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Abstract

The Hohenberg-Kohn theorem is generalized to the case of a finite system of N electrons in

external electrostatic E(r) = −∇v(r) and magnetostatic B(r) = ∇ × A(r) fields in which the

interaction of the latter with both the orbital and spin angular momentum is considered. For a

nondegenerate ground state a bijective relationship is proved between the gauge invariant density

ρ(r) and physical current density j(r) and the potentials {v(r),A(r)}. The possible many-to-one

relationship between the potentials {v(r),A(r)} and the wave function is explicitly accounted for

in the proof. With the knowledge that the basic variables are {ρ(r), j(r)}, and explicitly employing

the bijectivity between {ρ(r), j(r)} and {v(r),A(r)}, the further extension to N -representable

densities and degenerate states is achieved via a Percus-Levy-Lieb constrained-search proof. A

{ρ(r), j(r)} - functional theory is developed. Finally, a Slater determinant of equidensity orbitals

which reproduces a given {ρ(r), j(r)} is constructed.
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I. INTRODUCTION

The concept of a basic variable of quantum mechanics plays the key role in a host of

theories of electronic structure developed and applied over the past half century. For the

definition of a basic variable, consider a system of N electrons in an external electrostatic

field E(r) = −∇v(r), with v(r) a scalar potential. The Hamiltonian Ĥ of this system (in

atomic units e = ~ = m = 1 employed throughout) is

Ĥ = T̂ + Û + V̂ , (1)

where the operators are the kinetic T̂ = 1
2

∑

k p̂
2
k, the momentum p̂k = −i∇rk , the electron-

interaction Û = 1
2

∑

ℓ,k 1/|rℓ − rk|, and external V̂ =
∑

k v(rk). A basic variable is defined

[1, 2] as a gauge invariant property of the system that uniquely determines the Hamiltonian

Ĥ , and thereby via the solution Ψ of the Schrödinger equation ĤΨ = EΨ, all the properties

of the system. This path from the basic variable to the wave function Ψ emanates from the

Hohenberg-Kohn (HK) theorem [3]. For the electronic system defined by the Hamiltonian

of Eq. (1), the basic variable is the nondegenerate ground state density ρ(r) which is the

expectation value of the density operator ρ̂(r) =
∑

k δ(rk − r).

The manner by which this conclusion is arrived at is via a two-step proof. In the first,

Map C, it is proved that there is a bijective or one-to-one relationship between the external

potential v(r) and the nondegenerate ground state wave function Ψ. In the second, Map D,

then employing the conclusion of Map C, it is proved that that there is a bijective relationship

between the Ψ and the ground state density ρ(r). Hence, knowledge of the density ρ(r)

uniquely determines the external potential v(r) to within a constant, and therefore the

external potential operator V̂ . Since the kinetic T̂ and electron-interaction Û operators of

the electrons are assumed known, the Hamiltonian Ĥ is uniquely determined. The proof

is for v-representable densities. It is the proof of bijectivity between ρ(r) and v(r) that

establishes the density ρ(r) as the basic variable.

A second basic variable identified in the literature [4] is the density ρe(r) of the lowest

nondegenerate excited state of a given symmetry for the system defined by the Hamiltonian

of Eq. (1). The Gunnarsson-Lundqvist theorem [4, 5] also proves, in a manner analogous

to the HK theorem, the bijectivity between ρe(r) and the external potential v(r). The

proof, once again is for v-representable densities. For such an excited but noninteracting
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v-representable density ρe(r), it has been shown [5] by example that the potential v(r) is

unique.

Knowledge of what constitutes a basic variable then lays the foundation to an approach

to electronic structure based solely on that property. Thus, for example, knowledge that

the ground state density ρ(r) is a basic variable leads to (a) HK density functional theory

[3] (DFT); (b) Local effective potential theories such as Kohn-Sham (KS)[6] and Quantal

[7, 8] density functional theories. In these latter theories, one constructs model systems of

noninteracting fermions or bosons with the same density as that of the interacting system.

This in turn has led to the development of various scaling laws and integral sum rules [9]

for the unknown energy functionals of the density of HK and KS DFT.

