges the hos-
pitality of KITP during the final stages of this work, sup-
ported by the National Science Foundation under Grant
No. NSF PHY05-51164.

[1] G. H. Wannier, Phys. Rev. 79, 357 (1950).
[2] R. Moessner and A. P. Ramirez, Phys. Today 59(2), 24

(2006).
[3] S. Sachdev, Nat. Phys. 4, 173 (2008).
[4] C. Becker, P. Soltan-Panahi, J. Kronjäger, S. Dörscher,

K. Bongs, K. Sengstock, New J. Phys. 12, 065025 (2010).
[5] J. Struck, C. Ölschläger, R. L. Targat, P. Soltan-Panahi,

A. Eckardt, M. Lewenstein, P. Windpassinger, K. Seng-
stock, Science 333, 996 (2011).

[6] G. B. Jo, J. Guzman, C. K. Thomas, P. Hosur, A. Vish-
wanath, D. M. Stamper-Kurn, Phys. Rev. Lett. 108,
045305 (2012).

[7] K. Byczuk and D. Vollhardt, Phys. Rev. B 77, 235106
(2008).

[8] A. Hubener, M. Snoek, and W. Hofstetter, Phys. Rev. B
80, 245109 (2009).

[9] W. J. Hu and N. H. Tong, Phys. Rev. B 80, 245110
(2009).

[10] E. Altman, W. Hofstetter, E. Demler and M. Lukin, New
J. Phys. 5, 113 (2003).

[11] A. B. Kuklov and B. V. Svistunov, Phys. Rev. Lett. 90,
100401 (2003).

[12] L. M. Duan, E. Demler, and M. D. Lukin, Phys. Rev.
Lett. 91, 090402 (2003).

[13] W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324
(1989).

[14] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg,
Rev. Mod. Phys. 68, 13 (1996).

[15] Y. Q. Li, M. R. Bakhtiari, L. He, and W. Hofstetter,
Phys. Rev. B 84, 144411 (2011).

[16] M. Caffarel and W. Krauth, Phys. Rev. Lett. 72, 1545
(1994).

[17] Q.-M. Si, M. J. Rozenberg, G. Kotliar, and A. E. Ruck-
enstein, Phys. Rev. Lett. 72, 2761 (1994).

[18] G. Murthy, D. Arovas, and A. Auerbach, Phys. Rev. B
55, 3104 (1997).

[19] R. G. Melko, A. Paramekanti, A. A. Burkov, A. Vish-
wanath, D. N. Sheng, and L. Balents, Phys. Rev. Lett.
95, 127207 (2005).

[20] S. Wessel and M. Troyer, Phys. Rev. Lett. 95, 127205
(2005).

[21] M. Boninsegni and N. Prokof’ev, Phys. Rev. Lett. 95,
237204 (2005).

[22] A. Sen, P. Dutt, K. Damle, and R. Moessner, Phys. Rev.
Lett. 100, 147204 (2008).

[23] C. Gruber, N. Macris, and A. Messager, J. Stat. Phys.
86 57 (1997).


