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Erasing quantum-mechanical distinguishability is of fundamental interest and also of practical
importance, particularly in subject areas related to quantum information processing. We demon-
strate a method applicable to optical systems in which single-mode filtering is used with only linear
optical instruments to achieve quantum indistinguishability. Through “heralded” Hong-Ou-Mandel
interference experiments we measure and quantify the improvement of indistinguishability between
single photons generated via spontaneous four-wave mixing in optical fibers. The experimental re-
sults are in excellent agreement with predictions of a quantum-multimode theory we develop for
such systems, without the need for any fitting parameter.
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I. INTRODUCTION

Quantum indistinguishability is inextricably linked to
several fundamental phenomena in quantum mechanics,
including interference, entanglement, and decoherence
[1–3]. For example, only when two photons are indis-
tinguishable can they show strong second-order inter-
ference [4]. From an applied perspective, it forms the
basis of quantum key distribution [5], quantum comput-
ing [6], quantum metrology [7], and many other impor-
tant applications in modern quantum optics. In practice,
however, the generation and manipulation of quantum-
mechanically indistinguishable photons is quite challeng-
ing, primarily due to their coupling to external degrees
of freedom.
In this paper, we investigate a pathway to erasing

quantum distinguishability by making use of the Heisen-
berg uncertainty principle. This method, although de-
signed specifically for optical systems, might be general-
izable to other physical systems, including those of atoms
and ions. It uses a filtering device that consists of only
linear optical instruments, which in our present rendering
is a temporal gate followed by a spectral filter. The gate’s
duration T and the filter’s bandwidth B (in angular-
Hertz) are chosen to satisfy BT < 1 so that any photon
passing through the device loses its temporal (spectral)
identity as required by the Heisenberg uncertainty prin-
ciple. In this sense, the device behaves as a single-mode
filter (SMF) that passes only a single electromagnetic
mode of certain temporal profile while rejecting all other
modes. Hence, applying such a SMF to distinguishable
single photons can produce output photons that are in-
distinguishable from each other [8, 9]. We note that the
general principle underlying the use of a SMF is known
and similar methods have been applied in various ex-
periments [10, 11]. However, a systematic, quantitative
analysis has yet to be performed.
Here we present such a systematic study of the SMF

method, both theoretically and experimentally, consid-
ering specifically a fiber-optical system. In theory, we
develop a comprehensive quantum multimode model of

light scattering and detection in optical fiber systems,
taking into account multi-pair emission, Raman scatter-
ing, transmission loss, dark counts, and other practical
parameters. Our simulations using this model show that
for appropriate parameters very high levels of quantum
indistinguishability can be achieved with use of the SMF,
while paying a relatively low cost in terms of photon
loss. In contrast, using tight spectral or temporal filtering
alone for similar purposes results in much higher photon
loss [12, 13]. In fact, in Refs. [8, 9] we have shown that
the use of an appropriate SMF can significantly improve
the performance of heralding-type single-photon sources
made from optical fibers or crystalline waveguides [14–
17].
In experiment, we measure in two different regimes of

operation Hong-Ou-Mandel (HOM) interference between
single photons that are generated separately from two
sources. Specifically, pairs of signal and idler photons are
generated in two separate optical-fiber spools via spon-
taneous four-wave mixing. By detecting the idler pho-
tons created in each spool, we herald the generation of
their partner (signal) photons. To quantify their indis-
tinguishability, we mix the signal photons generated sep-
arately from the two spools on a 50:50 beamsplitter and
perform HOM interference measurements. We find that
the HOM visibility is quite low when the signal photons
have a temporal length T > 1/B, owing to the presence
of photons with many distinguishable degrees of freedom.
However, when T < 1/B, for which a SMF is effectively
realized, a much higher HOM visibility is obtained. This
result clearly shows that the SMF can be used to erase
the quantum distinguishability of single photons. The
experimental data are in good agreement with predic-
tions of the multimode model without the need for any
fitting parameter.

