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It is shown that slow Bragg soliton solutions are possible in nonlinear complex parity-time (PT )
symmetric periodic structures. Analysis indicates that the PT -symmetric component of the periodic
optical refractive index can modify the grating band structure and hence the effective coupling
between the forward and backward waves. Starting from a classical modified massive Thirring
model, solitary wave solutions are obtained in closed form. The basic properties of these slow
solitary waves and their dependence on their respective PT -symmetric gain/loss profile are then
explored via numerical simulations.
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I. INTRODUCTION

Periodic structures play an important role in the
general area of optics. As in solid state physics, the peri-
odicity in their refractive index can lead to a succession
of photonic band gaps and transmission bands. In many
applications, these properties are used to obtain high
reflectivities, frequency filtering, and high-dispersion
characteristics [1]. Index gratings, whether in the bulk
[2] or embedded in optical fibers [3, 4], are examples of
such structures. Even though in principle these periodic
configurations can always be rigorously analyzed using a
Floquet-Bloch approach, on many occasions a coupled-
mode formalism will suffice. As shown by Kogelnik,
this latter formalism is particularly successful when
the periodic index perturbation is weak, in which case
the coupling between the forward and backward waves
occurs over a distance of several wavelengths [5]. In this
regime, the interaction can be described through the
so-called slowly varying approximation, which in turn
leads to a relatively simple system of coupled equations.

The behavior of Kerr nonlinear optical periodic sys-
tems was first addressed in 1979 under continuous-wave
conditions in conjunction with optical bistability [6].
Few years later, it was realized that this same system
can also support a special class of soliton solutions-the
so called Bragg solitons [7–9]. Unlike optical solitons
propagating in nonlinear dispersive fibers, this family
of waves is made possible by nonlinearly interlocking
both the forward and backward propagating modes
[10, 11]. In doing so, these wavepackets ”open up” a
defect band within the forbidden band gap thus allowing
energy transport. Given that under Bragg conditions
this propagation is linearly forbidden (the grating acts
like a distributed mirror), the resulting propagation can
be very slow as in the case of self-induced transparency.
In general, the velocity of Bragg solitons can range
from zero (fully immobile light) to c/n, depending on

excitation conditions. We would like to emphasize that
so far, this class of waves has been primarily inves-
tigated in conservative systems. The question arises,
as to how they will behave in non-conservative envi-
ronments, especially in the presence of linear gain or loss.

Parity-time (PT ) symmetry in optics has recently
attracted considerable attention [12–29]. While PT
symmetry was first explored within the quantum domain
[30–33], it is in optics that has found a straightforward re-
alization where its implications can be directly observed
and studied [14, 15]. As shown in [12, 13], an optical
system obeys PT symmetry provided that its complex
refractive index distribution n(r) = nR(r) + inI(r)
satisfies the condition n∗(r) = n(−r) . In other words,
the real index profile must be an even function of
position while the gain/loss must be odd. It can be
shown that for such structures, a real propagation
constant (eigenenergies in the Hamiltonian language)
exists for some range (exact PT -symmetric phase) of the
gain/loss coefficient. For larger values of this coefficient
the system undergoes a spontaneous symmetry breaking,
corresponding to a transition from real to complex spec-
tra (broken PT -symmetric phase). The phase transition
point, shows all the characteristics of an exceptional

point (EP) singularity. Abrupt PT -symmetry breaking
has been recently observed in both active and passive
experimental arrangements [14, 15, 28]. In addition non-
reciprocity in propagation as well as double refraction
and energy oscillations have been predicted in periodic
lattices and coupled structures. The possibility of
unidirectional invisibility was put forward in linear and
nonlinear PT -symmetric gratings and the properties of
PT -symmetric scatterers and lasers were also discussed
[23, 24]. Finally, along somewhat different lines, the
prospect for static optical solitons in PT -periodic arrays
has been considered in several studies [34–38].

