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We experimentally investigate the phenomenon of a quantum ratchet created by exposing a Bose-
Einstein Condensate to short pulses of a potential which is periodic in both space and time. Such a
ratchet is manifested by a directed current of particles, even though there is an absence of a net bias
force. We confirm a recent theoretical prediction [M. Sadgrove and S. Wimberger, New J. Phys.
11, 083027 (2009)] that the current direction can be controlled by experimental parameters which
leave the underlying symmetries of the system unchanged. We demonstrate that this behavior can
be understood using a single variable containing many of the experimental parameters and thus the
ratchet current is describable using a single universal scaling law.

PACS numbers: 37.10.Jk, 37.10.De, 32.80.Qk, 37.10.Vz

I. INTRODUCTION

Ever since the realization of the atom optics quan-
tum kicked rotor (AOQKR) [1], it has been one of the
workhorses for studies of experimental quantum chaos.
It has revealed a wide variety of interesting effects in-
cluding: dynamical localization [2], quantum resonances
(QR) [2–4], quantum accelerator modes [5, 6], and quan-
tum ratchets [7–15]. The latter are quantum mechani-
cal systems that display directed motion of particles in
the absence of unbalanced forces. They are of consider-
able interest because classical ratchets are the underlying
mechanism for some biological motors and nanoscale de-
vices [10]. Recent theoretical [11, 13] and experimental
[8] studies have demonstrated that a controllable directed
current arises in kicked atom systems at QR. A QR oc-
curs when the kicking period is commensurate with the
natural periods of the rotor and is characterized by a
quadratic growth of the kinetic energy with time. The
question of what happens to a ratchet away from reso-
nance was addressed in a recent theoretical paper [16]. In
that work, the authors developed a classical-like ratchet
theory and proposed the existence of a one-parameter
scaling law that could be used to predict the ratchet cur-
rent for a wide variety of parameters. It was also shown
that an inversion of the momentum current is possible
for some sets of scaling variables.

In this paper, we report the experimental observation
of such a ratchet current inversion and the verification
of the scaling law for a wide variety of experimental pa-
rameters. Our experiments were carried out by exposing
a Bose-Einsten condensate (BEC) to a series of stand-
ing wave laser pulses that provided an optical potential
periodic in space and time. Figure 1 shows raw momen-
tum distributions as a function of the pulse period’s offset
from the first QR and the kick number (Fig. 1 (a) and (b)
respectively). It can be seen that there are certain val-
ues of time offset and kick number where the distribution
is weighted more strongly towards negative momentum.
This is evidence of a current reversal. Furthermore, Fig.

1 (a) and (b) contain other similarities. For example,
there are parameter regimes where the momentum dis-

FIG. 1. Experimental momentum distributions after exposing
a BEC to short pulses of an off-resonant standing wave of
light. The momentum distributions are shown as a function
of (a) pulse period offset from resonance (µs) (10 kicks, φd =
2.6, γ = −π/2), and (b) kick number (|ε| = 0.18, φd = 1.8
and γ = −π/2.). Each momentum distribution was captured
in a separate time-of-flight experiment. Note that there are
features common to both panels, such as a weighting of the
distributions towards positive momenta at small values of the
independent variable followed by a tendency towards negative
momenta at larger values of this parameter. These features
are a manifestation of the fact that the mean momentum or
ratchet current can be described by a universal scaling law.
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tributions tend strongly towards positive momenta, fol-
lowed by the current reversal regions where the distribu-
tions tend negative. This suggests that it may be pos-
sible to use a single-parameter theory to understand the
behavior of the system. Moreover, since the time offset
from QR effectively defines a new Planck constant [5, 17],
we can easily switch from the classical to the quantum
regime by a simple change of the pulse period [18].

