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Measurement-induced back action, a direct consequence of the Heisenberg Uncertainty Principle,
is the defining feature of quantum measurements. We use quantum measurement theory to analyze
the recent experiment of Safavi-Naeini et al. [Phys. Rev. Lett. 108, 033602 (2012)], and show
that results of this experiment not only characterize the zero-point fluctuation of a near-ground-
state nanomechanical oscillator, but also demonstrate the existence of quantum back-action noise
— through correlations that exist between sensing noise and back-action noise. These correlations
arise from the quantum coherence between the mechanical oscillator and the measuring device,
which build up during the measurement process, and are key to improving sensitivities beyond the
Standard Quantum Limit.

PACS numbers:

I. INTRODUCTION

Quantum mechanics dictates that no matter or field
can stay absolutely at rest, even at the ground state,
for which energy is at minimum. A starting point for
deducing this inevitable fluctuation is to write down the
Heisenberg Uncertainty Principle

[x̂, p̂] = i ~ , (1)

which leads to:

∆x ·∆p ≥ ~/2 . (2)

Here x̂ and p̂ are the position and momentum opera-
tors, while ∆x and ∆p are standard deviations of position
and momentum for an arbitrary quantum state. Eq. (2)
means we cannot specify the position and momentum of
a harmonic oscillator simultaneously, as a point in clas-
sical phase space — the oscillator must at least occupy
~/2 area in the phase space. If the oscillator has mass
of m and eigenfrequency of ωm, then in the Heisenberg
picture we can write

[x̂q(t), x̂q(t
′)] =

i~ sinωm(t′ − t)
mωm

, (3)

which leads to:

∆xq(t) ·∆xq(t′) ≥
~| sinωm(t′ − t)|

2mωm
. (4)

with x̂q(t) being the Heisenberg operator of the oscillator
position, quantum-mechanically evolving under the free
Hamiltonian. Here ∆xq(t) is the standard deviation of
x̂q(t) for an arbitrary quantum state. Eq. (4) means the
position of a freely evolving quantum harmonic oscillator
cannot continuously assume precise values, but instead,
must fluctuate. This fluctuation carries the zero-point
mechanical energy of ~ωm/2.

As a key feature of quantum mechanics, zero-point
fluctuation of displacement is an important effect to ver-
ify when we bring macroscopic mechanical degrees of free-
dom into their ground states [1–8]. Needless to say, a
continuous observation of the zero-point fluctuation of
a macroscopic mechanical oscillator requires superb dis-
placement sensitivity.

However, what constitutes an “observation of the
quantum zero-point fluctuation” is conceptually subtle.
Eqs. (3) and (4), which argue for the inevitability of
the zero-point fluctuation, also dictate that the “exact
amount” of the zero-point fluctuation cannot be deter-
mined precisely. More specifically, if we use a linear
measurement device to probe the zero-point fluctuation,
which has an output field of ŷ(t), then we must at least
have

[ŷ(t), ŷ(t′)] = 0 (5)

at all times, in order for ŷ(t) to be able to represent ex-
perimental data string— with measurement noise simply
due to the projection of the device’s quantum state into
simultaneous eigenstates of all {ŷ(t) : t ∈ R}. This
means ŷ must be written as

ŷ(t) = ε̂(t) + x̂q(t) (6)

with non-vanishing additional noise (error) ε̂(t), which
consists of degrees of freedom of the measurement device
and compensates the non-vanishing commutator of x̂q

‡.
In addition, during the measurement process, actual evo-
lution of the mechanical displacement x̂ must differ from

‡ We note that Ozawa has developed a different formalism to quan-
tify the issues that arise when attempts are made to measure
non-commuting observables like x̂q(t) [9, 10]. However, we have
chosen to adopt the Braginsky-Khalili approach [11], because it
is immediately applicable when the non-commuting observable
is acting as a probe for an external classical force.
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its free evolution x̂q. This is because

[x̂(t), x̂(t′)]

i~
≡ χ(t′ − t) (7)

is also the classical response function of x to an external
force: any device that attempts to measure x̂ by cou-
pling it with an external observable F̂ , which introduces
a term proportional to x̂ F̂ into the Hamiltonian, will
have to cause non-zero disturbance. For this reason, we
can expand the measurement error ε̂ into two parts: ẑ
— the sensing noise that is independent from mechanical
motion and x̂BA — additional disturbance to the mechan-
ical motion from the measurement-induced back-action,
and rewrite ŷ(t) as:

ŷ(t) = ẑ(t) + x̂BA(t)︸ ︷︷ ︸
ε̂(t)

+x̂q(t) = ẑ(t) + x̂(t) . (8)

The mechanical displacement under measurement is
therefore a sum of the freely-evolving operator x̂q plus
the disturbance x̂BA due to back action noise, namely,
x̂(t) = x̂q(t) + x̂BA(t).

The above lines of reasoning lie very much at the
heart of linear quantum measurement theory, pioneered
by Braginsky in the late 1960s aiming at describing
resonant-bar gravitational-wave detectors [11, 12], and
later adapted to the analysis of laser interferometer
gravitational-wave detectors by Caves [13]. A key con-
cept in linear quantum measurement theory is the trade-
off between sensing noise and back-action noise, which
gives rise to the so-called Standard Quantum Limit
(SQL). For optomechanical devices, sensing noise takes
the form of quantum shot noise due to discreteness of
photons, while the quantum back-action is enforced by
quantum fluctuations in the radiation pressure acting on
the mechanical oscillators [13], which is therefore also
called quantum radiation-pressure noise. It has been
shown that the SQL, although not a strict limit for sen-
sitivity, can only be surpassed by carefully designed lin-
ear measurement devices which take advantage of quan-
tum correlations between the sensing noise and the back-
action noise.