II. SMF THEORY

To understand our approach for erasing quantum dis-
tinguishability, we consider amplitude profiles f(t) and
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h(ω) for the time gate and the spectral filter, respec-
tively. The number operator for output photons is then
given by n̂ = 1

(2π)2

∫

dωdω′κ(ω, ω′)â†(ω)â(ω′) [18, 19],

where â(ω) is the annihilation operator for the incident
photons of angular-frequency ω, satisfying

[â(ω), â†(ω′)] = 2πδ(ω − ω′). (1)

κ(ω, ω′) =

∫

dt h∗(ω)h(ω′)|f(t)|2ei(ω−ω′)t (2)

is a Hermitian spectral correlation function, which can
be decomposed onto a set of Schmidt modes as

κ(ω, ω′) =

∞
∑

j=0

χjφ
∗
j (ω)φj(ω

′), (3)

where {φj(ω)} are the mode functions satisfying

∫

dωφ∗
j (ω)φk(ω) = 2πδj,k (4)

and {χj} are the decomposition coefficients satisfying 1 ≥
χ0 > χ1 > ... ≥ 0. Introducing an infinite set of mode
operators via (j = 0, 1, ...)

ĉj =
1

2π

∫

dωâ(ω)φj(ω) (5)

that satisfy [ĉj , ĉ
†
k] = δjk, the output photon-number op-

erator for the filtering device can be rewritten as

n̂ =

∞
∑

j=0

χj ĉ†j ĉj . (6)

This result indicates that {φj(ω)} have an intuitive phys-
ical interpretation: as “eigenmodes” with eigenvalues
{χj} of the filtering device. In this physical model, the
filtering device projects incident photons onto the eigen-
modes, each of which are passed with a probability given
by the eigenvalues. Specifically, for χ0 ∼ 1 and χj 6=0 ≪ 1
(achievable with an appropriate choice of spectral and
temporal filters, as shown below) only the fundamental
mode is transmitted while all the other modes are re-
jected. In this way, truly single-mode filtering can be
achieved. When combined with a single-photon detec-
tor, this can be extended to a single-mode, single-photon
detection system. Regardless of the type of spectral and
temporal filters used to achieve this kind of single-mode
filtering, such a system is capable of separating photons
which, even though they may exist in the same spectral
band and the same time-bin, have different mode struc-
tures.
As an example, in Fig. 1(a) we plot χ0, χ1, χ2 versus

c ≡ BT/4 for a rectangular-shaped spectral filter with
bandwidth B and a rectangular-shaped time window of
duration T [18, 20]. For c < 1, we have χ0 ≈ 1 whereas
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FIG. 1. (Color online) (a) χ0, χ1, and χ2 as functions of c.
(b) Plots of φ0, φ1, and φ2 for B = π/T (corresponding to
c = π/4).

χ1, χ2 ≪ 1, giving rise to approximately single-mode fil-
tering. Note that this behavior is true for any B, as
long as T < 4/B. In other words, {χj} depend only on
the product of B and T , rather than on their specific
values. Consequently, even a broadband filter can lead
to a single-mode measurement over a sufficiently short
detection window, and vice-versa. To understand this,
consider the case where a detection event announces the
arrival of a signal photon at an unknown time within the
window T . In the Fourier domain, this corresponds to a
detection resolution of 1/T in frequency. Given c < 1 or
1/T > B/4, the detector is thus unable to, even in princi-
ple, reveal the frequency of the signal photon. Therefore,
the signal photon is projected onto a quantum state in a
coherent superposition of frequencies within B [9]. This
can be seen in Fig. 1(b), where the fundamental detec-
tion mode has a nearly flat profile over the filter band
[−B/2, B/2]. Lastly, since T < 4/B is required, the pass
probability of the fundamental mode will be sub-unity,
but not significantly less than one.

III. EXPERIMENTS

To verify this theory of erasing quantum distinguisha-
bility via single-mode filtering, we perform a heralded
two-photon interference experiment [21–24] in both mul-
timode (c > 1) and single-mode (c < 1) regimes. HOM
interference between two photons originating from inde-
pendent photon-pair sources provides a test of indistin-
guishability. Appropriate choices of wavelength-division
multiplexers (spectral filters which select B) and the
width of pulses pumping the photon-pair sources (which
effectively sets the temporal window T in which photon
pairs are born) allow a transition from the multimode to
the single-mode regime.
The experimental setup is shown in Fig. 2. Both

heralded photon-pair sources are pumped using the
same system, consisting of 50-MHz repetition-rate pulses
carved from the output of either a continuous-wave (CW)
laser (for the multimode heralding experiment) or a
mode-locked laser (for the single-mode heralding experi-
ment). The pulse-carver is an optical amplitude modula-
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FIG. 2. (Color online) Experimental setup. A,B,C,D: single-
photon detectors.