With the knowledge that the basic variable is the nondegenerate ground state density

ρ(r), it is then possible [10] via the constrained-search proof of Percus-Levy-Lieb (PLL)

[11] to extend the domain to N -representable densities, while also extending the arguments

to include degenerate ground states. This path from the density ρ(r) to the ground state

wave function Ψ requires a constrained-search over all antisymmetric functions Ψρ that

lead to the ground state density ρ(r). The wave function Ψ is that which minimizes the

expectation of the operators T̂ + Û . (The same remarks are valid for the density ρe(r).)

We note that the PLL proof is possible [10] only with prior knowledge of the property that

constitutes the basic variable. The basic variable in turn is determined solely by the proof

of bijectivity between it and the external potential. The path from the density ρ(r) to Ψ via

the proof of bijectivity is thus more fundamental than that of the constrained-search. The

PLL proof thus has little meaning for arbitrarily chosen properties [12], or those considered

basic variables via proofs that ignore the relationship between the external potentials and

the ground state wave function Ψ. An attribute of the constrained-search proof is that it is

explicitly independent of the external potential. However, there is an implicit dependence

on the external potential as knowledge of the density ρ(r) uniquely determines v(r) via HK.

In this manner the HK theorem of bijectivity provides a deeper perspective to the proof via

the constrained-search.

In our recent work [1, 2], we have considered the case of the presence of both an external

electrostatic field E(r) = −∇v(r) and magnetostatic field B(r) = ∇×A(r), with A(r) the

vector potential. The Hamiltonian, when the interaction of the magnetic field is only with
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the orbital angular momentum is then

Ĥ =
1

2

∑

k

[

p̂k +
1

c
A(rk)

]2

+ Û + V̂ . (2)

This Hamiltonian can be rewritten as

Ĥ = T̂ + Û + V̂A, (3)

where the total external potential operator V̂A is

V̂A = V̂ +
1

c

∫

ĵ(r) ·A(r)dr−
1

2c2

∫

ρ̂(r)A2(r)dr (4)

with ĵ(r) the physical current density operator:

ĵ(r) = ĵp(r) + ĵd(r), (5)

where the paramagnetic ĵp(r) and diamagnetic ĵd(r) component operators are defined as

ĵp(r) =
1

2

∑

k

[

p̂kδ(rk − r) + δ(rk − r)p̂k(r)

]

, (6)

ĵd(r) = ρ̂(r)A(r)/c. (7)

The solution Ψ of the corresponding Schrödinger equation ĤΨ = EΨ then leads to the

energy E which is the expectation of the Hamiltonian Ĥ :

E = T + Eee + VA, (8)

where T and Eee are the kinetic and electron-interaction energies being the expectation value

of the respective operators, and the total external potential energy VA is

VA =

∫

ρ(r)v(r)dr+
1

c

∫

j(r) ·A(r)dr−
1

2c2

∫

ρ(r)A2(r)dr, (9)

with j(r) the physical current density being the expectation of the corresponding operator.

For the system defined by the Hamiltonian of Eq. (2), we have proved [1, 2] that the

basic variables are the gauge invariant nondegenerate ground state density ρ(r) and the

physical current density j(r). We arrived at this conclusion by proving for the nondegen-

erate ground state a bijective relationship between {ρ(r), j(r)} and the external potentials

{v(r),A(r)}. Knowledge of the ground state {ρ(r), j(r)} then uniquely determines the po-

tentials {v(r),A(r)} to within a constant and the gradient of a scalar function. As the
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kinetic T̂ and electron-interaction Û operators are known, so is the Hamiltonian Ĥ . The

solution Ψ of the Schrödinger equation then leads to all the properties of the system. This

then constitutes a third example of properties that are basic variables. The proof of bijec-

tivity in this case differs fundamentally from that of the original HK theorem. Whereas, in

the HK (B(r) = 0) case, the relationship between the external potential v(r) and the wave

function Ψ is proven to be one-to-one, for the B(r) 6= 0 case the relationship between the

external potentials {v(r),A(r)} and the nondegenerate ground state wave function Ψ can

be many-to-one [13] and even infinite-to-one [14]. Hence, in this case there is no equivalent

of the Map C, and consequently the original proof of HK cannot be extended. Our proof

of bijectivity between {ρ(r), j(r)} and {v(r),A(r)} explicitly accounts for the many-to-one

relationship between {v(r),A(r)} and Ψ.