Observing signatures of quantum back-action, achiev-
ing and surpassing the associated SQL in mechani-
cal systems are of great importance for the future of
quantum-limited metrology, e.g., gravitational-wave de-
tections [14–22]. At the moment, it is still experimen-
tally challenging to directly observe quantum radiation-
pressure noise in optomechanical devices due to high lev-
els of environmental thermal fluctuations, and there are
significant efforts being made toward this [4–8, 23]. One
approach proposed by Verlot et al. [4] is, instead, to probe
the quantum correlation between the shot noise and the
radiation-pressure noise, which, in principle, is totally
immune to thermal fluctuations.

In this article, we analyze a recent experiment per-
formed by Safavi-Naeini et al. [24], in which a radiation-
pressure-cooled nanomechanical oscillator — the movable

mirror of a high-finesse cavity — is probed by a sec-
ond beam of light, detuned from the cavity, for its zero-
point mechanical oscillation. The output power spec-
trum of the second beam, near the mechanical resonant
frequency, serves as an indicator of the oscillator’s zero-
point motion. It was experimentally observed that when
the second beam is detuned on opposite sides from the
cavity resonance, the output power spectra turn out to
be different. Using theory of linear quantum measure-
ments, we will show that this experiment not only probes
the zero-point fluctuation of the mechanical oscillator at
nearly ground state, but also illustrates vividly the non-
trivial correlations between sensing noise and back-action
noise — an much sought-after effect in the gravitational-
wave-detection community. Its contribution to the output
spectrum is equal to the zero-point fluctuation for one de-
tuning of the readout beam, and exactly opposite for the
other detuning.

The outline of this article goes as follows: in Sec. II,
we will give a brief overview of the experiment by Safavi-
Naeini et al., and present an analysis of this experiment
using quantum measurement theory; in Sec. III, we will
more broadly discuss the nature of mechanical zero-point
fluctuation, show that in attempts to measure the zero-
point fluctuation, the contributions from sensing–back-
action noise correlations can generically be comparable
to the zero-point fluctuation itself. In addition, we will
discuss linear quantum measurement devices that use a
near-ground-state mechanical oscillator as a probe for ex-
ternal classical forces near its resonant frequency, and
show the limitation on the measurement sensitivity im-
posed by the zero-point fluctuation and the connection
to the SQL; we will conclude in Sec. IV.

II. A TWO-BEAM EXPERIMENT THAT
MEASURES ZERO-POINT MECHANICAL

OSCILLATION

In this section, we describe in Sec. II A the experiment
performed by Safavi-Naeini et al., put its results into
the framework of linear quantum measurement theory
in Sec. II B, and provide a detailed analysis in Sec. II C.
In Sec. II D, we will comment on the connection between
the viewpoint from quantum measurement and the scat-
tering picture presented in Ref. [24].

A. Experimental setup and results

In the experiment, two spatial optical modes are cou-
pled to a mechanical vibrational mode in a patterned sil-
icon nanobeam. One spatial mode — the cooling mode
— is pumped with a relatively high power at a “red” de-
tuning (lower than resonance), and is used to cool the
mechanical mode via radiation pressure damping [2]; the
other cavity mode — the readout mode — has a much
lower power and is used for probing the mechanical mo-
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tion. The readout laser frequency ωlr is detuned from
the resonant frequency ωr of the readout mode by ei-
ther +ωm or −ωm. The observed spectra of the read-
out laser are asymmetric with respect to the detuning
∆ ≡ ωr − ωlr. Specifically, in the positive-detuning case
— ∆ = ωm, the spectrum has a smaller amplitude than
that in the negative-detuning case. The area I+ enclosed
by the spectrum in the positive-detuning case, after sub-
tracting out the noise floor away from the mechanical res-
onant frequency, is proportional to the thermal occupa-
tion number 〈n〉 of the mechanical oscillator, while, in the
negative-detuning case, the enclosed area is I− ∝ 〈n〉+1.
Such asymmetry is illustrated in Fig. 1. In Ref. [24], we
introduced the following figure of merit to quantify the
asymmetry:

η ≡ I−
I+
− 1 =

1

〈n〉
. (9)

We interpreted this asymmetry as arising from the
quantized motion of the mechanical oscillator. The asym-
metry is thus assigned to the difference between the
phonon absorption rate, proportional 〈n〉, and the emis-
sion rate, proportional to 〈n〉+1. This is completely anal-
ogous to that used for calibration of motional thermome-
try of ions/atoms trapped in electrical/optical traps [25–
28]. Additionally, these scattering processes have an un-
derlying physics similar to bulk nonlinear Raman scat-
tering processes used in spectroscopic analysis of crys-
tals [29, 30], where an ensemble of vibrational degrees of
freedom internal to the molecular structure of the system
interacts with incident light. Typically in these nonlin-
ear optics experiments, photon counters are used to keep
track of the (anti-)Stokes photons. In contrast, in our ex-
periment, a heterodyne measurement scheme was used,
to find the amplitude quadrature of the readout mode.
Interestingly, by choosing the detuning ∆ = ±ωm and in
the resolved-sideband regime, spectra of the amplitude
quadrature are equal to emission spectra of the (anti-
)Stokes photons plus a constant noise floor due to vac-
uum fluctuation of the light — the shot noise. We will
elaborate on this point in Sec. II D and show explicitly
such a connection. Intuitively, one can view the cavity
mode as an optical filter to selectively measure the emis-
sion spectra — for ∆ = ωm, the anti-Stokes process is
significantly enhanced as the emitted photon is on reso-

noise floor noise floor

FIG. 1: Figure illustrating the observed spectra of the readout
laser in the positive-detuning case (left) and the negative-
detuning case (right).
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FIG. 2: Figure illustrating the relation among different parts
of the optomechanical system in the experiment. The thermal
heat bath and the cooling mode together create an effective
quantum heat bath for the mechanical oscillator which in turn
couples to the readout mode.

nance with respect to the cavity mode, and one therefore
measures the spectrum for the anti-Stoke photons; while
for ∆ = −ωm, the spectrum of the Stokes photon is mea-
sured.

