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In principle a quantum system could be used to simulate another quantum system. The purpose of
such a simulation would be to obtain information about problems which are difficult to simulate on
a classical computer due to the exponential increase of the Hilbert space with the size of the system
and which cannot be readily measured or controlled in an experiment. The system will interact
with the surrounding environment, with the other particles in the system and be implemented using
imperfect controls making it subject to noise. It has been suggested that noise does not need to be
controlled to the same extent as it must be for general quantum computing. However the effects of
noise in quantum simulations are not well understood and how best to treat them in most cases is not
known. In this paper we study an existing quantum algorithm for simulating the one-dimensional
Fano-Anderson model using a liquid-state NMR device. We examine models of noise in the evolution
using different initial states in the original model. We also add interacting spins to simulate realistic
situation where an environment of spins is present. We find that states which are entangled with
their environment, and sometimes correlated but not necessarily entangled have an evolution which
is described by maps which are not completely positive. We discuss the conditions for this to occur
and also the implications.

PACS numbers: 03.65.Yz,03.67.Ac

I. INTRODUCTION

Simulating quantum systems with quantum systems
is one of the primary reasons there is a great deal of
interest in building a quantum computing device. The
difficulty of simulating quantum systems on a classical
computer, mainly due to the exponential increase of the
Hilbert space with system size, was Richard P. Feynman’s
motivation for proposing the idea that a quantum system
might perform this task much more efficiently [1]. Lloyd
showed later that some quantum systems could be ma-
nipulated to represent the evolution of other quantum
systems using only local interactions [2].

There are many problems of interest in quantum me-
chanics which have no known analytical solution. Thus
for a wide range of physical systems simulation is a valu-
able tool for solving quantum mechanical problems. Clas-
sical simulation of such systems can quickly become in-
tractable as the number of particles increases. The re-
sources that are required to perform such a task increase
exponentially with the size of the system. For example,
in order to represent the state of N 2-state particles a 2N

vector is required and for its evolution the unitary will
be a 2N × 2N matrix [2, 3]. However, only N particles
would be necessary to simulate such a system [2, 4]. In
this sense, a quantum simulator is conjectured to provide
exponential speedup over classical simulation [5]. But
that is not the only advantage; other problems such as
the sign problem from Quantum Monte Carlo algorithms
for fermionic systems, or the exchange-correlation func-
tionals in Density Functional Theory [6, 7] will not be
present in a quantum simulation. Therefore, many diffi-
cult problems in particle physics, condensed matter sys-

tems, quantum field theory and chemistry, among others,
could be tackled [5, 6, 8–21].

Quantum simulations have received a great deal of re-
cent attention since they are feasible without the need for
a universal quantum computing device. The question of
the universality of Hamiltonians has been addressed to a
great extent [22–31] and algorithms have been developed
to simulate specific systems [4, 6, 12, 19, 32–43]. In addi-
tion, experiments have been designed and implemented
[16, 44–50]. However, a great deal of work remains to be
done. Currently available quantum simulating devices
have relatively few controllable particles. They are, af-
ter all, quantum systems that inevitably interact with
the surrounding environment and therefore are subject
to noise. Just as with quantum computing, this is an im-
portant issue when it comes to scalability. It is therefore
necessary to study how the interactions affect a quantum
simulation.

The purpose of the present work is to study effects
of noise in an existing algorithm proposed for a quan-
tum simulation and to take away from this example as
much general understanding as we can. The primary
noise considered is prior unknown correlations or entan-
glement within the system and between the simulated
system and the environment. We study the evolution of
different initial states, including ideal ones and states in
which errors are present due to mistakes in preparation
and/or interactions with particles in the system and find
the dynamical maps that represent the evolution. The al-
gorithm we explore was proposed and developed by Ortiz
et al. [6] to simulate the one-dimensional Fano-Anderson
model. To examine various behaviors of the system with
initial correlations, we first provide a background for the
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quantum simulation in Section I A which focuses on the
different sources of noise that can affect the experiments.
Section I B provides a brief review of open system quan-
tum dynamics, and discusses dynamical maps and their
main characteristics, including requirements for positiv-
ity and complete positivity; the purpose is to use dy-
namical maps to describe general errors in simulations.
Section II contains a brief explanation of the algorithm
used, including the modifications we made to represent
noise in the system. Finally, our results, given in Section
IV, are divided in two parts: those states for which the
Bloch vector only has a component along the z direc-
tion, and those which have some small component along
x and a main one along z. We will also discuss why this is
important. These two last subsections are subsequently
divided into simulations performed with no external noise
and simulations with noise. For the purpose of compar-
ison, the parameters of the system were obtained from
Ref. [6] and were used for all the considered scenarios.

A. Quantum simulations

There are two main classifications of quantum simu-
lators. The Universal Quantum Simulator (UQS) [51]
(also referred to as Digital [52]) is a quantum computer,
and its represented by the standard circuit model given
the set of universal gates that act on a collection of two-
state systems [23, 53, 54]. The term universal implies
that the quantum computer would be able to simulate
any arbitrary quantum system [55, 56] which implies
universal quantum computation is possible. A univer-
sal quantum computer would be Lloyd’s idea of a uni-
versal quantum simulator [56]. However, this device has
not been built yet. So researchers have designed and
implemented devices consisting of smaller, but less con-
trollable, quantum systems specifically intended to rep-
resent other quantum systems. These constitute the
second type of quantum simulators, called Specialized
Quantum Simulators (SQS) [51, 57] or analogue quan-
tum simulators [52, 58]. The latter are not intended
for quantum computation nor as a universal simulator.
Rather, they are able to simulate a smaller, but inter-
esting class of physical models. Quantum evolution in
these systems is not necessarily carried out through a
Trotter decomposition nor quantum gates, instead they
operate continuously in time subject to external con-
trols [56]. Many interesting advances and simple sim-
ulations have already been performed using these spe-
cialized systems [16, 18, 39, 44, 45, 47–49, 59–62] using
systems such as ultra cold atoms, ion traps, quantum
dots, atoms in optical lattices, coupled cavities, photons,
electrons floating on He films, NMR devices among oth-
ers [4, 16, 18, 19, 33, 45, 46, 50, 52, 60, 63]. Although
the above mentioned are the two predominant classifica-
tions, there exists the possibility of a non-universal dig-
ital quantum simulator and a universal analog quantum
simulator. The non universal digital simulator, or spe-

cial purpose quantum computer, would carry the Hamil-
tonian evolution through a Trotter decomposition, but
does not require a universal set of gates and therefore er-
ror correction and fault tolerant operation are not guar-
anteed [56]. On the other hand, the universal analog sim-
ulator would not be subject to Trotterization, it would
be a system capable of simulating any other quantum
system. A universal set of controls are not yet available
for this kind of simulator [56].