II. THEORY

The dynamics of the AOQKR system can be de-
scribed by a Hamiltonian which in dimensionless units is

[5, 19, 20]: Ĥ = p̂2

2 +φd cos(X̂)
∑N

t=1 δ(t
′−tτ), where p̂ is

the momentum (in units of ~G, two photon recoils) that
an atom of mass M acquires from short, periodic pulses
of a standing wave with a grating vector G = 2π/λG (λG
is the spatial period of the standing wave). Since momen-
tum in this system is only changed in quanta of ~G, we
break down p as p = n+β where n and β are integer and
fractional parts of the momentum respectively and β, the
quasi-momentum, is conserved. Other variables are the
position X̂ (in units of G−1), the continuous time vari-
able t′ (integer units), and the kick number t. The pulse
period T is scaled by T1/2 = 2πM/~G2 (the half-Talbot
time) to give the scaled pulse period τ = 2πT/T1/2. The
strength of the kicks is given by φd = Ω2∆t/8δL, where
∆t is the pulse length, Ω is the Rabi frequency, and
δL is the detuning of the kicking laser from the atomic
transition. To create a ratchet from this Hamiltonian it
was shown in [8] that a superposition of two plane waves
should be used for the initial state.

A successful approach to treating this system close to
resonant values of τ (i.e. τ = 2πl, with l > 0 integer)
is the so called ε−classical theory. Here the scaled pulse
period is written as τ = 2πl + ε, where |ε| ≪ 1, and
can be shown to play the role of Planck’s constant. In
this case the dynamics can be understood by the classical
mapping [5, 20],

Jt+1 = Jt + k̃ sin(θt+1), θt+1 = θt + Jt, (1)

where k̃ = |ε|φd is the scaled kicking strength, Jt =
εpt+lπ+τβ is the scaled momentum variable and θt = X
mod (2π) + π[1 − sign(ε)]/2 is the scaled position ex-
ploiting the spatial periodicity of the kick potential. As
mentioned above, for the ratchet we start with a super-
position of plane waves |ψ0〉 =

1√
2

[

|0~G〉+ eiγ |1~G〉
]

, or

equivalently a rotor state 1√
4π

[1 + ei(θ+γ)]. This leads

to the position space probability distribution function
P (θ) = |ψ(θ)|2 = 1

2π [1 + cos(θ + γ)]. Here γ is an addi-
tional phase used to account for the possibility that the
initial spatial atomic distribution is shifted in position
relative to the applied periodic potential. Although the

distribution P (θ) is quantum in origin, in what follows it
will be interpreted as a classical probability.
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FIG. 2. (Color online) Scaled mean momentum
〈p〉/(−φdt sin γ) as a function of the scaling variable

x =
√

(φd|ε|) t. In (a) x was varied by scanning over kick
number for different combinations of φd, |ε| and γ. In panel
(b) x was varied by scanning over |ε| with t = 8, φd = 3.0
(green squares), and with t = 10, φd = 2.6 (red circles). Also
plotted in (b) is data from a scan over φd with |ε| = 0.18,
t = 8 (blue triangles). In both panels, the solid line is the
function F (x)/x given by Eq. (3). This demonstrates that
no matter how x is obtained the scaled mean momentum is
approximately universal.

The original application of ε−classical theory to the
kicked rotor system showed the existence of a one-
parameter scaling law for the mean energy [17]. This was
experimentally verified in the vicinity of the first and sec-
ond quantum resonances (l = 1 and l = 2) in Ref. [21].
It was found that the scaled energy could be written as
E
φ2

d
t
= 1−Φ0(x)+

4
πxG(x) where x =

√

φd|ε| t is a scaling

variable and Φ0(x) and G(x) are closed form functions of
x. Recently, the existence of a one-parameter scaling law
for the ratchet current using the same scaling parameter
x was proposed [16]. One of the notable features of this
theory is that it predicts that at some values of the scal-
ing variable (i.e. certain families of real parameters) an
inversion of momentum current can occur.