B. Interpretation in terms of quantum
measurement

Here we provide an alternative viewpoint to Ref. [24],
emphasizing on the role of quantum back-action and
its relation to quantization of the mechanical oscillator.
First of all, we separate the experimental system into
two parts. The cooling mode, the mechanical oscillator,
and the environmental thermal bath the oscillator cou-
ples to (the left and middle boxes in Fig. 2) together is
the first part, which can be viewed as providing an ef-
fective mechanical oscillator nearly at the ground state,
but with a quality factor significantly lower than the in-
trinsic quality factor of the mechanical mode. It is the
zero-point fluctuation of this effective oscillator that we
shall be probing. The second part of the system consists
of the readout mode (the box on the right of Fig. 2),
which couples to the effective oscillator (the first part of
the system) through displacement x̂ alone. The second
part provides us with an output ŷ, which contains infor-
mation about the zero-point fluctuation of the effective
mechanical oscillator.

1. The Mechanical Oscillator Near Ground State

Let us focus on the first part of the system (left two
boxes of Fig. 2), the effective mechanical oscillator (be-
cause this will be a stand-alone subject of study in later
discussions, we shall often ignore the word “effective”).
The environmental heat bath and the cooling mode to-
gether form a quantum heat bath with fluctuation close
to the zero-point value. In steady state, the “free” me-
chanical displacement is determined by its coupling to
this bath (“free” means in absence of the readout mode):

x̂q(t) =

∫ t

−∞
χ(t− t′)F̂q(t′)dt′ . (10)
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Here χ is the response function of the mechanical oscil-
lator, and for a high quality-factor oscillator, we have:

χ(t− t′) = − [x̂(t), x̂(t′)]

i~
= e−κm|t−t′|/2 sinωm(t− t′)

mωm
.

(11)
Note that we have an additional decay factor compared
with Eq. (3) which describes an idealized free oscillator.
The decay rate κm here is determined jointly by the in-
trinsic decay rate of the mechanical mode, and the op-
tomechanical interaction between the mechanical mode
and the cooling mode. The force F̂q lumps together the
fluctuating force acting on the mechanical mode by the
environmental heat bath and the cooling mode. If the os-
cillator approaches the ground state only after applying
the cooling mode, then one can show that F̂q is domi-
nated by fluctuation of the cooling mode.

The above two equations state that for a realistic me-
chanical oscillator with non-zero decay rate, its zero-
point fluctuation in the steady state can be viewed as
driven by the quantum heat bath surrounding it. We
will returning to this prominent feature of linear quan-
tum systems later in Sec. III A.

2. The Quantum-Measurement Process

Let us now move on to the second part of the system
(right box of Fig. 2), in which the readout mode serves
as a linear position meter that measures the mechani-
cal displacement. We can rewrite the disturbance x̂BA

in Eq. (8) in terms of the back-action force F̂BA arising
from radiation-pressure fluctuation of the readout mode,
namely,

x̂BA(t) =

∫ t

−∞
χ(t− t′)F̂BA(t′)dt′ . (12)

We have assumed that the readout mode does not modify
the dynamics of the oscillator, which is a good approx-
imation for the low pumping power used in the exper-
iment. Written in the frequency domain, the readout
mode output ŷ [cf. Eq.(8)] is

ŷ(ω) = ẑ(ω) + χ(ω)F̂BA(ω) + χ(ω)F̂q(ω). (13)

where

χ(ω) = − 1

m(ω2 − ω2
m + iκmω)

(14)

is the Fourier transform of Θ(t)χ(t), with Θ the Heaviside
function, i.e., the positive half of χ(t) (even though χ(t)
exists for both t > 0 and t < 0). The spectral density
Syy(ω) of ŷ then reads:

Syy = Szz + 2Re[χ∗SzF ] + |χ|2SBA
FF + |χ|2SqFF . (15)

Here these single-sided spectral densities are defined in
a symmetrized way (see Appendix A), which guarantees

bilinearity for the cross spectrum and positivity for self
spectrum; Szz and SBA

FF are the sensing-noise and back-
action force noise spectrum, respectively; SzF is the cross
correlation between ẑ and F̂BA; the force spectrum of the
effective quantum heat bath made up by the environmen-
tal heat bath and the cooling mode is given by:

SqFF = (4〈n〉+ 2)~mκmωm , (16)

and 〈n〉 is the thermal occupation number.

3. Asymmetry between Spectra

Experimentally, it was observed that the output spec-
tra Syy for the two opposite detunings, ∆ = ±ωm, are
different — given the same thermal occupation number
for the oscillator,

Syy(ω)|∆=−ωm
6= Syy(ω)|∆=ωm

. (17)

As we will show in the Sec. II C that follows, when we
flip the sign of the detuning ∆ of the readout beam, the
only term in Syy that changes is SzF — the correlation
between the sensing noise and the back-action noise. Ac-
cording to Eq. (34), we have

SzF (ω) ≈ −i ~ ω
∆
, (18)

in the resolved-sideband regime with the cavity band-
width κr � ωm, which is the case in the experiment.
The asymmetry factor defined in Eq.(9) is given by:

η =

2

∫
Re[χ∗(S−zF − S

+
zF )]dω∫ [

|χ|2SqFF + 2Re(χ∗S+
zF )
]

dω

=
1

〈n〉
. (19)

Here S±zF is defined by S±zF ≡ SzF |∆=±ωm
, and in par-

ticular around the mechanical resonant frequency ωm,
where S±zF contribute to the above integral,

S±zF ≈ ∓i ~. (20)

The asymmetry, or effect of quantum correlation SzF ,
is most prominent when the thermal occupation number
approaches zero. Indeed, if we focus on the quantum
fluctuation by taking the limit of 〈n〉 → 0, we obtain∫

2Re(χ∗S±zF )dω = ∓
∫
|χ|2SqFF |〈n〉=0 dω . (21)