Previously Vignale et al [15] have claimed that the basic variables are the ground state

density ρ(r) and the gauge variant paramagnetic current density jp(r). It is known [13] that

{ρ(r), jp(r)} cannot uniquely determine the potentials {v(r),A(r)}. Thus, the arguments for

{ρ(r), jp(r)} being the basic variables are based on solely a Map D type proof presupposing

[1, 2, 16] the existence of a Map C. But as noted above, there is no Map C in this case.

Hence, the many-to-one relationship between {v(r),A(r)} and Ψ is not accounted for in

these arguments. As a significant consequence, knowledge of {ρ(r), jp(r)} cannot determine

uniquely {ρ(r), j(r)} since j(r) depends on A(r) and there could be an infinite number of

A(r). However, a current density functional theory based on treating {ρ(r), jp(r)} as the

variables has been developed and applied [15–17].

For completeness we note that the use of {ρ(r), j(r)} as the basic variables was due to

Ghosh and Dhara [18] and Diener [19]. The former employ these variables without proving

the bijective relationship between {ρ(r), j(r)} and {v(r),A(r)}. The latter employs a solely

Map D type argument, and hence also does not account for the many-to-one relationship

between {v(r),A(r)} and Ψ.

In the present work, we extend the HK theorem further to the case where the Hamiltonian

[20] includes the interaction of the magnetic field with both the orbital angular momentum

and electron spin. Hence, we determine the gauge invariant properties which constitute the

basic variables for a finite system of N electrons each with spin angular momentum s in

the presence of both an external electrostatic field E(r) = −∇v(r) and magnetostatic field

B(r) = ∇×A(r). In a manner analogous to, but by a proof which differs from the original
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HK theorem, we prove that the basic variables are once again the ground state density ρ(r)

and the physical current density j(r). In other words, we prove that for the nondegenerate

ground state, there is a bijective relationship between the basic variables {ρ(r), j(r)} and

the external potentials {v(r),A(r)}. Hence knowledge of {ρ(r), j(r)} uniquely determines

the Hamiltonian Ĥ, and thereby via the solution Ψ of the Schrödinger equation, all the

properties of the system. With the knowledge that {ρ(r), j(r)} are the basic variables, we

(a) construct a {ρ(r), j(r)} functional theory; (b) provide a corresponding PLL constrained-

search proof which then reduces the v-representability constraint to one ofN -representability

while generalizing the proof to degenerate states; (c) construct a Slater determinant of

equidensity orthonormal orbitals which reproduces a given {ρ(r), j(r)}.

We conclude the Introduction by summarizing the order in which the various proofs

fit together. The order [10] is the following: (a) The one-to-one relationship between the

external potentials and the basic variables must first be derived. This proof establishes what

properties constitute the basic variables. As the basic variables, which in the present case

are {ρ(r), j(r)}, uniquely determine the external potentials {v(r),A(r)}, the Hamiltonian is

known and thus so are the wave functions for both the ground and excited states; (b) With

the knowledge of what the basic variables are, a constrained-search proof extending the

domain to N -representable and degenerate ground states can then be constructed; (c) The

above, in turn establishes that there exists a ground state wave function for any {ρ(r), j(r)}

pair. The three steps also establish the existence of a practical wave function constrained-

search. We reiterate that the constrained-search [12] over arbitrarily chosen properties is

inappropriate.

II. PROOF OF BIJECTIVITY BETWEEN {ρ(r), j(r)} AND {v(r),A(r)}

When the interaction of the magnetic field B(r) with both the orbital and spin angu-

lar momentum is considered, the Hamiltonian Ĥ, due originally to Pauli and which can

be derived [20] from Schrödinger theory with the correct gyromagnetic ratio of 2 via an

appropriate choice of kinetic energy operator for spin 1
2
particles, is

Ĥ =
1

2

∑

k

[

p̂k +
1

c
A(rk)

]2

+ Û + V̂ +
1

c

∑

k

B(rk) · sk, (10)
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where sk is the electron spin angular momentum operator. For finite systems this Hamil-

tonian may be written as in Eq. (3), but in this case the physical current density operator

ĵ(r) is defined as

ĵ(r) = ĵp(r) + ĵd(r) + ĵs(r), (11)

with the magnetization ĵs(r) current density operator defined as

ĵs(r) = c∇× m̂(r), (12)

where m̂(r) = −1
c

∑

k skδ(rk − r) is the local magnetization density operator. The cor-

responding Schrödinger equation is ĤΨ = EΨ with the expression for the energy being

the same as in Eq. (8), (9). In this case the relationship between the external potentials

{v(r),A(r)} and the nondegenerate ground state wave function Ψ is also many-to-one. This

physical fact must, once again, be accounted for in any proof of bijectivity.