tor (EOSPACE, Model AK-OK5-10) driven by the out-
put of a 20-Gbps 2:1 selector (Inphi, Model 20709SE),
which is clocked at 50 MHz by an electrical signal source
that also triggers the single-photon detectors (NuCrypt,
Model CPDS-4) used in the experiment. The carved
pulses are then amplified and fed to a 50:50 fiber splitter.
Each output branch of the splitter leads to a four-wave-
mixing (FWM) fiber spool (500 m of standard single-
mode fiber cooled to 77 K) in a Faraday-mirror config-
uration [25]. The Faraday mirror effectively doubles the
length of fiber available for four-wave mixing while si-
multaneously compensating for any polarization changes
which may occur in the spooled fiber. The signal and
idler photons are created via spontaneous four-wave mix-
ing and are filtered from the residual pump photons by
two cascaded filtering stages which provide ≈100-dB of
isolation. The filtered signal and idler photons then
pass through fiber polarization controllers (not shown in
Fig. 2) and the signal photons are led to the two input
ports of an in-fiber 50:50 coupler. Adjusting the polar-
ization controllers and careful temporal alignment with
use of a variable delay stage in the path of one of the
signal photons ensures that the signal photons arriving
at the 50:50 coupler are identical in all degrees of free-
dom: polarization, spectral/temporal, and spatial. Note
that even though these signal photons are identical, they
may still be partially or completely distinguishable (par-
ticularly in the multimode regime described above). This
distinguishability may arise from entanglement with dif-

ferent idler photons (heralds) or from the presence of
background photons that originate in the FWM fiber
owing to Raman scattering. Four InGaAs-based single-
photon detectors are used to count the photons, one each
at the outputs of the idler arms and the 50:50 coupler.
These detectors are gated at 50-MHz repetition rate syn-
chronous with the arrival of photons and have a dark-
count probability of 1.6 × 10−4 per pulse. Their quan-
tum efficiencies are approximately 20%. The delay stage
is used to vary the temporal overlap of the signal photons
while the photon counts are recorded.
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FIG. 3. (Color online) Optical transmission spectra for each
stage of the pump, signal, and idler filters. Each filter is com-
posed of two separate stages which together provide >100
dB of isolation for the signal and idler photons. The stages
are either fiber-coupled free-space double-pass transmission-
grating filters or DWDM filters (custom-made by AC Pho-
tonics, Inc.). (a) Spectra for the pump filter (formed by two
grating filters) and the signal and idler filters (each formed by
a grating and a DWDM filter) used in the multimode experi-
ment. (b) Spectra for the pump, signal, and idler filters used
in the single-mode experiment, each formed by two DWDM
filters centered at the respective wavelength. In both plots,
solid (green) and dashed (blue) traces correspond to the fil-
ters used in FWM source 1 and FWM source 2, respectively.

In the multimode experimental configuration, where
a CW laser (Santec, model TSL-210V) is used as the
pump, the temporal duration of the carved pulses is spec-
ified by the width of the electrical pulses provided to
the modulator, which is measured to be 100 ps, giving
T = 10−10 s. The signal and idler filters each con-
sist of a free-space diffraction-grating filter [full-width
at half-maximum (FWHM) ≈ 0.14 nm] followed by a
dense wavelength-division-multiplexing (DWDM) filter
(FWHM ≈ 0.4 nm). The resulting optical transmission
spectra are shown in Fig. 3(a), from which the effective
bandwidth of the signal and idler filters is determined to
be approximately 0.14 nm. In units of frequency, this
gives B/2π = 24.6 GHz so that BT = 2.5 × 2π. There-
fore, c = 3.8 and from Fig. 1, χ0 ≈ 1, χ1 ≈ 0.9 and
χ2 ≈ 0.5. Because χ1 and χ2 are not neglible, this case
corresponds to a multimode measurement.
In the single-mode experimental configuration, a 10-