In other words, at the quantum ground state, contri-
bution of the quantum correlation SzF to the readout
spectrum Syy has the same magnitude as that of the
zero-point fluctuation, while the sign of the correlation
term depends on the sign of the detuning of the readout
beam. This means not only has the experiment probed the
zero-point fluctuation of the mechanical oscillator, it has
also demonstrated non-trivial correlations between sens-
ing noise and back-action noise at the quantum level.
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C. Detailed theoretical analysis

In this section, we supply a detailed calculation of the
quantum dynamics and the output spectrum of the ex-
periment. The dynamics for a typical linear optome-
chanical device has been studied extensively in the liter-
ature [31–33]; however, they have been focusing on quan-
tum state of the mechanical oscillator in ground-state
cooling experiments, instead of treating the optomechan-
ical device as a measurement device. Here we will follow
Ref. [34] and derive the corresponding input-output rela-
tion — the analysis is the same as the one of quantum
noise in a detuned signal-recycling laser interferometer
which can be mapped into a detuned cavity [15, 35, 36].
We will focus only on the interaction between the readout
cavity mode and the mechanical oscillator — the cooling
mode and the thermal heat bath is taken into account
by the effective dynamics of the oscillator as mentioned
earlier.

The Hamiltonian of our optomechanical system can be
written as [31–33]:

Ĥ = ~ωrâ†â+ Ĥκr
+ ~G0x̂â

†â+
p̂2

2m
+

1

2
mω2

mx̂
2 + Ĥκm

.

(22)

Here the first two terms describe the cavity mode includ-
ing its coupling to the external continuum; the third term
is the coupling between the cavity mode and the mechan-
ical oscillator; G0 = ωr/Lc is the coupling constant with
Lc the cavity length; the rest of the terms describes the
dynamics of the effective oscillator (left and middle boxes

in Fig. 2), with Ĥκm
summarizing the dynamics of the

cooling mode and the thermal heat bath, as well as their
coupling with the original mechanical oscillator.

In the rotating frame at the laser frequency, the lin-
earized equations of motion for the perturbed part —
variation around the steady-state amplitude — read:

m(¨̂x+ κm ˙̂x+ ω2
mx̂) = F̂BA + F̂q, (23)

˙̂a+ (κr/2 + i∆)â = −i Ḡ0x̂+
√
κr âin, (24)

where the back-action force F̂BA is defined as:

F̂BA ≡ −~ Ḡ0(â+ â†), (25)

and we introduce Ḡ0 = āG0 with ā being the steady-state
amplitude of the cavity mode and âin is the annihilation
operator of the input vacuum field. The cavity output
âout is related to the cavity mode by:

âout = −âin +
√
κr â . (26)

with κr the decay rate (the bandwidth) of the readout
mode.

In the steady state, these equations of motion can be
solved more easily in the frequency domain. Starting
from the mechanical displacement, we get

x̂(ω) = χ(ω)[F̂BA(ω) + F̂q(ω)] . (27)

Here we have ignored modification to the mechanical re-
sponse function χ due to the readout mode—a term pro-
portional to Ḡ2

0, assuming that the pumping power is low.
For the cavity mode, we invert Eq. (24) and obtain

â(ω) =
Ḡ0 x̂(ω) + i

√
κr âin(ω)

ω −∆ + iκr/2
, (28)

which leads to

F̂BA(ω) =
2 ~ Ḡ0

√
κr/2[(κr/2− iω)v̂1 + ∆ v̂2]

(ω −∆ + iκr/2)(ω + ∆ + iκr/2)
, (29)

with v̂1 ≡ (âin + â†in)/
√

2 and v2 ≡ (âin − â†in)/(
√

2 i) be-
ing the amplitude quadrature and the phase quadrature
of the input field, which has fluctuations at the vacuum
level. When combining with Eq. (26), we obtain the out-
put amplitude quadrature

Ŷ1(ω) = [âout(ω) + â†out(−ω)]/
√

2

=
(∆2 − κ2

r/4− ω2)v̂1 − κr∆ v̂2 +
√

2κr Ḡ0∆ x̂

(ω −∆ + iκr/2)(ω + ∆ + iκr/2)
,

(30)

whose spectrum is measured experimentally. We put
the above formula into the same format as Eq.(13) by

normalizing Ŷ1 with respect to the mechanical displace-
ment x̂, and introduce ŷ(ω) and the corresponding sens-
ing noise ẑ(ω):

ŷ(ω) =
(∆2 − κ2

r/4− ω2)v̂1 − κr∆v̂2√
2κr Ḡ0∆

+ x̂(ω)

≡ ẑ(ω) + χ(ω)[F̂BA(ω) + F̂q(ω)] . (31)

Taking single-sided symmetrized spectral density of ŷ
(see Appendix A), we obtain

Syy(ω) = Szz + 2Re[χ∗SzF ] + |χ|2[SBA
FF + SqFF ] , (32)

where

Szz(ω) =
(∆2 − κ2

r/4− ω2)2 + κ2
r∆

2

2κrḠ2
0∆2

, (33)

SzF (ω) =
~(κr/2− i ω)

∆
, (34)

SBA
FF (ω) =

2~2Ḡ2
0κr(κ

2
r/4 + ω2 + ∆2)

(∆2 − κ2
r/4− ω2)2 + κ2

r∆
2
. (35)

Here we have used

〈0|v̂j(ω)v̂†k(ω′)|0〉sym = π δjk δ(ω−ω′) (j, k = 1, 2). (36)

Indeed, only SzF depends on the sign of detuning and
contributes to the asymmetry. In the resolved-sideband
case κr � ωm and choosing detuning |∆| = ωm, SzF can
be approximated as the one shown in Eq. (18). For a weak
readout beam, we can ignore SBA

FF which is proportional



6

to Ḡ2
0, the output spectra around ωm for the positive-

and negative-detuning cases can be approximated as

Syy(ω)|∆=±ωm
≈ κr

2Ḡ2
0

+
~κm(2〈n〉+ 1∓ 1)

2mωm[(ω − ωm)2 + (κm/2)2]
.