Our proof of the bijectivity between {ρ(r), j(r)} and {v(r),A(r)} is for the system in a

nondegenerate ground state. Let us assume there exists another set of external potentials

{v′(r),A′(r)} with Hamiltonian Ĥ ′ and ground state wave function Ψ′(X) that also generate

the ground state densities {ρ(r), j(r)} as obtained for the Hamiltonian of Eq. (10). We prove

this cannot be for the following three possible cases.

Case I

In this case the v′(r) differs from v(r) by more than a constant C: v′(r) 6= v(r)+C, andA′(r)

differs fromA(r) by more than the gradient of a scalar function χ(r): A′(r) 6= A(r)+∇χ(r).

(The proof is along the lines of our prior work [1, 2].) Assume that Ψ 6= Ψ′. Then according

to the variational principle for the energy

E = < Ψ|Ĥ|Ψ > < < Ψ′|Ĥ|Ψ′ > . (13)

Now we may write

< Ψ′|Ĥ|Ψ′ >= E ′ +

∫

ρ(r)
[

v(r)− v′(r)
]

dr+
1

c

∫

j(r) ·
[

A(r)−A′(r)
]

dr (14)

−
1

2c2

∫

ρ(r)
[

A2(r)−A′2(r)
]

dr,

where

E ′ =< Ψ′|T̂ + Û + V̂ ′ +
1

c

∫

ĵ(r) ·A′(r)dr−
1

2c2

∫

ρ̂(r)A′2(r)dr|Ψ′ > . (15)
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On assuming the inequality obtained by substituting Eq. (14) into Eq. (13) to the inequality

obtained by interchanging the primed and unprimed quantities, one obtains the contradiction

E + E ′ < E + E ′. (16)

Therefore, Ψ = Ψ′. This means that the ground state density, and the paramagnetic and

magnetization current densities obtained from Ψ and Ψ′ are the same:

ρ(r)
∣

∣

Ψ
= ρ′(r)

∣

∣

Ψ′
, jp(r)

∣

∣

Ψ
= j′p(r)

∣

∣

Ψ′
, js(r)

∣

∣

Ψ
= j′s(r)

∣

∣

Ψ′
. (17)

However, the physical current density as determined from Ψ and Ψ′ are not the same:

j(r)
∣

∣

Ψ
6= j′(r)

∣

∣

Ψ′
. (18)

The reason for this is that the physical current density operator ĵ(r) depends upon the

vector potential via its diamagnetic component ĵd(r), and A(r) and A′(r) differ by more

than a gauge transformation. This proves that the original assumption that there exists a

{v′(r),A′(r)} that also generates the ground state {ρ(r), j(r)} is incorrect. Therefore, there

exists only one set of {v(r),A(r)} that generate the ground state {ρ(r), j(r)}. We have

therefore proved the bijective relationship

{ρ(r), j(r)} ←→ {v(r),A(r)}. (19)

Case II

We next consider the case when v′(r) = v(r) but A′(r) 6= A(r) +∇χ(r). The proof of the

bijectivity of Eq. (19) in this instance is the same as that of Case I with the exception that

the second term on the right hand side of Eq. (14) is absent.

Case III

Here we consider v′(r) 6= v(r)+C but A′(r) = A(r)+∇χ(r). By absorbing the gauge func-

tion χ(r) into the phase of the wave function Ψ′(X) we have that A′(r) = A(r). Therefore,

the expression for the physical kinetic energy operator T̂A = 1
2

∑

k

(

p̂k +
A(rk)

c

)2
is the same

in the Hamiltonian Ĥ and Ĥ ′. The two Hamiltonians differ only in their external potential

operators V̂ and V̂ ′. This is akin to the original HK [3] situation (B(r) = 0) where the

kinetic T̂ and electron-interaction Û operators are assumed known and it is proved that

ρ(r) 6= ρ′(r) (Map D) so that ρ(r) uniquely determines v(r) to within a constant C. In the

present case with T̂A and Û known, the original HK proof can be employed to show that
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ρ(r) 6= ρ′(r). This is in contradiction to the original assumption that there exists a second

set of external potentials that generate the same density ρ(r). Thus, the bijectivity of Eq.