Quantum simulators are open systems that are subject
to unwanted interactions with an environment that can
have a detrimental effect on the outcome. One may sup-
pose that error correction and/or prevention can be used
for accurate implementation, but the traditional meth-
ods will often not apply to SQSs [56]. Inaccurate unitary
transformations are also potential sources of noise since
they can affect the outcome of the experiment [6]. Hav-
ing precise control over the system is the main problem of
interest when performing a quantum simulation [3, 64],
it is undesirable.

All steps, preparation, evolution and measurement,
can cause some degree of error [6, 17] as well as un-
wanted interactions with other particles in the simulator,
etc. It was initially suggested that decoherence in quan-
tum simulations may not need to be treated in the same
strict sense as in quantum computation [2] since noise in
the simulating device might be able to be identified with
noise in the simulated system. The nature of the in-
teractions of the simulator with the bath may not be the
same as those of the system of interest and thus error pre-
vention techniques of some sort will almost certainly be
required. These include error-correcting codes (QECC)
[65–70], decoherence free subspaces/noiseless subsystems
(DNS) [71–76] (see also [77, 78] for reviews), and/or dy-
namical decoupling (DD) [63, 79–89]. However, even if
error correction is available, it means an increase in re-
source requirements, and can represent a problem with
scalability [3, 4, 58, 90, 91] and efficiency. There exist
algorithms and observables which have an inherent ro-
bustness to errors [92], but this is not the case for all
systems and all errors.

One may also attempt to model the interactions of
a quantum system with a specific reservoir. Refs.
[34, 40, 93] propose the simulation of systems that in-
teract with an engineered bath using other components
in the quantum simulator (ancilla qbits in [40, 93] and LC
resonators in [34]). In references [34, 40] the experiments
are proposed in order to simulate both, Markovian and
non-Markovian dynamics. Furthermore, an experimen-
tal setup to study open system dynamics is proposed in
[18]. It includes qbits that are prepared to represent the
system and other qbits to represent the environment. In
this way noisy preparation of states and operations can
be implemented. These kinds of setups can be included in
the classification open system quantum simulators, also
provided in [56]. The form in which the evolution of the
system is carried out would determine whether the simu-
lator is digital or analog. The final state of the system in
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these types of devices can be determined by tracing out
environmental degrees of freedom, obtaining the evolu-
tion under noisy gates or controls. In the Markovian
regime this would correspond to non-unitary Linblad op-
erators [56]. It is noteworthy that the bath is also part of
the simulator in the above-mentioned references. How-
ever, it is still likely that the simulation is not precisely
the desired one due to imperfect controls and/or noise
which is not otherwise taken into account. For example
the modeling of the environment could be imperfect.

Dür et al. propose an algorithm to generate many body
interactions from two-body interaction Hamiltonians [94]
and study the influence of noise due to timing errors and
two-body interactions in the Markovian regime and sug-
gest methods to reduce its influence. Ajoy et al. study
the effects of imperfect couplings on the simulation of a
state transfer through a spin chain and find that the fi-
nal state presents phase errors when the above mentioned
parameters deviate from their ideal values [42].

Our work examines unwanted interactions within the
system. We use an existing algorithm developed by Ortiz
et al. in [6] was originally proposed without considering
possible errors in the implementation. We focus on im-
proper preparation of the initial state and couplings to
other particles within the system. There is no question
that the initial state is important because the outcome of
the simulation depends on it. Another factor to consider
is when errors are caused by initial entanglement; dynam-
ical decoupling cannot remove those errors since these
controls rely on local unitary transformations to elimi-
nate Hamiltonian interactions with a bath. Local uni-
tary controls cannot change the entanglement between
the system and the bath.

Experimentally, it has been observed that two different
state preparation methods may not yield the same result
and can have a profound effect on the outcome [95]. We
observe the characteristics of the dynamical map, (which
will be described more in detail in the next section) that
describe the evolution of different initial states and de-
termine their positivity or complete positivity. Until re-
cently, discussions of the evolution of an open quantum
system were limited to completely positive maps. How-
ever, work by Pechukas [96] and more recently by Shaji
and Sudarshan [97] have provided demonstrations that
a map does not need be completely positive for the end
result to represent a physical state. It fact, the map does
not even need to be positive; it must only be positive on
a given domain in order to possibly represent a physi-
cal mapping. In certain circumstances dynamical maps
can provide information about correlations in the initial
state of the system, which could provide useful informa-
tion about the effects of noise and interactions in quan-
tum simulations. Furthermore, there are many sets of
operators in the operator-sum decomposition which give
rise to the same map. This is true of completely positive
maps [98, 99] as well as maps which are not completely
positive [100].

B. Noise in Quantum Systems, Completely and
Non Completely Positive Maps

The density matrix, or density operator, represents our
knowledge of the quantum state of a system. In general
any density operator must satisfy the following conditions
in order to represent a physical state [101]:

ρ = ρ†, it is Hermitian, (1)

ρ ≥ 0, it is positive semi-definite,

i.e. its eigenvalues are non-negative, (2)

Tr(ρ) = 1, it has trace 1,

i.e. the sum of the probabilities is 1. (3)

The evolution of a closed system is described by a unitary
transformation, as

ψ(t) = U(t)ψ(0),

where U(t) = exp (−iHt). It follows that

ρ(t) = U(t)ρ(0)U(t)†.

The density operator is often written as an expansion
of pure states

ρ =
∑
j

pj |j〉 〈j| ,

where the pj are the probabilities associated to each of
the states |j〉. If one of the probabilities is equal to 1
and the rest are 0, then the state is pure. For two-state
systems we can write the density operator in terms of the
2× 2 unit matrix and the Pauli operators,

ρ =
1

2
(1l + ~a · ~σ) ,

where the coefficients ai are the projections along the x,
y and z directions of the so-called Bloch vector. This
provides a representation of the quantum state, which
is a geometric representation of the states of a qbits in
terms of a sphere with radius 1. (For higher dimensional
systems, this is referred to as the polarization vector, co-
herence vector, or generalized block vector. See [102–108]
and references therein.). The magnitude of the Bloch vec-

tor is constrained by the condition
√
a2
x + a2

y + a2
z ≤ 1,

and | ~a |= 1 represents a pure state. Thus any state on
the surface of the Bloch sphere is a pure state. A mixed
state is represented by a vector with | ~a |< 1. With this
notation it is possible to have a visual representation of
the quantum states at different times.