GHz mode-locked laser (U2T, model TMLL1310) emit-
ting a train of 2-ps duration, nearly transform-limited
pulses is used as the pump. The signal and idler pho-
tons along with the pump pulses are each filtered by two
stages of DWDM filters. The resulting optical transmis-
sion spectra of these filters are shown in Fig. 3(b). The
bandwidth of the pump filter is measured to be 68.3 GHz,
from which the pump-pulse width and thus the effective
T is derived to be 6.4 ps. The bandwidths of the signal
and the idler filters, on the other hand, are both approx-
imately 0.4 nm, which give BT ≈ 0.4× 2π or c = 0.7. In
this case, χ0 ≈ 0.4, and χ1 and χ2 are nearly zero, giving
rise to a single-mode measurement.
In practice it is experimentally convenient to ana-

lyze the behavior of non-heralded two-photon coincidence
counts to precisely path-match the two signal arms. This
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FIG. 4. (Color online) (a) Accidental-subtracted A-B coinci-
dences recorded per 50 million pump pulses as a function of
the relative delay between signal photons in the multimode
configuration; and (b) in the single-mode configuration. Er-
ror bars are of the same size as the data markers. The red
curve is a Gaussian least-square fit to the data.

is because there are many more twofold coincidences than
fourfold coincidences in the system, which allows us to
study the quantum interference effect with much smaller
error bars and a much shorter measurement time. To this
end we define a twofold coincidence count to be when de-
tectors A and B (cf. Fig. 1) fire in the same time slot. We
define a twofold accidental-coincidence count to be when
detectors A and B fire in adjacent time slots. Finally,
we define a fourfold coincidence, the quantity of primary
experimental interest, to occur when all four detectors
fire simultaneously in the same time slot. Figure 4 shows
the variation in accidental-subtracted coincidences on de-
tectors A and B as the relative delay between the signal
photons from the two FWM sources is varied.
The recorded fourfold coincidence counts as a function

of the relative delay in the heralded HOM interference
experiment are plotted in Fig. 5. For the multimode ex-
perimental configuration, as shown in Fig. 5(a), the in-
terference visibility is only 19± 2%. In contrast, for the
single-mode configuration, a high visibility of 72 ± 7%
is obtained, as shown in Fig. 5(b). This is the highest
HOM interference visibility reported thus far for fiber-
based single-photon sources in the telecommunications
band. For these results, the transmission efficiencies of
the signal and idler photons from their generation site
in the FWM spools to the detectors are measured for
each arm and are found to be 3.4% (5.5%) for the signal
arms and 5.0% (7.0%) for the idler arms in the multi-
mode (single-mode) configuration. The photon-pair pro-
duction probabilities per pump pulse are measured to be
12.5% and 3.9% for the multimode and single-mode con-
figurations, respectively.

IV. EXPERIMENTS VERSUS THEORY

Although these experiments show a clear difference be-
tween the single-mode and multimode regimes, the the-
ory of single-mode detection presented above—in the ab-
sence of any systematic sources of noise—seems to predict
much higher visibilities, particularly for the single-mode
experiment where it seems that any entanglement with

the idler photons should have been eliminated by the
SMF. In fact, systematic sources of noise—from multi-
pair production, spontaneous Raman emission, loss, and
dark counts—do significantly affect the results. In order
to determine the extent to which these experimental re-
sults verify the theory of single-mode filtering presented
above, it is necessary to create a complete theoretical
model of multi-pair production, Raman emission, loss,
dark-count noise, and the interference between the two
arms of a real experimental system. For this goal, we
adopt the standard quantum-mechanical description (as-
suming phase matching and undepleted pump) of light
scattering in optical fibers at a few-photon level [26]:

âr(ℓ)s,a (ω) =

∫

dω′α(ω − ω′)b̂r(ℓ)s,a (ω′)

+ iγL

∫ ∫

dω1dω
′Ap(ω1)Ap(ω

′ + ω − ω1)(b̂
r(ℓ)
a,s )†(ω′)

+ i

∫ L

0

dz

∫

dω′m̂r(ℓ)(z, ω′)Ap(ω − ω′), (7)

where b̂
r(ℓ)
s,a (â

r(ℓ)
s,a ) are the input (output) annihilation

operators for the Stokes and anti-Stokes photons, re-
spectively, in the right (left) fiber spool. Ap(ω) is the
spectral amplitude of the pump in each fiber spool, with
2π

∫

dω|Ap(ω)|2 giving the pump-pulse energy; α(ω−ω′)
is determined self-consistently to preserve the commu-
tation relations of the output operators; γ is the fiber
SFWM coefficient, which we have assumed to be con-
stant; L is the effective length of the fiber spool; and
m̂r(ℓ)(z, ω) is the phonon-noise operator accounting for
the Raman scattering, which satisfies

[m̂r(ℓ)(z, ω), m̂r(ℓ)†(z′, ω′)] = 2πg(ω)δ(z − z′)δ(ω − ω′),
(8)

where g(ω) > 0 is the Raman-gain coefficient [27, 28].
For a phonon bath in equilibrium at temperature T , we
have the expectation