In this work we demonstrate that a new family of
optical Bragg solitons is possible in Kerr nonlinear
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PT -symmetric periodic structures. Starting from a
classical modified massive Thirring model [39], solitary
wave solutions are obtained in closed form. The basic
properties of these slow solitary waves and their de-
pendence on their respective PT -symmetric gain/loss
profile are explored and pertinent numerical simulations
are carried out to elucidate their behavior. We also show
that at the exceptional point, the evolution equations
decouple, thus allowing a special class of solutions.

II. THEORETICAL ANALYSIS

We begin our work by considering a PT -symmetric
optical grating having the following periodic complex re-
fractive index distribution: let us consider a fiber with
the following refractive index of the core:

n = n0 + n1Rcos(
2π

Λ
z) + in1Isin(

2π

Λ
z) + n2|E|2 (1)

In this profile the first term stands for the refractive index
background of the material involved while the three other
terms are considered to be small perturbations on n0; the
second term describes periodic Bragg grating, the third
term represents the superimposed complex PT potential
(gain or loss) and the last term accounts for the Kerr
nonlinearity. We now express the solution as a sum of
forward and backward propagating waves:

E = Ef (z, t)exp[i(β0z−ω0t)]+Eb(z, t)exp[−i(β0z+ω0t)]
(2)

where ω0 = 2πc/λ0 is the carrier angular frequency, λ0 is
the free space wavelength and β0 = n0ω0/c is the un-
perturbed propagation constant. Finally Ef (z, t) and
Eb(z, t) represent slowly varying amplitudes for the for-
ward and backward waves respectively. In this case, it
can be directly shown that the two slowly varying enve-
lope functions satisfy the following coupled wave equa-
tions:

+i

(

∂Ef

∂z
+

1

v

∂Ef

∂t

)

+ (κ+ g) e−i2δzEb

+ γ(|Ef |2 + 2|Eb|2)Ef = 0,

(3a)

−i
(

∂Eb

∂z
− 1

v

∂Eb

∂t

)

+ (κ− g) e+i2δzEf

+ γ(|Eb|2 + 2|Ef |2)Eb = 0,

(3b)

In the above equations v = c/n0 is the wave velocity in
the background material, κ = πn1R/λ0 is the coupling
coefficient arising from the real Bragg grating itself, and
g = πn1I/λ0 is the anti-symmetric coupling coefficient
arising from complex PT potential term. In addition,
δ = (n0/c)(ω0 − ωB) is a measure of detuning from the
Bragg angular frequency ωB = πc/(n0Λ) and γ = n2ω0/c
is the self-phase modulation constant.

In the linear regime, the properties of Eq. (3) can be
readily understood by using the following gauge trans-
formation, Ef = Fe−iδzeivδt, Eb = Beiδzeivδt , in which
case one obtains:

+ i
(

∂F
∂z + 1

v
∂F
∂t

)

+ (κ+ g)B = 0, (4a)

− i
(

∂B
∂z − 1

v
∂B
∂t

)

+ (κ− g)F = 0, (4b)

By assuming time harmonic solutions of the form,
(F,B) = (F0, B0)exp (i(Kz − Ωt)) we arrive at the dis-
persion relation:

K2 =
Ω2

v2
− (κ2 − g2) (5)

The effect of the PT -symmetric term arising from g on
the overall dispersion characteristics of this Bragg grat-
ing is obvious. In essence, its presence can effectively
shift the photonic band gap as illustrated in Fig. 1, for
different ratios of g/κ. In Fig. 1, the dispersion prop-