A system S that is coupled to an environment E with
Hilbert spaces HS and HE , respectively, can be consid-
ered a larger isolated system whose initial state is de-
scribed by ρSE(0). The time evolution of this system
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is then given by the joint evolution of the system and
environment

ρSE(t) = U(t)ρSE(0)U(t)†.

We are often only interested in the evolution of the sys-
tem, S. Tracing out the environmental degrees of free-
dom provides us with the reduced dynamics of the system

ρS(t) = TrE [ρSE(t)] = TrE

[
USE(t)ρSE(0)U†SE

]
.

With the reduced dynamics of S, we can find the map
that transforms the initial state ρ(0), into the final state
ρ(t). To obtain the ”dynamical map” it is convenient to
write the N ×N density operator ρ as a N2 × 1 column
vector that is transformed into another N2 × 1 column
vector through the N2 ×N2 supermatrix A

ρ′
r′s′

(t) = Ar′s′ ,rsρrs(0), (4)

where A describes the most general evolution of ρ [109].
In matrix notation

ρ
′

= Aρ. (5)

Because ρ must be mapped to another positive ρ
′

the
following conditions are imposed on A [101]:

Ar′s′ ,rs = (As′r′ ,sr)
∗, A preserves Hermiticity, (6)

∑
rsr′s′

x∗rxsArs,r′s′ y
∗
r′
ys′ ≥ 0, A preserves positivity, (7)

∑
r

Arr,r′s′ = δr′s′ , A is trace preserving. (8)

These conditions ensure the conditions Eqs. (1)-(3) on
the density operator are satisfied for the final state if they
are satisfied for the initial state. The second condition
implies that the eigenvalues of the final density operator
are all non-negative. This condition is called the positiv-
ity condition and if the map satisfies this condition it is
said to be positive.

By interchanging indices of A, we obtain another N2×
N2 supermatrix B [101]

Brr′ ,ss′ ≡ Ars,r′s′ . (9)

The 1×N2 rows of A become the N ×N block matrices
of B. The following conditions are imposed on B so that
it represents a physical map:

Brr′ ,ss′ = (Br′r,s′s)
∗, B is Hermitian, (10)

∑
rsr′s′

x∗ryr′Brr′ ,ss′xsy
∗
s′
≥ 0, B is positive semi-definite,

(11)

∑
r

Brr′ ,rs′ = δr′s′ , B is trace preserving. (12)

From these we may write

ρ(t) = B [ρ(0)] . (13)

If B is decomposed into its eigenvectors and eigenvalues,
the action of the map can be represented as follows

B [ρ(0)] =
∑
α

λαζαρ(0)ζ†α,

where λα ∈ R are the eigenvalues. The Hermiticity of ρ′

is guaranteed by the restriction given in Eq. (10) [109],
so that B must be Hermitian. The matrix A is required
to transform ρ(0) into another Hermitian state ρ(t), but
A is not necessarily Hermitian itself. final state will be
positive. When all of the eigenvalues of B are positive,,
the map is said to be a completely positive map. (See
Ref. [110] and references therein.) If B has a negative
eigenvalue but still transforms any positive ρ(0) into a
positive ρ(t), then B is a positive but not a completely
positive map.

Non-completely positive (NCP) maps have been mea-
sured using quantum process tomography (QPT) [111,
112] which has caused the specifics of QPT to be ques-
tioned [113]. But the possibility that a map which is not
a completely positive map can transform a valid quantum
state into another valid state has brought a great deal of
interest in studying the conditions for complete positiv-
ity. This is in addition to the interest in NCP maps due
to the partial transpose as an indicator of entanglement
[114, 115].

In 1994, Pechukas showed that complete positivity con-
strains a system to product states of the form ρSE =
ρS ⊗ ρE , where ρE is a fixed state of the bath [96, 116]
which excludes correlations and excludes many physi-
cal situations. Alicki in Ref. [117] argued that there is
no general definition for the reduced quantum dynamics
beyond the weak coupling regime, therefore, when the
system is in an initially correlated state with the envi-
ronment, linear assignment maps have no unique defi-
nition [113], and linearity would only be preserved for
states that are invariant under the transformation [117].
Pechukas replied in Ref. [116], and agreed that open
system reduced dynamics can be non-linear. However,
Rodriguez-Rosario et al. examine the assignment maps
and argue against giving up linearity by noting that the
assignment maps can be linear if the conditions of con-
sistency or positivity are relaxed, and favor relaxing the
positivity condition [113]. A quantum system that inter-
acts with the environment before our prescribed t = 0
can be described by completely positive dynamics if the
environment does not re-act on the system [109], i.e. the
coupling is weak and/or the initial state is in a particular
form [96].

As mentioned above, when the map is completely pos-
itive the eigenvalues of B in Eq. (13) can be taken to all
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be positive. When they are, Eq. (13) can be rewritten as

ρ(t) = B [ρ(0)] =
∑
α

λαζαρ(0)ζ†α =
∑
α

Cαρ(0)C†α, (14)

where Cα =
√
λαζα. Eq. (14) is sometimes known as

the Kraus representation or operator-sum decomposition
[118], although it was originally discussed in this con-
text by Sudarshan, Mathews, and Rau [101]. Jordan, et
al. demonstrated that entanglement in the initial state of
the system can lead to non-completely positive maps that
still transform a positive ρ into another positive ρ

′
[119].

Rodriguez-Rosario, et al. found that for purely classical
correlations, the “quantum discord” (defined below) van-
ishes, and this is a sufficient condition for completely pos-
itive reduced dynamics [120]. Later, Shabani and Lidar
demonstrated that the quantum discord was also a nec-
essary condition for complete positivity [121]. Quantum
discord was introduced by Ollivier and Zurek in 2001, it
is defined as a ’measure of the quantumness of the corre-
lations’ [122], and is calculated as follows:

δ(S : E) =−Tr (ρE log(ρE)) + Tr (ρSE log(ρSE))

−
∑
j

Tr(ΠE
j ρSE)

ΠE
j ρSEΠE

j

Tr(ΠE
j ρSE)

, (15)

where H(x) = H(ρx) = −Tr (ρx log(ρx)) is the Von Neu-

mann entropy and −
∑
j Tr(ΠE

j ρSE)
ΠEj ρSEΠEj
Tr(ΠEj ρSE)

is the con-

ditional entropy, defined as the entropy of the system
with respect to a set of projective measurements per-
formed on the environment. Quantum discord provides
a measure of the nature of correlations, it vanishes for
classical correlations and is maximum when there is en-
tanglement.