(37)
As we can see, the contribution to output spectra from
the quantum correlation has the same magnitude as the
zero-point fluctuation of the mechanical oscillator, with
a sign depending on the detuning. One can then obtain
the dependence of the asymmetry factor η on 〈n〉 shown
in Eq. (9).

Interestingly, even if the quantum back-action term
SBA
FF is much smaller than SqFF and has been ignored,

given the weak readout mode used in the experiment, the
asymmetry induced by quantum correlation is always vis-
ible as long as 〈n〉 is small. In addition, any optical loss in
the readout mode only contributes a constant noise back-
ground — that is symmetric with respect to detuning —
to the overall spectrum; therefore, the asymmetry is very
robust against optical loss, and it can be observed with-
out a quantum-limited readout mode which is the case
in the experiment.

D. Connection with the scattering picture

In the above, we have been emphasizing the viewpoint
of position measurement and interpreting the asymme-
try as due to the quantum correlation between the sens-
ing noise and the back-action noise. Here we would like
to show the connection between this viewpoint and the
scattering picture in Ref. [24] that focuses on the photon-
phonon coupling, and in addition, show how spectra of
the amplitude quadrature measured in the experiment
are related to emission spectra of the (anti-)Stokes pho-
tons that would have been obtained if we instead take a
photon-counting measurement.

To illustrate these, we introduce the annihilation op-

erator b̂ for the phonon through the standard definition:

x̂ ≡
√

~/(2mωm)(b̂+ b̂†) . (38)

and it satisfies the commutator relation: [b̂, b̂†] = 1. In
the rotating frame at the laser frequency, the Hamilto-
nian in Eq. (22) after linearization is given by:

Ĥ = ~∆â†â+ Ĥκr
+~ḡ0(â+ â†)(b̂+ b̂†) +~ωmb̂†b̂+ Ĥκm

,
(39)

where ḡ0 ≡ Ḡ0

√
~/(2mωm). The third term is the

photon-phonon coupling: â†b̂ describes the anti-Stokes
process — the absorption of a phonon is accompanied by

emission of a higher-frequency photon; â†b̂† describes the
Stokes process — the emission of a phonon is accompa-
nied by emission of a lower-frequency photon. The pho-
ton emission rate of these two processes can be estimated
by using the Fermi’s golden rule. Specifically, taking into
account the finite bandwidth for the photon and phonon

due to coupling to the continuum, the emission rate of
the anti-Stokes photon at ωlr + ω reads:

ΓAS(ω) = ḡ2
0

∫
dτ eiωτD(ω)〈b̂†(τ)b̂(0)〉

=
ḡ2

0κm〈n〉D(ω)

(ω − ωm)2 + (κm/2)2
; (40)

the emission rate of the Stokes photon at ωlr − ω reads:

ΓS(ω) = ḡ2
0

∫
dτ e−iωτD(−ω)〈b̂(τ)b̂†(0)〉

=
ḡ2

0κm(〈n〉+ 1)D(−ω)

(ω − ωm)2 + (κm/2)2
. (41)

Here the density of state for the photons is determined
by the cavity decay rate and detuning:

D(ω) ≡ κr/2

(ω −∆)2 + (κr/2)2
. (42)

Were the cavity bandwidth much larger than the me-
chanical frequency ωm, the density of state D(ω) would
become flat for frequencies around ±ωm, and we would
effectively have a scenario that is similar to the free-space
Raman scattering as in those spectroscopic measure-
ments of crystals [30]. By making a photon-counting-type
measurement of the emitted (anti-)Stokes photons, one
could observe an asymmetric spectrum with two peaks
(sidebands) around ωr ± ωm of which the profiles are
given by the above emission rates. This is also the case
for those emission and absorption spectroscopic measure-
ments in the ions/atoms trapping experiments [25–28].

The situation of our experiment is however different
from the usual free-space Raman scattering spectroscopic
measurement by the following two aspects: (i) we are
operating in the resolved-sideband regime where the cav-
ity bandwidth is much smaller than the mechanical fre-
quency and the photon density of state is highly asym-
metric for positive and negative sideband frequencies de-
pending on the detuning. This basically dictates that we
cannot measure two sidebands simultaneously, and we
have to take two separate spectra by tuning the laser fre-
quency. In the positive-detuning case ∆ = ωm, the anti-
Stokes sideband is enhanced while the Stokes sideband
is highly suppressed, as the photon density of state is
peak around ω = ωm; while in the negative-detuning case
∆ = −ωm, the situation for these two sidebands swaps;
(ii) we are using heterodyne detection scheme instead of
photon counting, where the outgoing field is mixed with
a large coherent optical field (reference light) before the
photodetector, to measure the output amplitude quadra-
ture, and the signal is linear proportional to the posi-
tion of the oscillator, as we mentioned earlier. Interest-
ingly, there is a direct connection between the spectra of
amplitude quadrature measured in the experiment and
the photon emission spectra that are obtained if making
photon-counting measurements. To show this connec-
tion, we use the fact that

[Ŷ1(ω), Ŷ †1 (ω′)] = 0 (43)
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which is a direct consequence of [ŷ(t), ŷ(t′)] = 0 (ŷ is

equal to Ŷ1 normalized with respect to the mechanical
displacement [cf. Eq. (31)]), and we have

〈Ŷ1(ω)Ŷ †1 (ω′)〉sym = 〈Ŷ †1 (ω′)Ŷ1(ω)〉

=
1

2
[〈âout(−ω′)â†out(−ω)〉+ 〈â†out(ω

′)âout(ω)〉] . (44)

Take the positive-detuning case ∆ = ωm for in-
stance, âout(−ω) contains mostly vacuum and negligi-
ble sideband signal due to suppression of the Stokes
sideband around ωlr − ωm by the cavity, namely,

〈âout(−ω′)â†out(−ω)〉 ≈ 2π δ(ω − ω′). The second term
gives the emission spectrum for the output photons
shown in Eq. (40); therefore, the single-sided spectral
density of the output amplitude quadrature reads:

SY1Y1(ω) = 1 + 2ΓAS(ω). (45)

By normalizing the spectrum with respect to the mechan-
ical displacement, we have

Syy(ω)|∆=ωm =
κr

2Ḡ2
0

[1 + 2ΓAS(ω)] . (46)

Similarly, by following the same line of thought, we get

Syy(ω)|∆=−ωm =
κr

2Ḡ2
0

[1 + 2ΓS(ω)] . (47)

The above two equations give identical results to Eq. (37).
Therefore, the output spectra obtained in our heterodyne
detection differ from those in the photon-counting mea-
surement only by a constant noise floor, which originates
from vacuum fluctuation of the amplitude quadrature.
After subtracting this noise floor, we simply recover the
emission spectra obtained from taking photon-counting
measurement.