FIG. 1. (Color online) Band structure of a PT -symmetric
periodic grating (linear case) for different ratios of g/κ; (a) 0,
(b) 0.8, (c) 1, (d) 1.2

erties of this periodic PT grating are depicted for three
different regimes, depending on the ratio of g/κ; a) for
g < κ (below PT -symmetry breaking threshold) the
band structure has essentially the shape of an ordinary
Bragg grating-with the photonic band gap reduced, b)
for g = κ (at the PT threshold or exceptional point)
the band gap is closed and the dispersion curve is identi-
cal to that expected from the homogeneous background
material, and c) for g > κ (above threshold) where no
band gap exists and the dispersion relation is totally dif-
ferent in shape. As Fig. 1(d) illustrates, above the PT -
symmetry breaking threshold, around the origin, there
is always a range of wavevectors associated with com-
plex frequencies. As we will see, this latter observa-
tion explains why in this case field configurations can
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grow/decay exponentially with propagation distance. In
addition, in this same regime the group velocity is always
larger than velocity of light within the background ma-
terial. In this work, we mainly restrict our attention in
the first range, i.e., we will assume that the PT grating
will be operated below the PT threshold where the entire
frequency spectrum is real.

III. NONLINEAR DYNAMICS AND SOLITARY

WAVE SOLUTIONS

In this section we investigate the existence of solitary
wave solutions for the coupled wave Eqs. 3. To do so,
we exploit the existing similarity between Eqs. 3 and
of that of the massive Thirring model [39]. By intro-

ducing the two parameters ρ =
√

(κ− g)/(κ+ g) and

κρ =
√

κ2 − g2 and by employing the gauge transforma-
tions Ef = Fe−iδzeivδt, Eb = ρBeiδzeivδt, these coupled
wave equations can be written in the following form:

+ i
(

∂F
∂z

+ 1

v
∂F
∂t

)

+ κρB + γ
(

|F |2 + 2ρ2|B|2
)

F = 0, (6a)

− i
(

∂B
∂z

− 1

v
∂B
∂t

)

+ κρF + γ
(

ρ2|B|2 + 2|F |2
)

B = 0. (6b)

We note that the above mentioned gauge transformation
is only valid when κ > g, e.g. below the PT threshold
point. As a next step we consider a solution of the form:

(F,B) = α(ψf , ψb)e
iη(z,t) (7)

where the constant α and the function η(z, t) remain to
be determined. On the other hand, (ψf , ψb) represent
solutions to the Thirring model [8–10]:

ψf =+
√

κρ

2γ
1
∆sin(σ)e

iΦsech
(

θ − iσ2
)

, (8a)

ψb = −
√

κρ

2γ∆sin(σ)e
iΦsech

(

θ + iσ2
)

, (8b)

where Φ and θ are functions of z and t defined as follows:

θ = κρsin(σ)
z − vmt√
1−m2

(9)

Φ = κρcos(σ)
mz − vt√
1−m2

(10)

In the above, the dimensionless quantity m is defined as
m = (1−∆4)/(1 +∆4) and finally ∆ and σ (0 < σ < π)
are free parameters. After inserting these solutions into
Eq. 6 we then obtain:

dη

dθ
= +

(

1

2

α2

∆4 + ρ2α2 − 1
)

sin(σ)
∣

∣sech(θ − iσ
2
)
∣

∣

2
,(11a)

dη

dθ
=−

(

1

2
α2ρ2∆4 + α2 − 1

)

sin(σ)
∣

∣sech(θ − iσ
2
)
∣

∣

2
(11b)

A valid solution of Eqs. 11 requires that both sides are
equal. This condition in turn determines the unknown
coefficient α:

α =

(

1 + ρ2

2
+

1 + ρ2∆8

4∆4

)−1/2

(12)

Finally η can then be obtained by integrating either one
of Eqs. 11:

η(θ) = 2

(

α2

2∆4
+ ρ2α2 − 1

)

tan−1
(

tanh(θ)tan
(σ

2

))

(13)
Here it is worth discussing the velocity and instantaneous
frequency associated with this soliton solution. Accord-
ing to Eqs. (8) and (9) the soliton velocity can be readily
obtained from:

vs =
1−∆4

1 + ∆4
v (14)