II. BACKGROUND

As mentioned before, the extent to which the noise
from the environment can be included in a quantum sim-
ulation is dependent on both the simulating and simu-
lated systems. Of course it would useful to have some pre-
vious knowledge of the system-bath interactions. How-
ever, this is often not the case. Here we study effects of
unwanted noise in a quantum simulation using an algo-
rithm that simulates the one dimensional Fano-Anderson
model. In this case we have a realistic model of the inter-
action and use the dynamical maps of the system to de-
scribe the noisy evolution. Starting with different initial
states of the system and bath, we reduce the dynamics to
a two-particle model system. The algorithm requires the
two particles to be initialized in a particular state. Due to
interactions with external qbits in the simulating device,
these initial conditions may be imperfect. In addition, if
the particles are allowed to interact for some small time
before the beginning of the actual algorithm, the parti-
cles could begin in a correlated or entangled state. We
consider the possibility of errors in the preparation of one

of the particles in the system as well as the possibility of
correlations between particles. We added a visualization
of the evolution of the Bloch vector in order to provide
an intuitive picture of the differences in the initial states
and how they evolve. It is useful to note that, regard-
less of the non-complete positivity of some of the maps
obtained, the final state is a physical state and the sys-
tem is a realistic physical model with realistic couplings.
The significance of these results will be discussed in the
conclusions. We now describe our methods and results.

A. Quantum Algorithm

Ortiz, et al. proposed an algorithm for the quantum
simulation of the one-dimensional Fano-Anderson model
[15]. This model consists of an impurity described by
an energy ε surrounded by a ring of n spinless fermions
having energies εki . The fermions interact with the impu-
rity, which is also a spinless fermion, through a hopping
potential V [6, 15]. The diagonalized wave-number rep-
resentation of the Fano-Anderson Hamiltonian is given
by [6, 15]

H =

n∑
i=0

εkic
†
ki
cki + εb†b+ V

n−1∑
i=0

(c†kib+ b†cki)δki0. (16)

The system is mapped via Jordan-Wigner transformation
to the spin system to obtain [6]

H̄ =
ε

2
σ1
z +

εk0
2
σ2
z +

V

2
(σ1
xσ

2
x + σ1

yσ
2
y). (17)

Ortiz, et al. consider an NMR device for their simulation
as do we, but the model is not limited to this type of
device.

The simulator has an NMR drift Hamiltonian of the
form [6]

Hd=
1

2

 (ε+ εk0)

2
−

√(
ε− εk0

2

)2

+ V 2

σ1
z

+
1

2

 (ε+ εk0)

2
+

√(
ε− εk0

2

)2

+ V 2

σ2
z . (18)

The schematic representation of the system with two par-
ticles can bee seen in Fig. (1)

The control Hamiltonian for spins in the system is

Hc(t) =
∑
j

[αxjσx + αyjσy] +
∑
ij

αi,jσ
i
zσ

j
z, (19)

where the α are controllable. The last term is considered
controllable because it can be turned on/off with the x
and y rotations.

To obtain the representation of the Hamiltonian in
Eq. (17), the following control sequence can be applied
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FIG. 1: Schematic representation of the simulated
system. qubit 1 is used to simulate the resonant

impurity and qubit 2 represents a fermion site. The two
particles interact via the potential V .

to Eq. (18) [6]

U =ei
π
4 σ

2
xe−i

π
4 σ

1
ye−i

θ
2σ

1
zσ

2
zei

π
4 σ

1
yei

π
4 σ

1
x

×e−iπ4 σ
2
xe−i

π
4 σ

2
yei

θ
2σ

1
zσ

2
ze−i

π
4 σ

1
xei

π
4 σ

2
y . (20)

The goal is to see if the initial state of the impurity has
changed over time and, if so, how much. For this purpose,
we use the time correlation function C(t) = b(t)b(0)†,
which in spin operator representation becomes C(t) =

eiH̄tσ1
−e
−iH̄tσ1

+ [6], where σ+ = σx + iσy and σ− = σx−
iσy. The time correlation function provides information
about the overlap of the initial and final states of the
impurity.

To study the behavior of this system, we will use the
same form of the Hamiltonian in Eq. (17) to perform the
unitary evolution on different initial states of the system,
i.e., independent of any noise which may be present in the
system. We perform the same operation regardless of
prior interactions. We then obtain the reduced dynamics
of the state of the impurity site (qubit 1) and then obtain
the dynamical map that describes the evolution. We also
calculate the time correlation function for the purpose of
comparing the results of the different situations to those
of an ideal scenario. In this way we observe the effects
of the noise and possible errors in the outcome of the
simulation.

B. Simulation with Noise

To represent noise in the system, we include other qbits
in the environment surrounding the system of interest
and modify the control Hamiltonian. We examine two
different models of noise:

1. First, we added two spins and had them interacting
via zz coupling with the particle that represents the

state of the fermion site (see Fig. (2)):

HNMR =
1

2

 (ε+ εk0)

2
−

√(
ε− εk0)

2

)2

+ V 2

σ1
z

+
1

2

 (ε+ εk0)

2
+

√(
(ε− εk0)

2

)2

+ V 2

σ2
z

+
Jzz
4
σ2
zσ

3
z +

Jzz
4
σ2
zσ

4
z +

Jzz
4
σ3
zσ

4
z . (21)

2. Next, we added an extra particle, which interacts in
the same fashion (zz coupling) with both particles
that represent the system of interest: the resonant
impurity and the fermion site (see Fig. (3)):

HNMR =
1

2

 (ε+ εk0)

2
−

√(
ε− εk0)

2

)2

+ V 2

σ1
z

+
1

2

 (ε+ εk0)

2
+

√(
(ε− εk0)

2

)2

+ V 2

σ2
z

+
Jzz
4
σ1
zσ

3
z +

Jzz
4
σ2
zσ

3
z , (22)

where Jzz represents the zz coupling constant. We
used the same control sequence from Eq. (20) to ob-
tain Eq. (17), to represent a situation in which the extra
qbits are environmental. We therefore suppose these en-
vironmental spins are unknown and are only detectable
through their effects on the system.