〈m̂r(ℓ)†(z, ω)m̂(z′, ω′)〉 = 2πg(ω)δ(z− z′)δ(ω−ω′)nT (ω),
(9)

where

nT (ω) =
1

e~|ω|/kBT − 1
+ θ(−ω) (10)

with kB the Boltzman constant, and θ(ω) = 1 for ω ≥ 0,
and 0 otherwise.
For the fourfold coincidence measurement depicted in

Fig. 5, the photon-number operators for detectors A, B,
C, D are given by

n̂M =
∑

jM

ηMχjM â†jM âjM + ζM d̂†M d̂M , (11)

for M = A, B, C, D. Here, ηM is the total detection
efficiency taking into account propagation losses and the
detector quantum efficiency. χjM is the j-th eigenvalue
of the filtering system for detector M . ζM measures the
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FIG. 5. (Color online) (a) Fourfold coincidence counts per
20 billion pump pulses recorded as a function of the relative
delay between signal photons in the multimode configuration,
and (b) fourfold coincidence counts per 10 billion pump pulses
recorded as a function of the relative delay in the single-mode
configuration. In both plots, the error bars are computed fol-
lowing the standard procedure of estimating statistical fluc-
tuations assuming Poisson distributions for the recorded co-
incidence and single counts. See text for more details on the
theory curves (blue) in both plots which are overlaid without
the use of any fitting parameter.

quantum-noise level of the detector as a result of the

dark counts and the after-pulsing counts. d̂M is a noise
operator obeying

[d̂M , d̂†M ′ ] = δM,M ′ . (12)

By this definition, the mean number of dark counts for

detector M is then given by the expectation ζM 〈d̂†M d̂M ′〉.
The bosonic operators

âjA(jB) =
1

2
√
2π

∫

A(B)

dω ×

×
[

e
iτω

2 ârs(ω)± e
−iτω

2 âℓs(ω)
]

φjA(jB)(ω)(13)

and

âjC(jD) =
1

2π

∫

C(D)

dω âr(ℓ)a φjC(jD), (14)

where τ is the amount of signal delay and “
∫

M dω” rep-
resents integral over the detection spectral band of the
detectorM . With n̂M so obtained, the positive operator-
valued measure for detector M to click is calculated to
be

P̂M = 1− : exp(−n̂M ) :, (15)

where “: :” stands for normal ordering of all the embraced
operators. The four-fold coincidence probability is then
given by 〈: P̂AP̂BP̂CP̂D :〉.
Applying the above theory to the experimental config-

urations presented above, we find the predicted visibil-
ities of 17% (multimode regime) and 72% (single-mode
regime)—in excellent agreement with the experimental
results. Note that because the theoretical overlays shown
in Fig. 5 are generated from the complete theory de-
scribed above, they require no fitting parameter. As a
result, we conclude that the theories of both single-mode
filtering and SFWM in the presence of noise are able
to accurately model our experiments in both the single-
mode and multimode regimes, and provide an important
new tool for the study of distinguishability in photonic
systems.

V. CONCLUSION

In conclusion, we have presented a systematic experi-
mental and theoretical study on erasing quantum distin-
guishability of single photons via single-mode filtering.
In experiment, we have measured the Hong-Ou-Mandel
interference between photons generated via heralding
from separate optical-fiber spools. In theory, we have
developed a comprehensive quantum multimode model
to describe time-bandwidth-limited detection of single
photons heralded via nonlinear light scattering in op-
tical fibers, taking into account the conditions present
in realistic experimental environments. By comparing
the HOM-interference visibilities obtained under differ-
ent operating regimes, we have quantitatively studied the
effect of single-mode filtering on the improvement of a
single photon’s quantum-state purity. The experimen-
tal data agree well in all cases with the predictions of
our quantum multimode model without the need for any
fitting parameter. These results, therefore, validate our
theory, which henceforth can be used to design optimal
single-photon sources from optical fibers and potentially
other nonlinear optical systems as well.
This research was supported in part by the Defense

Advanced Research Projects Agency (DARPA) under
the Zeno-based Opto-Electronics (ZOE) program (Grant
No. W31P4Q-09-1-0014) and by the United States Air
Force Office of Scientific Research (USAFOSR) (Grant
No. FA9550-09-1-0593).
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