(19) is once again proved.

Knowledge of the ground state {ρ(r), j(r)} then uniquely determines the Hamiltonian Ĥ

with the scalar potential determined to within a constant and the vector potential to within

the gradient of a scalar function. The solution Ψ of the Schrödinger equation then deter-

mines all the properties of the system. Therefore, the basic variables in the presence of a

magnetostatic field when its interaction with both the orbital and spin angular momentum

are considered are {ρ(r), j(r)}. Thus, the wave function Ψ(X) is a functional of the gauge

invariant properties {ρ(r), j(r)}. By performing a density and physical current density pre-

serving unitary or gauge transformation, it is seen that the wave function must also be a

functional of a gauge function α(R). It is the presence of the gauge function α(R) that

ensures the wave function when written as a functional Ψ[ρ(r), j(r), α(R)] is gauge variant.

As the physical system remains unchanged in a unitary transformation, the choice of gauge

function is arbitrary, and one may choose α(R) = 0.

For completeness, we note that in the literature [21–23] it is thought that the basic vari-

ables for the Hamiltonian of Eq. (10) are the ground state density ρ(r), the magnetization

density m(r), and the gauge variant paramagnetic current density jp(r). Once again, there

is no proof of any bijective relationship between these properties and the external poten-

tials {v(r),A(r)}. In spin density functional theory [13] (SDFT), the Hamiltonian of the

corresponding interacting system does not include the interaction of the magnetic field with

the orbital angular momentum. It includes only the interaction of the magnetic field with

the electron spin. In SDFT the basic variables are thought to be the ground state den-

sity ρ(r) and the magnetization density m(r). However, no proof exists of the bijectivity

between these properties and the external potentials {v(r),A(r)} because the relationship

between the potentials {v(r),A(r)} and Ψ is many-to-one. Hence, there exists a solely Map

D type proof [13], as well as a constrained-search proof [24, 25] following the assumption

that {ρ(r),m(r)} are the basic variables. Again, based on the assumption that the basic

variables are {ρ(r),m(r)}, there also exists a ‘potential functional’ theory [26] as well as a

Legendre transform approach [27] to SDFT. We address SDFT in a future publication.
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III. DENSITY AND PHYSICAL CURRENT DENSITY FUNCTIONAL THEORY

We next construct a {ρ(r), j(r)} functional theory. The ground state energy written as a

functional is

E[N, v,A] = E[ρ, j] =< Ψ[ρ, j]|Ĥ|Ψ[ρ, j] > (20)

= F [ρ, j] +

∫

ρ(r)v(r)dr+
1

c

∫

j(r) ·A(r)dr−
1

2c2

∫

ρ(r)A2(r)dr,

where the universal internal energy functional F [ρ, j] =< Ψ[ρ, j]|T̂ + Û |Ψ[ρ, j] >. From the

variational principle for the energy

E[ρ′, j′] > E[ρ, j] for {ρ′, j′} 6= {ρ, j} (21)

E[ρ′, j′] = E[ρ, j] for {ρ′, j′} = {ρ, j} (22)

The Euler equation for ρ(r) and j(r) are

δE[ρ, j]

δρ(r)

∣

∣

∣

∣

j(r)

= 0,
δE[ρ, j]

δj(r)

∣

∣

∣

∣

ρ(r)

= 0, (23)

and these must be solved self-consistently with the constraints

∫

ρ(r)dr = N, ∇ · j(r) = 0. (24)

The variations of {ρ(r), j(r)} are {v,A}-representable.

Note that the equations for this {ρ(r), j(r)} functional theory reduce to those where the

interaction of the magnetic field with the electron spin is ignored [1, 2]. The latter set of

equations in turn reduce to HK DFT in the absence of a magnetic field.