FIG. 2: Schematic representation of the simulated
system. qubit 1 is used to simulate the resonant

impurity and qubit 2 represents a fermion site. The two
particles interact via the potential V . qubit 2 interacts
with two external spins (qbits 3 and 4) throught the

coupling term Jzz.

III. RESULTS

In this section we describe the results of the simulations
for the two different modifications to the Hamiltonian as
well as different initial states.
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FIG. 3: Schematic representation of the simulated
system. qubit 1 is used to simulate the resonant

impurity and qubit 2 represents a fermion site. The two
particles interact via the potential V , and with an

external spin (qubit 3) through the coupling term Jzz.

(a) t=0 (b) t=0.3

(c) t=0.6 (d) t=0.9

FIG. 4: (Color online) Evolution of the Bloch Vector of
the reduced dynamics of qubit 1 in the initial state

ρ1 = |0〉 〈0| as a function of time.

A. States with Bloch vector in the z direction

We first consider states with only a z component to
their Bloch vectors. These form a special class of states
due to the commutativity of the zz Hamiltonian with
these initial states. This can be seen in Fig. (4), which
represents the evolution of the Bloch vector at different
times. The final state is a spin directed along the z axis,
but its magnitude changes in time.

1. Noiseless Quantum Simulation

Here we consider the cases where no bath is present,
but different initial states are considered. Three cases
are considered corresponding to three types of different
initial states used in the simulation:

A.1 Pure states

|ψ(0)〉 = |00〉 , |01〉 , |10〉 , |11〉 . (23)

Density operator calculated as ρ(0) = |ψ(0)〉 〈ψ(0)|.

A.2 Entangled states

|ψ(0)〉 = α0 |01〉+ α1 |10〉 , (24)

where α2
0 + α2

1 = 1, and the density operator is
given by ρ(0) = |ψ(0)〉 〈ψ(0)|.

A.3 Correlated states

ρ(0) = (1− p)(ρI1 ⊗ ρI2) + p(ρII1 ⊗ ρII2 ), (25)

where ρI1 and ρI2 are the density operators cor-
responding to some initial state of the impu-
rity (“spin-down”/occupied) and fermion (“spin-
up”/unoccupied), respectively, and ρII1 and ρII2
correspond to the other initial state of the impu-
rity (“spin-up”/unoccupied) and fermion (“spin-
up”/unoccupied).

We represented the initial state of the impurity in terms
of its x, y and z projections of the Bloch vector. The
magnitude of each component of the projections, ai, can
be obtained by performing the partial trace over every-
thing else except qubit 1, as ai = Tr[σi(ρS(0))].

First consider an initial density operator

ρS(0) =
1

2
(1l + ~ai · ~σi) .

In this case, case A.1,

ρS(0) =
1

2
(1l + a3σz) ,

where a3 represents a real constant that is equal to, or
less than, the radius of the Bloch sphere (i.e. 0 ≤ a3 ≤ 1).
It represents the projection along the z axis. The final
state was obtained through the reduced dynamics of ρS
after the evolution:

ρS(t) = Tr[ρS(0)
(
U(t)ρ(0)U(t)†

)
].

When the initial states ρS(0) only had a z component,
the final states ρS(t) only had a z component as well

ρS(t) =
1

2
(1l + b3σz) ,

where b3 is another real constant that is subject to
0 ≤ b3 ≤ 1. The value of b3 depends on a3 and on
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the parameters ε, εki , V and t. When states with only a
z component are input, the final states also only have a
z component. This is consistent with the hopping model
where the “spin-down” corresponds to the state being
occupied. The evolution is described by the dynamical
map

B =


1+b3

2 0 0 0
0 1+b3

2 0 0
0 0 1−b3

2 0
0 0 0 1−b3

2

 . (26)

The eigenvalues of the map are plotted as functions of
time in Figure (5).
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FIG. 5: (Color online) Eigenvalues of the dynamical
map, B, of the reduced dynamics of qubit 1. The initial

state of the closed system is |ψ〉 = |01〉. This is an
example of an initially pure state (case A.1) with zero
quantum discord. The parameters of the Hamiltonian

are ε = −8 meV, ε = −2 meV, V = 4 meV. The
evolution was carried out for the time interval

∆t ∈ [0.1, 0.9]. There are four sets of eigenvalues, but
due to form of the dynamical map two of these sets

appear to overlap with the other two sets, which is the
reason why only two lines show on the graph.

We note that the dynamical map for maximally entan-
gled states (case A.2) in which only z components are
considered for the initial states of both particles in the
system, has the same form as that in Eq. (26). In Fig. (5),
the eigenvalues of the map correspond to a completely
positive evolution. We found that this was the case for
maximally entangled states with non vanishing quantum
discord, but only when the individual states of the parti-
cles are eigenvalues of the Fano-Anderson Hamiltonian.
We found this to be the case for states of the form pre-
sented as case A.3 under the same conditions mentioned
above.

We therefore note, for later reference, that in these
cases all states have only a z component in the initial
and final states of the system. Thus there is only this

standard interpretation of the hopping model Hamilto-
nian when there is no external noise.

2. Simulation with noise from spin bath

In this section we present the results for systems gov-
erned by the Hamiltonians in Eqs. (21) and (22). The
goal is to simulate a two body problem, so we used the
same control sequence in Eq. (20). However, the initial
state of a ”bath” of two particles was included in the total
system Hamiltonian. As in the simulation that had no
external noise, we chose different initial configurations.
Explicitly, including the bath qbits these are:

A.4 Pure states

|ψ(0)〉 = |0011〉 , |0111〉 , |1011〉 , |1111〉 , (27)

and density operator ρ(0) = |ψ(0)〉 〈ψ(0)|.

A.5 Entangled states

|ψ(0)〉 = α0 |0111〉+ α1 |1011〉 (28)

Where α2
0 + α2

1 = 1, and the density operator is
given by ρ(0) = |ψ(0)〉 〈ψ(0)|

A.6 Correlated states

ρ(0) =
(
(1− p)(ρI1 ⊗ ρI2) + p(ρII1 ⊗ ρII2 )

)
⊗(|1〉 〈1|)⊗(|1〉 〈1|).