III. GENERAL LINEAR MEASUREMENTS OF
THE ZERO-POINT FLUCTUATION

Based on the analysis of the specific experiment of
Ref. [24] in the previous section, here we comment on
the general features of linear quantum measurements in-
volving reading out zero-point fluctuation of a mechan-
ical oscillator. We start from discussing nature of the
zero-point mechanical fluctuation in Sec. III A, proceed
to discussion of measurements of it in Sec. III B, and fi-
nally end in Sec. III C which discusses its effect on sen-
sitivity for measuring external forces and the connection
to the SQL.

A. The nature of zero-point mechanical fluctuation

First of all, let us take a closer look at the nature of the
zero-point fluctuation of a realistic harmonic oscillator,
which consists of a mechanical mode with eigenfrequency

ωm and finite decay rate κm. Suppose we initially decou-
ple the oscillator from its environmental heat bath and
turn on the coupling at t = 0. In the Heinserberg picture,
the position and momentum of the oscillator at t > 0 will
be

x̂q(t) = x̂free(t) +

∫ t

0

χ(t− t′)F̂q(t′)dt′ , (48a)

p̂q(t) = p̂free(t) +m

∫ t

0

χ̇(t− t′)F̂q(t′)dt′ , (48b)

where

x̂free(t) = e−κmt/2

[
x̂(0) cosωmt+

p̂(0)

mωm
sinωmt

]
,

(49a)

p̂free(t)

mωm
= e−κmt/2

[
−x̂(0) sinωmt+

p̂(0)

mωm
cosωmt

]
− mκm

2
x̂free(t) , (49b)

are contributions from the free evolution of the initial
Schrödinger operators (i.e., undisturbed by the environ-
ment), which decay over time, and get replaced by con-
tributions from the environmental heat bath [integrals on
the right-hand side of Eqs. (48a) and (48b)]. Note that
for any oscillator with non-zero decay rate, it is essential
to have bath operators entering over time, otherwise the
commutation relation between position and momentum:

[x̂q(t), p̂q(t)] = i ~ (50)

will not hold at t > 0 because of

[x̂free(t), p̂free(t)] = i ~ e−κmt . (51)

This dictates that the heat bath must be such that the
additional commutator from terms containing F̂q exactly
compensate for the decay in Eq. (51), which leads to
the quantum fluctuation-dissipation theorem (see e.g.,
Ref. [37]).

It is interesting to note that this “replenishing” of com-
mutators has a classical counterpart, since commutators
are after all proportional to the classical Poisson Bracket.
More specifically, for a classical oscillator with decay, we
can write a similar relation for Poisson Brackets among
the position and momentum of the oscillator, plus envi-
ronmental degrees of freedom. The replenishing of the
position-momentum Poisson Bracket by environmental
ones, in classical mechanics, can also be viewed as a con-
sequence of the conservation of phase-space volume, fol-
lowing the Liouville Theorem. A decaying oscillator’s
phase-space volume will shrink, and violate the Liouville
Theorem — unless additional phase-space volume from
the environmental degrees of freedom is introduced.

Nevertheless, the definitive quantum feature in our sit-
uation is a fundamental scale in the volume of phase
space, which is equal to ~. Here we note that if κm � ωm,
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when reaching the steady state with x̂free and q̂free de-
cayed away, we have

∆xq ·∆pq ≈ mωm
∫
dω

2π
Sqxx(ω) , (52)

where Sqxx ≡ |χ|2S
q
FF . Although Sqxx depends on the spe-

cific scenario, they are all constrained by a Heisenberg-
like relation of,

Sqxx(ω) ≥ 2~ Imχ(ω), (53)

which is a straightforward consequence of the commu-
tation relation in Eq. (11). The equality is achieved at
the ground state §. This enforces the same Heisenberg
Uncertainty relation:

∆xq ·∆pq ≥ ~/2, (54)

as an ideal harmonic oscillator whose quantum fluctua-
tions arise “on its own”, instead of having to be driven by
the surrounding environment. Therefore, in the steady
state, the zero-point fluctuation of the mechanical oscil-
lator can be viewed as being imposed by the environment
due to linearity of the dynamics.

B. Measuring the zero-point fluctuation

Having clarified the nature of quantum zero-point fluc-
tuations of a mechanical oscillator in the steady state,
let us argue that the effects seen in Ref. [24] are actu-
ally generic when one tries to probe such fluctuations,
namely: the correlation between sensing and back-action
noise can be at the level of the zero-point fluctuation
itself.

Let us start our discussion here from Eq. (5), namely,

[ŷ(t), ŷ(t′)] = 0 , (55)

and the fact that ŷ consists of sensing noise, back-action
noise, and finally the zero-point fluctuation of the me-
chanical oscillator [cf. Eq. (8)]:

ŷ(t) =
ẑ(t)

α
+ α

∫ t

−∞
χ(t− τ)F̂BA(τ)dτ + x̂q(t) . (56)

Here we have added a factor α, which labels the scaling of
each term as the measurement strength which is propor-
tional to the square root of the readout beam power. Let
us assume that the dynamical response χ of the oscilla-
tor is not modified due to couplings to the measurement
field, and Eq. (55) continues to hold for the same set of ẑ

and F̂BA, for a large set of α and χ: basically the measur-
ing device works for different mechanical oscillators with
different measuring strength.