IV. PERCUS-LEVY-LIEB CONSTRAINED-SEARCH PROOF

Having established that the basic variables are {ρ(r), j(r)}, it is then [10] possible to

construct the Percus-Levy-Lieb [11] (PLL) constrained-search path from knowledge of the

ground state {ρ(r), j(r)} to the ground state wave function Ψ and thereby to the Hamiltonian

Ĥ . Suppose there exist antisymmetric functions Ψρ,j that all lead to the ground state

{ρ(r), j(r)}. Then, from the variational principle

< Ψρ,j|Ĥ|Ψρ,j > ≥ < Ψ|Ĥ|Ψ >= E. (25)
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On employing the expression of Eq. (8) for the energy, Eq. (25) for the known {ρ(r), j(r)}

and therefore (via the bijectivity) fixed {v(r),A(r)}, reduces to

< Ψρ,j|T̂ + Û |Ψρ,j > ≥ < Ψ|T̂ + Û |Ψ > . (26)

Thus, for fixed {v(r),A(r)}, of all antisymmetric functions Ψρ,j that give rise to {ρ(r), j(r)},

the true wave function Ψ is that which minimizes the expectation value of the operators

T̂ + Û . (The Ψρ,j give rise to rigorous upper bounds to the ground state energy.) Since Ψ

cannot be an eigenfunction of more than one Ĥ with a multiplicative scalar potential and

vector potential, it follows that {ρ(r), j(r)} once again determine Ĥ to within an additive

constant and the gradient of a scalar function. The PLL path from {ρ(r), j(r)} to the

Hamiltonian Ĥ is then

{ρ(r), j(r)} −→ Ψ −→ Ĥ. (27)

Suppose next that there exist different Ψ that satisfy the constrained-search minimization

of Eq. (26). Then each of these minimizing functions must give the same expectation value of

Ĥ or equivalently the same ground state energy. Thus, each Ψ is a degenerate wave function

of Ĥ, and each corresponding {ρ(r), j(r)} will determine Ĥ uniquely. The constrained-search

proof is thus extendable to degenerate states.

The right hand side of Eq. (26) is the universal functional F [ρ, j] which was originally

defined for {v,A}-representable {ρ(r), j(r)}. The constrained-search path shows that the

functional F [ρ, j] is in fact defined for N -representable {ρ(r), j(r)}. The functional is also

valid for degenerate states. Hence, the functional F [ρ, j] may be defined as

F [ρ, j] = min
Ψρ,j → ρ,j

< Ψρ,j|T̂ + Û |Ψρ,j > . (28)

Searching over all N -representable Ψρ,j that lead to the ground state {ρ(r), j(r)}, the func-

tional F [ρ, j] delivers the minimum of the expectation value < T̂ + Û >.

Employing the definition of the functional F [ρ, j] of Eq. (28), it follows that the energy

functional E[ρ, j] of Eq. (20) assumes its minimum for the ground state {ρ(r), j(r)}. From

the variational principle, the ground state energy

E = min
Ψ

< Ψ|Ĥ|Ψ >, (29)

where the search is over all N -particle antisymmetric functions. This search can be con-
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strained and broken into two consecutive minima:

E = min
ρ,j
{ min

Ψρ,j → ρ,j
< Ψρ,j|Ĥ|Ψρ,j >} (30)

= min
ρ,j
{ min

Ψρ,j → ρ,j
< Ψρ,j|T̂ + Û +

∫

ρ(r)v(r)dr

+
1

c

∫

ĵ(r) ·A(r)dr−
1

2c2

∫

ρ̂(r)A2(r)dr|Ψ >} (31)

= min
ρ,j

{F [ρ, j] +

∫

ρ(r)v(r)dr+
1

c

∫

j(r) ·A(r)dr

−
1

2c2

∫

ρ(r)A2(r)dr } (32)

= min
ρ,j

E[ρ, j]. (33)

The inner minimization is constrained to all antisymmetric Ψρ,j that lead to well-behaved

{ρ(r), j(r)}, whereas the outer minimization is a search over all {ρ(r), j(r)}. In these

searches, the {v(r),A(r)} remain fixed. This proves that the ground state energy may

be obtained from the functional E[ρ, j] by searching over all N -representable {ρ(r), j(r)}.

V. CONSTRUCTIONOF SLATERDETERMINANT TO REPRODUCE A GIVEN

{ρ(r), j(r)}

In this section we construct equidensity orthonormal orbitals φk(r) whose Slater deter-

minant reproduces a given ground state {ρ(r), j(r)}, and where the current density j(r) is

the sum of its paramagnetic jp(r), diamagnetic jd(r), and magnetization js(r) components.