(29)

The fact that the states only had a component in the
z direction and only interact with the bath via zz cou-
plings give results very similar to the ones in the previous
section. The initial state of qubit 1 (the impurity) can
again be written in Pauli notation as:

ρS(0) = TrEρ(0) =
1

2
(1l + a3σz). (30)

The final state is obtained by tracing over the bath de-
grees of freedom

ρ1(t) = TrE
(
U(t)ρ(0)U(t)†

)
=

1

2
(1l + b3σz), (31)

b3 is another constant.
The most general dynamical map has the same form

as the map in Eq. (26),

B =


1+b3

2 0 0 0
0 1+b3

2 0 0
0 0 1−b3

2 0
0 0 0 1−b3

2

 . (32)

We observed that the coupling Jzz affects the rate of
change of the state of qubit 1, which is shown in the re-
sults for the calculation of the time correlation function.
In Figs. (6) and (7), the eigenvalues of B are plotted
with the couplings to the particles of the spin bath being
Jzz = 8 and Jzz = 1

10 respectively.
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FIG. 6: (Color online) Eigenvalues of the dynamical
map of the reduced dynamics of qubit 1. In the open
system two qbits are interacting via zz coupling with

qubit 2 with coupling constant Jzz = 8 meV. The initial
state of the system and bath is given by ψ = |0111〉
(case A.4). The system parameters are ε = −8 meV,
ε = −2 meV and V = 4 meV. The evolution is carried
out for the time interval t ∈ [0.1, 0.9]. The dynamical
map of the reduced dynamics for this configuration is

also completely positive. Similarly to the case of
Fig. (5), there are two sets of eigenvalues which overlap.

Figs. (5), (6) and (7) show the evolution of the same
initial state but each has a different environment. Being
states initially in the z direction, the dynamics are com-
pletely positive since the interaction with the bath is a zz
coupling. However, it does change the hopping rate. In
Fig. (6) this is particularly noticeable due to the choice of
the coupling. The state of the impurity does not trans-
fer as quickly due to the strong correlations generated by
the interaction with the spin bath. In Fig. (7) the situ-
ation is different. In this case the eigenvalues remained
the same regardless of the strength of the coupling with
the environment.

3. Weak, Intermediate and Strong Coupling regimes

The time for the transfer of the initial state of the sys-
tem is clearly affected by the strength of the coupling.
To better understand the effect of interactions with ex-
ternal spins, Fig. (8), represents the evolution of a state
where both qbits 1 and 2 are initially aligned along the
z axis. The ’weak’, ’intermediate’ and ’strong’ regimes
are defined in terms of the strength of the coupling to
the bath, Jzz, compared to the parameters of the system
which were obtained from [6]. The coupling strength has
an effect on the transfer rate. In the ’strong’ regime,
where the coupling strength is larger than the parame-
ters of the system, the evolution is much slower. The
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FIG. 7: (Color online) Eigenvalues of the dynamical
map of the reduced dynamics of qubit 1. The system is
open. An additional qubit is interacting via zz coupling
with qbits 1 and 2 with coupling constant Jzz = 1/10

meV. The initial state of the system and bath is
|ψ〉 = |011〉 (case A.4 with only one additional qubit).
The system parameters are ε = −8 meV, ε = −2 meV
and V = 4 meV. The evolution is carried out for the
time interval t ∈ [0.1, 0.9]. This configuration was the
same as in Fig. (5) because the couplings to the third

qubit both had the same magnitude, which results in a
shift in the values of the energies, but the relative sizes

of the parameters remain unchanged.

’weak’ regime approximates the evolution of the system
when no interaction with an external bath is present, thus
making it more difficult to detect errors.

B. Arbitrary initial direction of the Bloch vector

Noise in the initialization of the state could result in
a direction for the Bloch vector which is not in the z
direction. States that have an x or a y component to
their polarization vector, or Bloch vector, exhibit preces-
sion and approximate more accurately what happens in
a real experimental situation. This is often observed in
a NMR device under general circumstances and leads to
noise in the system. Here we consider an initial state
with a component of the Bloch vector in the x direction.
Clearly a y component is not necessary, and only spec-
ifies a different initial condition for the angle since the
system will precess.

1. Noiseless Quantum Simulation

The initial states were chosen to have a component in
the x direction; the components in x and z were selected
such that the magnitude of the Bloch vector is close to 1
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FIG. 8: (Color online) Time correlation function of the
reduced dynamics of qubit 1. qubit 2 is interacting via
zz coupling with qbits 3 and 4. The coupling strengths
are Jzz = 1 meV in the ’weak’ regime, Jzz = 6 meV in

the ’intermediate’ regime and Jzz = 9 meV in the
’strong’ regime. The initial state of the system and bath
is |ψ〉 = |0111〉 (case A.4). The system parameters are
ε = −8 meV, ε = −2 meV and V = 4 meV, for times

t ∈ [0.1, 0.9].

emulating a small error in the initialization. Explicitly,
the different initial configurations were:

B.1 States in which qubit 1 has a component in the x
direction

ρ1(0) =
1

2
(1l + a1σx + a3σz),

and

ρ2(0) =
1

2
(1l− α3σz),

B.2 Correlated states in which the initial state is a con-
vex combination of states; one (or both) of the pos-
sible states of qubit 1 has a component in the x
direction (state for qubit 1 in case B.1)

ρ(0) =
(
(1− p)(ρI1 ⊗ ρI2) + p(ρII1 ⊗ ρII2 )

)
,

where ρ1 is the state of the impurity, ρ2 is the state of
the fermion and the ai are subject to 0 ≤

√
a2

1 + a2
3 ≤ 1.