§ A generalization of this to thermal states will be the fluctuation-
dissipation theorem [37].

Since Eq. (55) remains valid for all values of α, we
extract terms with different powers of scaling, and obtain

[ẑ(t), ẑ(t′)] =
[
F̂BA(t), F̂BA(t′)

]
= 0 , (57)

and ∫ t′

−∞
χ(t′ − τ)

[
ẑ(t), F̂BA(τ)

]
dτ

−
∫ t

−∞
χ(t− τ)

[
ẑ(t′), F̂BA(τ)

]
dτ

+ [x̂q(t), x̂q(t
′)] = 0 , ∀ t, t′ . (58)

This becomes∫ +∞

0

χ(τ) [CzF (t− τ)− CzF (−t− τ)] dτ = −i ~χ(t) ,

(59)

for all values of t, where we have defined

CzF (t′ − t) ≡
[
ẑ(t), F̂BA(t′)

]
. (60)

Here the dependence is only through t′ − t because the
system assumed to be time-invariant. We also note that
since ẑ is an out-going field, CzF (t′−t) must vanish when
t′− t > 0, otherwise any generalized force applied on the
out-going field ẑ(t) — detached from the mechanical os-
cillator — can still dynamically influence the mechanical
motion at later times (future) through F̂BA(t′), which vi-
olates the causality [11, 35]. As proved in the App. B, in
order for Eq. (59) to be satisfied for all possible response
functions of the oscillator, we must have

CzF (t) = −i ~δ−(t) , (61)

where δ−(t) is the Dirac delta function with support only
for t < 0. In other words,

[ẑ(t), F̂BA(t′)] = −i ~ δ−(t′ − t) . (62)

Eq. (56), plus the commutation relations in Eqs. (57)
and (62), then provides a general description of linear
measuring devices which do not modify the dynamics of
the mechanical oscillator — simply from the requirement
that the out-going field operators at different times must
commute [cf. Eq. (55)]. In particular, non-vanishing
commutator [x̂q(t), x̂q(t

′)], which underlies the existence
of the zero-point fluctuation, is canceled in a simple way
by the non-vanishing commutator between the sensing
noise and the back-action noise [cf. Eq. (62)].

Now turn to the noise content of the output ŷ(t), i.e.,
the spectrum,

Syy =
Szz
α2

+ 2Re[χ∗SzF ] + α2SBA
FF + Sqxx. (63)

Let us consider experiments with relatively low measure-
ment strength, so that the first term Szz/α

2 from the
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sensing noise dominates the output noise. The next-order
terms contain: (i) correlation between the sensing noise
and the back-action noise — SzF ; and (ii) the mechanical
fluctuation — Sqxx. If we assume nearly ground state for
the mechanical oscillator

Sqxx(ω) ≈ 2~ Imχ(ω) , (64)

which, for κm � ωm, gives∫
dω

2π
Sqxx(ω) ≈ ~

2mωm
. (65)

If SzF (ω) does not change noticeably within the mechan-
ical bandwidth, then∫

dω

2π
2Re[χ∗(ω)SzF (ω)] ≈ − 1

2mωm
ImSzF (ωm) . (66)

Because of Eq. (62), the typical magnitude for SzF is nat-
urally ¶

|SzF | ∼ ~ . (67)

Therefore, contributions to the output noise from quan-
tum correlation SzF and mechanical fluctuation Sqxx can
generically become comparable to each other when the
mechanical oscillator is approaching the quantum ground
state. The result presented in Ref. [24] therefore il-
lustrates two typical cases of this generic behavior [cf.
Eq. (20)].

C. Measuring external classical forces in presence
of zero-point fluctuation

Finally, let us discuss the role of zero-point fluctuation
in force measurement, when the mechanical oscillator is
used as a probe of external classical forces not far away
from the mechanical resonant frequency. The force sen-
sitivity of such a linear measurement device, in terms of
spectral density SF , is obtained by normalizing the dis-
placement sensitivity Syy with respect to the mechanical
response function χ: SF ≡ Syy/|χ|2. Specifically, from
Eq. (15), we have

SF (ω) =
Szz(ω)

|χ(ω)|2
+ 2Re

[
SzF (ω)

χ(ω)

]
+ SBA

FF (ω) + SqFF (ω) .

(68)
Because of the commutation relations in Eqs. (57) and
(62), a Heisenberg Uncertainty Relation exists among the

spectral densities of ẑ and F̂BA, and that is

Szz(ω)SBA
FF (ω)− SzF (ω)SFz(ω) ≥ ~2 . (69)

¶ In general, the commutator does not impose any bound on the
cross correlation. Here, in a strict sense, is an order-of-magnitude
estimate.

1

2

frequency range 
relevant to

gravitational-wave
detectors

table-top 
experiments

FIG. 3: (color online) Figure illustrating that total quantum

limitation SQtot
F (red) for force sensitivity and contribution

from zero-point fluctuation Szp
F (blue). For clarity, we divide

both by the SQL and use log-log scale.