In the pendulum approximation [22], the motion of
the kicked rotor in continuous time is described by the
scaled Hamiltonian H ′ ≈ (J ′)2/2 + |ε|φd cos(θ). Here
J ′ = J/(

√

φd|ε|) is a scaled momentum variable. Near
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the quantum resonance, using the position space proba-
bility distribution function P (θ), one can calculate 〈J ′ −
J ′
0〉 =

∫ π

−π
dθ0P (θ0)(J

′ −J ′
0). For |ε| . 1, Eq. (1) gives a

phase space dominated by a pendulum-like resonance is-

land of extension 4
√

k̃ ≫ |ε| [17]. Hence p = 0 and p = 1
essentially contribute in the same way giving J ′

0 = 0 so

that the map in Eq. (1) is J ′
t+1 =

√

k̃
∑t=N−1

t=0 sin(θt+1).
With the scaling variable x, the average scaled momen-
tum becomes 〈J ′ − J ′

0〉 = − sin γF (x), where

F (x) =
1

2π

∫ π

−π

sin θ0J
′(θ0, J

′
0 = 0, x)dθ0. (2)

Thus the mean momentum (units of ~G) expressed in
terms of the scaled variables is

〈p〉 =

√

φd
|ε|

〈J ′ − J ′
0〉 = −

φdt sin γ

x
F (x)

〈p〉

−φdt sin γ
=
F (x)

x
(3)

where F (x) can be computed from the above pendulum
approximation [16].

III. EXPERIMENTS AND RESULTS

We performed our experiments using a similar set up
to that described in [19]. A BEC of about 40000 87Rb
atoms was created in the 5S1/2, F = 1 level using an
all-optical trap technique. Approximately 5 ms after be-
ing released from the trap, the condensate was exposed
to a pulsed horizontal standing wave of wavelength λG.
This was formed by two laser beams of wavelength λ =
780 nm, detuned 6.8GHz to the red of the atomic transi-
tion. The direction of each beam was aligned at 53o to
the vertical to give λG = λ/(2 sin 53o). With these pa-
rameters the primary QR (half-Talbot time [3, 23, 24])
occurred at multiples of 51.5± 0.05 µs. Each laser beam
was passed through an acousto-optic modulator driven by
an arbitrary waveform generator. This enabled control
of the phase, intensity, and pulse length as well as the
relative frequency between the kicking beams. Adding
two counterpropagating waves differing in frequency by
∆f results in a standing wave that moves with a ve-
locity v = 2π∆f/G. The initial momentum or quasi-
momentum β of the BEC relative to the standing wave
is proportional to v, so that by changing ∆f the value
of β could be systematically controlled. The kicking
pulse length was fixed at 1.54 µs, so we varied the inten-
sity rather than the pulse length to change the kicking
strength φd. This was done by adjusting the amplitudes
of the RF waveforms driving the kicking pulses, ensuring
that the experiments were performed in the Raman-Nath
regime (the distance an atom travels during the pulse is
much smaller than the period of the potential).

The initial state for the experiment was prepared as
a superposition of two momentum states |p = 0~G〉 and
|p = 1~G〉 by applying a long (∆t = 38.6µs) and very
weak standing wave pulse (Bragg pulse). By using a pulse
of suitable strength, an equal superposition of the two
aforementioned atomic states was created (π/2 pulse).
The Bragg pulse was immediately followed by the kicking
pulses in which a relative phase of γ between the beams
was applied. This phase was experimentally controlled
by adjusting the phase difference between the RF wave-
forms driving the two AOMs. Finally the kicked atoms
were absorption imaged after 9 ms using a time-of-flight
measurement technique to yield momentum distributions
like those seen in Fig. 1.
We now discuss the experiments that were carried out

to observe the ratchet effect away from l = 1 resonance.
In this case β = 0.5 is needed to fulfill the resonance con-
dition [8]. The measurements involve the determination
of the mean momentum of kicked BECs for various com-
binations of the parameters t, φd, ε and γ. The measured
momentum was then scaled by −φdt sin γ and is plotted
as a function of the scaling variable x in Fig. 2. In Fig.
2(a) x was changed by varying kick number, t, while in
Fig. 2(b) different x were obtained by scanning either
|ε| (red circles and green squares) or φd (blue triangles).