The final state of the impurity was, once again, ob-
tained by doing a partial trace over the degrees of free-
dom of the fermion

ρ(t) = TrE
(
Uρ(0)U†

)
=

1

2
(1l+b1σx+b2σy+b3σz). (33)

The map B is given by

B =


1+b3

2 0 0 −ib2
a1

0 1+b3
2

b1
a1

0

0 b1
a1

1−b3
2 0

ib2
a1

0 0 1−b3
2

 . (34)

The eigenvalues of B are given by

λ1 =
a1 −

√
4b21 + a2

1b
2
3

2a1
, λ2 =

a1 +
√

4b21 + a2
1b

2
3

2a1
,

λ3 =
a1 −

√
4b22 + a2

1b
2
3

2a1
, λ4 =

a1 +
√

4b22 + a2
1b

2
3

2a1
,(35)

where

b1 =

cos

(
1

2
t(ε+ εk0)

)
cos

(
1

2
t
√

4V 2 + (ε− εk0)2

)
− sin

(
1

2
t(ε+ εk0)

) (ε− ε) sin
(

1
2 t
√

4V 2 + (ε− εk0)2
)

√
4V 2 + (ε− εk0)2

 a1,

b2 =

− sin

(
1

2
t(ε+ εk0)

)
cos

(
1

2
t
√

4V 2 + (ε− εk0)2

)
− cos

(
1

2
t(ε+ εk0)

) (ε− ε) sin
(

1
2 t
√

4V 2 + (ε− εk0)2
)

√
4V 2 + (ε− εk0)2

 a1

and

b3 =
2(−1 + a3)V 2 + a3(ε− ε)2 + (1 + a3)V 2 cos

(
1
2 t
√

4V 2 + (ε− ε)2
)

4V 2 + (ε− ε)2
. (36)

Note that if a1 7→ 0, then b1 and b2 are 0. The factor
a1 in the denominator of the eigenvalues is eliminated
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(a) t=0 (b) t=0.1

(c) t=0.2 (d) t=0.3

(e) t=0.4 (f) t=0.5

(g) t=0.6 (h) t=0.7

FIG. 9: (Color online) Animation of the evolution of
the Bloch Vector of the reduced dynamics of qubit 1 in

the initial state ρ1 = 1
2 (1l + 0.2σx + 0.97σz)

using l’Hospital’s rule, and that yields

λ1 =
1− b3

2
, λ2 =

1 + b3
2

,

λ3 =
1− b3

2
, λ4 =

1 + b3
2

,

(37)

which are the same as the eigenvalues of the map in
Eq. (26). The eigenvalues of B when a1 > 0 are shown
in Figure (10). In Fig. (10), the dynamics of the system
are positive but not completely positive. This system is
not in contact with a bath or reservoir, but it consists
of two particles. This is a case of errors in initial state
preparation. The general observation that can be made
from these results is that when the initial state has a
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FIG. 10: (Color online) Eigenvalues of the dynamical
map of the reduced dynamics of qubit 1. The initial

states of the qbits in the closed system are
ρ1 = 1

2 (1l + 0.2σx + 0.97σz) and ρ2 = 1
2 (1l− σz) (case

B.1). The parameters of the Hamiltonian are ε = −8
meV, ε = −2 meV, V = 4 meV. The evolution is carried

out for the time interval t ∈ [0.1, 0.9].

component of the Bloch vector in x or y as well as one in
z, the result is a NCP map.

2. Simulation with noise from spin bath

The results in this subsection are generated from
adding the qbits in the spin bath, and using the following
initial states

B.3 States in which qubit 1 has a component in the x
direction in an open system

ρ(0) = ρ1(0)⊗ ρ2(0)⊗ (|1〉 〈1|)⊗ (|1〉 〈1|), (38)

where

ρ1(0) =
1

2
(1l + a1σx + a3σz), (39)

and

ρ2(0) =
1

2
(1l− α3σz). (40)

The reduced dynamics of S are given by

ρ(t) = TrE
(
U(t)ρ(0)U(t)†

)
=

1

2
(1l + b1σx + b2σy + b3σz),

(41)
with a B map of the same for as that in Eq. (34),

B =


1+b3

2 0 0 −ib2
a1

0 1+b3
2

b1
a1

0

0 b1
a1

1−b3
2 0

ib2
a1

0 0 1−b3
2

 . (42)
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Once again, the noise, which has the form of purely zz
couplings, caused variations in the parameters, mostly in
the rate of change of the state of qubit 1. The eigenvalues
for a system with two spins interacting with the fermion
only and for one spin interacting with both particles in
the system are presented in Figs. (11) and (12).
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FIG. 11: (Color online) Eigenvalues of the dynamical
map for the reduced dynamics of qubit 1. The initial

states of the particles in the system are
ρ1 = 1

2 (1l + 0.2σx + 0.97σz) and ρ2 = 1
2 (1l− σz). The

initial states of the particles that compose the spin bath
are ρ3 = 1

2 (1l− σz) and ρ4 = 1
2 (1l− σz). The total state

of the bath is an example of case B.3. The Hamiltonian
parameters are ε = −8 meV, ε = −2 meV, V = 4 meV.

The coupling to the bath has strength Jzz = 6 meV.
The evolution is carried out in the time interval

t ∈ [0.1, 0.9].

In Figs. (11) and (12) the reduced dynamics are not
completely positive. This is due to the initial state of
the impurity site (qubit 1) having a component of its
Bloch vector in the x direction. The algorithm was de-
signed to have an initial state where one of the two state
systems is in the up state and the rest are in the down
state. Dynamical maps obtained through quantum pro-
cess tomography can present discrepancies if the initial
states are prepared through different experimental meth-
ods [95]. Thus the x component represents a preparation
error which gives rise to a NCP map like in the previous
case. Note that Fig. (12) is very similar to Fig. (10). In
Fig. (12) the two qbits in the system are interacting with
an external spin. Because this interaction is due to a zz
coupling to the bath of the same strength for both parti-
cles, it represents only a shift in the potential energy of
the entire system. Therefore, the dynamics are the same
in both cases. However, in Fig. (11) only qubit 2 is in-
teracting with two external spins, and there is an effect
on the eigenvalues of the dynamical map. The speed at
which the system changes under the given Hamiltonian
is affected, this can be verified with the time correlation
function presented in the following section.
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FIG. 12: (Color online) Eigenvalues of the dynamical
map for the reduced dynamics of qubit 1. The initial

states of the particles in the system are
ρ1 = 1

2 (1l + 0.2σx + 0.97σz) and ρ2 = 1
2 (1l− σz). The

initial state of the additional qubit is ρ3 = 1
2 (1l− σz).

This is another form of case B.3, except that there is
only one additional qubit acting as the bath. The

Hamiltonian parameters are ε = −8 meV, ε = −2 meV,
V = 4 meV. The coupling to the additional qubit has
strength Jzz = 1

10 meV. The evolution of the system is
evaluated for the time interval t ∈ [0.1, 0.9].

C. Time correlation function

Ortiz et al. calculated the time correlation function
C(t) = b(t)b(0)†, and plotted the result as |G|2 =
Tr (ρ(t)ρ(0)) as a function of time. Since we want to cal-
culate the effects of noise and different initial states, we
followed the same procedure for the different situations.
The results are summarized in graphs, Figs. (13), (14)
and (15). In Fig. (13), there is a slight difference between
the results of the original system compared to those under
which errors could arise due to noise and unknown initial
states. The coupling to the environment affects how fast
or slow qubit 1 evolves. However, if the coupling to the
bath is weak, these errors are not as prominent.