When the the sensing noise ẑ and the back-action noise
F̂BA are not correlated — SzF = SFz = 0, we have

Szz(ω)SBA
FF (ω) ≥ ~2 . (70)

The above inequality represents a trade-off between sens-
ing noise ẑ and back-action noise F̂BA. Correspondingly,
the force sensitivity will have a lower bound :

SF (ω)|SzF =0 =
Szz(ω)

|χ(ω)|2
+ SBA

FF (ω) + SqFF (ω)

≥ 2~
|χ(ω)|

+ (4〈n〉+ 2)~mκmωm . (71)

If the mechanical oscillator is in its quantum ground
state, namely 〈n〉 = 0, we obtain:

SF (ω) ≥ 2~
|χ(ω)|

+ 2~mκmωm ≡ SQtot
F . (72)

The first term is the usual Standard Quantum Limit
(SQL) for force sensitivity with mechanical probes [11,
12]:

SSQL
F ≡ 2~

|χ(ω)|
= 2~m

√
(ω2 − ω2

m)2 + κ2
mω

2 . (73)

The second term,

Szp
F ≡ 2~mκmωm , (74)

arising from the zero-point fluctuation due to mechani-
cal quantization, also limits the sensitivity. As we can
learn from Eqs. (68), (69) and (72), the quantum limit,
can be surpassed, in principle indefinitely, by building up
quantum correlations between the sensing noise ẑ and the
back-action noise F̂BA — in practice the beating factor
will be limited by the available optical power and the
level of optical losses. However, the limit imposed by
zero-point fluctuation cannot be surpassed, and it can
only be mitigated by lowering κm, i.e., increasing the
mechanical quality factor.

Braginsky et al. [38] argued that mechanical quantiza-
tion does not influence the force sensitivity when measur-
ing classical forces with mechanical probes — one only
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FIG. 4: (color online) Figure illustrating effect of the me-

chanical decay rate (bandwidth) κm on SQtot
F (solid) and Szp

F

(dashed) — the larger the mechanical bandwidth, the lower
the force sensitivity (This plot is also in the log-log scale).

needs to evaluate the quantum noise due to the readout
field. But these authors had specifically pointed out that
they were focusing on ideal mechanical probes with in-
finitely narrow bandwidth (κm → 0) and observations
outside of that frequency band. This is close to the ac-
tual situation of free-mass gravitational-wave detectors,
in which the mechanical oscillator is the differential mode
of four mirror-endowed test masses hung as pendulum
with eigenfrequencies around 1 Hz and very high quality
factor, while the detection band is above 10 Hz, well out-
side the mechanical resonance. Indeed, from Eqs. (73)
and (74), we see that the effect of zero-point fluctuation
is only significant not far away from resonance — which
confirms Braginsky et al.’s result. More specifically, if
κm � ωm, we can write, for |ω − ωm| � ωm,

SSQL
F ≈ Szp

F

√
1 +

(
ω − ωm
κm/2

)2

. (75)

In particular, the limit imposed by zero-point fluctuation
is equal to SQL on resonance, and becomes less impor-
tant as |ω − ωm| becomes comparable to or larger than
the half bandwidth κm/2, as illustrated in Fig. 3. Note

that on an absolute scale: SSQL
F (ω) is lower near the

mechanical resonance, while Szp
F (ω) is independent from

frequency; at any frequency, lowering κm, while fixing
ωm and keeping the oscillator at ground state, always re-
sults in lower noise, as illustrated in Fig. 4. Suppose we
are free to choose from ground-state mechanical oscilla-
tors with different ωm and κm as our probe, and that
we are always able to reach the SQL at all frequencies,
then: (i) if we know the frequency content of target sig-
nals, we can choose probes that are closely resonant with
the target, and (ii) regardless of signal frequency, probes
with lower κm, or equivalently, higher mechanical quality
factor, always provide better force sensitivity.

IV. CONCLUSION

We have shown, within the framework of quantum
measurement theory, that the asymmetry in output spec-

tra observed by Safavi-Naeini et al. can be explained
as due to the quantum correlation between the sensing
noise and the quantum back-action noise; this experiment
therefore provides a clear signature of quantum back-
action onto mechanical systems. More broadly, we have
shown that having quantum-noise correlations showing
up at the same level as the zero-point fluctuations is a
generic feature of measurements that attempt to measure
the zero-point fluctuation. We have further shown that
when an experimentally prepared ground-state mechan-
ical oscillator is used as a probe for classical forces near
its resonant frequency, its mechanical quantization —
through zero-point displacement fluctuation — does im-
pose an addition noise background. This additional noise
vanishes only if the oscillator’s bandwidth approaches
zero, i.e., when the oscillator becomes ideal.
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Appendix A: Symmetrized cross spectral density

In this article, as in Ref. [14], we use the single-sided
symmetrized cross spectral density, which, given a quan-
tum state |ψ〉, is defined between a pair of operators Â

and B̂ as:

SAB(ω)δ(ω − ω′) ≡ 1

π
〈ψ|Â(ω)B̂†(ω′)|ψ〉sym

=
1

2π
〈ψ|Â(ω)B̂†(ω′) + B̂†(ω′)Â(ω)|ψ〉 . (A1)

The symmetrization process here allows us to preserves
bilinearity of S̃ on its entries, i.e.,

SA,c1B+c2C = c∗1SAB + c∗2SAC , (A2a)

Sc1A+c2B,C = c1SAC + c2SBC . (A2b)

More importantly, we can show that

SAA > 0 (A3)
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for any field Â, even if
[
Â(ω), Â†(ω′)

]
6= 0. The posi-

tivity (A3) allows us to interpret SAA as the fluctuation
variance per unit frequency band — as in the classical
case.

Appendix B: Commutation relation between ẑ and F̂

Defining

f(t) ≡ CzF (t) + i~δ−(t) (B1)

we convert Eq. (59) into∫ +∞

0

χ(τ) [f(t− τ)− f(−t− τ)] dτ = 0 . (B2)

Assuming analyticity of the Fourier Transform of f(t), it
must be written as

f̃(ω) =
∑
k

fk
ω − ωk

(B3)

with ωk all located on the upper half of the complex
plane (not including the real axis). Fourier transforming
Eq. (B2) gives us

χ̃+(ω)
∑
k

[
fk

ω − ωk
− f∗k
ω − ω∗k

]
= 0 , ω ∈ R . (B4)

Because the set {ωk} is within the upper-half complex
plane (excluding the real axis), the set {ω∗k} must be
within the lower-half complex plane (excluding the real
axis) — and the two sets do not intersect. For this reason,
Eq. (B4) requires fk to all vanish, and hence

CzF (t) = −i~ δ−(t) . (B5)
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