The solid line in both panels is a plot of the function F (x)
x

given by Eq. (3). It can be seen that no matter how x
is varied, the experimental results are in good agreement
with the theory for many different combinations of pa-
rameters. In addition, there is a regime over x where
an inversion of the ratchet current takes place, with a
maximum inversion at x ≈ 5.6. Interestingly this rever-
sal of the ratchet takes place without altering any of the
centers of symmetry of the system. Finally, it should be
noted that the theory of Ref. [16] also predicts current
inversions at higher values of x, although these were not
seen in the experiments presumably because of dephas-
ing effects such as vibrations and spontaneous emission.
Even though the ε−classical theory assumes |ε| is small,
the experimental results show that it remains valid for
higher values of |ε| as well. In fact the window of valid
|ε| depends on the kick number [17], being rather large
for small t . 10 − 15. This is expected from a Heisen-
berg/Fourier argument [20, 21, 25].
We also investigated the sensitivity of the finite spread

in initial quasi-momentum, ∆β to the momentum trans-
fer. Figure 3 shows the plot of momentum current as
a function of kick number for different values of |ε|.
The solid blue line is the plot of 〈pt,res〉 = −φdt

2 sin γ.
The dashed lines are plots of Eq. (3) for the corre-
sponding experimental parameters. The experimental
results show that the farther one goes from resonance
the sooner the momentum current turns towards nega-
tive values (current reversal). These results are in good
agreement with the theory except very close to reso-
nance, where the red dashed curve fits poorly to the
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FIG. 3. (Color online) Momentum current as a function of
kick number for |ε| = 0.006 (red crosses), |ε| = 0.04 (blue
circles), |ε| = 0.07 (green diamonds), |ε| = 0.09 (black stars)
and |ε| = 0.19 (purple squares). The blue solid line is the

plot of 〈pt,res〉 = −φdt

2
sin γ for φd = 1.3 and γ = −π/3. The

dashed lines are the plot of Eq. (3) with corresponding |ε| and
the red solid line is the plot of Eq.(2) in Ref. [8] for β = 0.5
and ∆β = 0.02.

red crosses . For this data, we note that the suppres-
sion in momentum current is likely to be caused mainly
by the effect of the initial spread of quasi-momentum.
This phenomenon was also seen in Ref. [8] where the
ratchet current for finite ∆β was shown to be 〈pt,res〉∆β =
φd

2

∑t
s=1 sin[(πl+τβ)s−γ] exp[−2(πl∆βs)2]. This equa-

tion with ∆β = 0.02 (independently estimated from
time-of-flight measurements) is also plotted in Fig. 3 (red
solid line). It can be seen to agree well with experiment.
Thus for |ε| & 0.04 (corresponding to an offset from res-
onance of 0.3 µs), ∆β plays an unimportant role in the
dynamics of the ratchet. This is because at resonance
the total phase the momentum states acquire must be
an integer multiple of 2π. Any deviation from this con-
dition significantly suppresses the momentum current at
longer times. However the momentum state phases away
from resonance are already pseudo-random, so the phase
changes caused by ∆β have a negligible effect.

IV. CONCLUSIONS

We have performed experiments to observe an off-
resonant atomic ratchet by exposing an initial atomic
state which was a superposition of two momentum states
to a series of standing wave pulses. We measured the
mean momentum current as a function of a scaling vari-
able x, which contained important pulse parameters such
as the offset of the kicking period from resonance, the kick

number, and the kick strength. We showed that a scaled
version of the mean momentum could be described solely
by x, a result postulated by a theory based on a classical
treatment of the system [16]. The experiment verified
that for certain ranges of x the momentum current ex-
hibited an inversion. We also studied the effect of initial
quasi-momentum width on the ratchet current away from
resonance. This width has a large impact extremely close
to resonance, but plays an unimportant role as we go only
a little farther from resonance. Ultimately one can now
control the strength and direction of the ratchet without
changing the underlying relative symmetry between the
initial state and the potential. This has practical advan-
tages, since it is very easy to control the kicking strength,
period, or kick number and hence influence the scaling
parameter x. Another interesting possibility is the inves-
tigation of the performance of ε−classical ratchet theory
as |ε| becomes larger. This should allow the crossover
from classical to quantum ratchet dynamics [26] to be
better understood.
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