When the initial state had a component in x, the re-
sulting correlation functions were very close to the origi-
nal problem. This is important because a small error like
this one may not be easily identified in the time corre-
lation function. In Fig. (14) we show how the coupling
to a spin bath can affect the rate of change of the evolu-
tion. As mentioned before, these results only include zz
couplings. The strength of the couplings were adjusted
in order to see the effects more clearly.

Because quantum simulations are performed on quan-
tum systems, where access to complete information about
the state at all times is not available, correlations with
the bath can be by detected by differences in the rate of
change of the evolution. In Fig. (15), we increased a1,
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FIG. 13: (Color online) Time correlation function of the
reduced dynamics of qubit 1. The Hamiltonian

parameters are ε = −8 meV, ε = −2 meV, V = 4 meV.
t ∈ [0.1, 1]. These results represent the evolution of the
closed system, the system where qubit 2 interacts with
two additional qbits, the system in which an additional
qubit that interacts with qbits 1 and 2. This was done
when qubit 1 was in the initial states ρ = |0〉 〈0| and
ρ = 1

2 (1l + 0.2σx + 0.97σz), as indicated above.
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FIG. 14: (Color online) Time correlation function of the
reduced dynamics of qubit 1. The system parameters
are ε = −8 meV, ε = −2 meV, V = 4 meV in the time

interval t ∈ [0.1, 0.9]. The results correspond to the
closed system and the system that interacts with two
additional qbits, coupled only to qubit 2. The initial

state of qubit 1 is ρ = |0〉 〈0| for one set of results, and
ρ = 1

2 (1l + 0.2σx + 0.97σz) for the other.

the component of the Bloch vector in x, to see how it
affects the final result. When the x component of the
Bloch vector is increased, we can see shifts in the time
correlation function. The greater a1 is, the larger the ob-

served shift. This could be useful for detecting possible
errors in state preparation.
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FIG. 15: (Color online) Time correlation function of the
reduced dynamics of qubit 1. The system parameters

are ε = −8 meV, ε = −2 meV, V = 4 meV evaluated in
the time interval t ∈ [0.1, 0.9]. The result represents the
time correlation function of the closed system compared
to the correlation function of the reduced dynamics of
qubit 1 in the initial state ρ = 1

2 (1l + a1σx + a3σz) for
different values of a1 and a3.

In Figure (16) we show the effects of initial correla-
tions and entanglement on the time correlation function.
When the initial state of the system is in the z-direction,
the maps are completely positive. However, the presence
of entanglement and correlations is more evident in the
time correlation function than a pure initial state. It is
also more evident that in the case where the initial state
has an x component. Maximally entangled states (case
A.5) and correlated states exhibited the most pronounced
deviations from the original results presented in Ref. [6].
Thus in an experiment, we expect these are more easily
detected. However, deviations from complete positivity
are not significantly reflected inthe results. This leads us
to believe that NCP maps which arise from small devia-
tions in the initial preparation will not be easily detected.

IV. CONCLUSIONS

Interactions of quantum systems with a surrounding
environment are undesirable for reliable quantum simula-
tions and for quantum information processing in general.
In order to enable the reduction or correction of noise, it
is imperative that we try to understand and control or
suppress the noise from the environment. Most research
in error correction and fault tolerance has so far been
devoted to universal quantum computing (and therefore
universal quantum simulators) [56]. Lloyd’s suggestion
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FIG. 16: (Color online) Time correlation function of the
reduced dynamics of qubit 1. The system parameters

are ε = −8 meV, ε = −2 meV, V = 4 meV evaluated in
the time interval t ∈ [0.1, 0.9]. The results the time

correlation function of the reduced dynamics of qubit 1
for: a closed system where the two qbits are in a pure

state (case A.1 label ×); a system where the initial state
is a correlated one with ρI1 = 1

2 (1l + 0.2σx + 0.97σz),

ρII1 = 1
2 (1l + σz), ρ

I
2 = ρII2 = 1

2 (1l− σz) and p = 1
2 (case

B.2 label −); a system where the initial state is a
correlated one with ρI1 = 1

2 (1l + 0.2σx + 0.97σz),

ρII1 = 1
2 (1l− 0.2σx − 0.97σz), ρ

I
2 = 1

2 (1l− σz),
ρII2 = 1

2 (1l + σz) and p = 1
2 (case B.2 label 4); a system

where the initial state is a correlated one (case A.3)
where ρI1 = 1

2 (1l + σz), ρ
II
1 = 1

2 (1l− σz),
ρI2 = 1

2 (1l− σz), ρII2 = 1
2 (1l + σz) and p = 1

9 (©); a
system where the initial state is a maximally entangled

one (case A.5) and qubit 2 is interacting with two
additional qbits with coupling strength Jzz = 1

10 meV
(♦).

to use the noise to simulate the interaction of the sys-
tem with the environment is clearly useful only in special
cases. For some analog simulators, substantial isolation
has been achieved [18]. However, noises remain in this
system and in others.

It is known that interactions with the environment can
lead to correlations that can result in non completely
positive maps. We found that such maps are not rare in
our study of a very simple model of a quantum system
of fermions which can readily be simulated on a quan-
tum computing device, or a dedicated quantum simula-
tor. This Fano-Anderson model exhibits maps which are
not completely positive for a variety of initial states, some
of which were entangled and some with other non-trivial
quantum correlations in the sense of non-zero quantum
discord. They were shown to arise for even a fairly small
transverse component to an initial density matrix which
is supposed to have its Bloch vector aligned along the z
axis. Thus fairly small experimental errors can lead to
maps which are not completely positive in a rather sim-
ple experiment. These noises also cause relatively small
errors in the final outcome of the measurement.

Initially correlated states, if they are not so identified,
but are instead identified improperly as arising from com-
pletely positive maps, may encourage an experimenter
to try to employ dynamical decoupling controls to elim-
inate errors. These controls will be ineffective in these
cases since local unitary transformations will not remove
initial correlations or entanglement.

We have used a very specific and simple model to illus-
trate the effects of noise on the system including the pres-
ences of maps which are not completely positive. How-
ever, it is important to emphasize that these effects are
quite general and will be present in some form in many
other quantum systems including a wide class of quantum
simulations.
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