This is in the spirit of the Harriman [28] construction. As knowledge of {ρ(r), j(r)} uniquely

determines {v,A}, the diamagnetic jd(r) current density component is known. The mag-

netization current density js(r) arises from the (1/c)
∑

k B(rk) · sk term of the Hamiltonian

Eq. (1). Since, A(r) is known, so is the field B(r) and therefore js(r) is known. Another

way to arrive at this conclusion is the following. If the orbitals φk(r) are constructed such

that they reproduce the paramagnetic jp(r) component, then knowledge of j(r), jp(r) and

jd(r) uniquely determines js(r).

Following Ghosh and Dhara [29] the orthonormal orbitals φk(r) that reproduce the density

ρ(r) and the paramagnetic current density jp(r) are

φk(r) =
√

ρ1(r) e
iQ(r) (34)

12



where the density normalized to unity is

ρ1(r) = ρ(r)/N, (35)

and where

Q(r) = 2π

(

k −
M

N

)

q(r) + s(r) (36)

q(r) =

∫ r

ρ1(r
′)dr′ (37)

s(r) =

∫ r jp(r
′)

ρ(r′)
dr′ (38)

with
∑

k

k = M (39)

Then
∑

k

jp,k(r) = jp(r), (40)

where jp,k(r) =< φk |̂jp(r)|φk >. The orthonormality condition is

∫

φ⋆
k(r)φk(r)dr = δkk′ (41)

for k−k′ differing by integers so that the allowed values of k = 0,±1,±2, etc. or k = ±1
2
,±3

2
,

etc. For a discussion of the optimum value of k for a given N that minimizes the kinetic

energy, see [30].

Again, with the knowledge that the basic variables are {ρ(r), j(r)}, wave functions that

reproduce these properties may also be determined via the extended constrained-search

method [12], or its equivalent formulation [12] in terms of Lieb’s Legendre transformation

functional.

VI. CONCLUDING REMARKS

The significance of the Hohenberg-Kohn theorem lies in the proof of bijectivity between

the nondegenerate ground state density ρ(r), the basic variable, and the external scalar

potential v(r). In the present work, we have generalized the HK theorem for finite systems

to include electron spin and the interaction of an external magnetostatic field with both

the orbital and spin angular momentum. We have proved a bijective relationship between

13



the nondegenerate ground state densities {ρ(r), j(r)} and the potentials {v,A}. Thus, the

basic variables for a quantum mechanical system described by the Hamiltonian of Eq. (10)

are {ρ(r), j(r)}. Here the physical current density j(r) is the sum of its paramagnetic jp(r)

, diamagnetic jd(r), and magnetization js(r) current density components. Our proof ex-

plicitly accounts for the possible many-to-one relationship between the potentials {v,A}

and the ground state wave function Ψ. As a consequence of the knowledge that the basic

variables are {ρ(r), j(r)}, and explicitly employing the bijectivity between the {ρ(r), j(r)}

and {v(r),A(r)}, the generalization to degenerate states and N-representable densities fol-

lows via a Percus-Levy-Lieb constrained-search proof. A {ρ(r), j(r)} – functional theory

is developed. Finally, a Slater determinant of equidensity orbitals that reproduce a given

{ρ(r), j(r)} is constructed.

Knowledge of what properties constitute the basic variables together with the assumption

of noninteracting v-representability then allows for the construction of model systems of

noninteracting fermions or bosons that reproduce these basic variables. Such a unique

mapping from the interacting to a model noninteracting particle system is possible only for

the correct basic variables. In prior work [31], in which the interaction of the magnetic field

with only the orbital angular momentum was considered [1, 2] and for which case the basic

variables are also {ρ(r), j(r)}, we have demonstrated such a mapping via quantal density

functional theory (QDFT). There we mapped a ground state of the Hooke’s atom in a

magnetic field [14] to one of noninteracting fermions also in their ground state reproducing

the same {ρ(r), j(r)}.

Having proved that the basic variables are {ρ(r), j(r)}, we are in the process of deriv-

ing the corresponding equations of QDFT when the interaction of the magnetic field with

both the orbital and spin angular momentum as described by the Hamiltonian of Eq. (10)

is considered. Additionally, we are also investigating the construction and application of

approximate energy functionals of the variables {ρ(r), j(r)} to be employed in a KS version

of the model system of noninteracting fermions. We note that such functionals do exist in

the literature [18].
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