Hence the soliton velocity can reach any value between
zero (∆ = 1) and the group velocity in the background
medium (∆ = 0). Using an amplitude and phase repre-
sentation of Eqs. (7) and (8), the corresponding phase of
this soliton solutions could be written as,

Ξ = η +Φ± tan−1
(

tanh(θ)tan
(σ

2

))

(15)

where the plus and minus signs correspond to the for-
ward F and backward component B respectively. Note
that these phases are obtained after the aforementioned
gauge transformation. Hence to obtain the actual phases
for the forward and backward waves (Ef ,Eb) the term
vδt∓ δz must be added to these phases respectively. The
instantaneous angular frequency can then be obtained
from a first order term Taylor series expansion of the
respective phase of Eq. (15):

Ωs =
κρv√
1 − m2

cos(σ)

+
κρv√
1 − m2

sin(σ)

×
(

α2

2∆4
+ ρ2α2 − 1 ± 0.5

)

2m tan
(

σ

2

)

sech2 (θ(z, t = 0))

1 + tan2
(

σ

2

)

tanh2 (θ(z, t = 0))

(16)

Given that a gauge transformation was used, the quantity
vδ must be subtracted from the result of Eq. (16), which
is measured with respect to the carrier frequency. Thus
the total instantaneous angular frequency of this soliton
solution is given by ωs = Ωs−vδ+ω0 = Ωs+ωB. Accord-
ing to the linear dispersion analysis used in the previous
section, the frequency band gap for the PT -symmetric
grating can be obtained from −κρv < Ω < κρv. There-
fore, based on Eq. (16) the soliton frequency Ωs may or
may not lie in the band gap.
Up to this point, the solutions were obtained for κ > g,
i.e. before the PT symmetry is broken. On the other
hand, at exactly the PT -symmetry breaking point (κ =
g), the effective coupling coefficient κρ goes to zero. In
this case, the evolution equations are not completely de-
coupled and can be more effectively treated in the orig-
inal set of variables. By introducing the gauge transfor-
mations Ef = Fe−iδzeivδt, Eb = Beiδzeivδt , the coupled
wave Eqs. 3 reduce to:

+ i
(

∂F
∂z

+ 1

v
∂F
∂t

)

+ 2κB + γ
(

|F |2 + 2|B|2
)

F = 0, (17a)

− i
(

∂B
∂z

− 1

v
∂B
∂t

)

+ γ
(

|B|2 + 2|F |2
)

B = 0, (17b)

The linear coupling term between the forward and back-
ward waves now breaks the symmetry in the evolution
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equations. Note that there is no energy transfer from the
forward wave to the backward but the backward wave
facilitates energy transfer to the forward. This can be
better understood by considering the general solution of
Eq. 17b, given by:

B = b(y)exp

(

−iγ
[

b2(y)x + 2

∫ x

0

|F |2dξ
])

(18)

where x = z − vt, y = z + vt are forward and backward
propagation coordinates and b is an arbitrary function.
On the other hand Eqs. 17 admit a trivial solution when
B = 0. In this latter case, Eq. 17a reduces to that de-
scribing a forward propagating wave in the presence of
nonlinear self-phase modulation, which admits the fol-
lowing solution:

F = f(x)exp
(

iγf2(x)y
)

(19)

where f is an arbitrary function. In the other words, in
this regime the intensity profile of the forward propagat-
ing wave remains invariant during propagation while no
energy is transferred to the backward mode.

IV. NUMERICAL RESULTS

In this section we exemplify our results through nu-
merical simulations of Eqs. (6). The numerical methods
used for solving the coupled wave equations presented
are based on finite difference methods using different
discretizing approaches in order to account for numerical
stability [9, 10]. Here for discretization we use Euler’s
method that is based on a first order approximation
for both temporal and spatial derivatives. In this case
stability would not be an issue as long as the temporal
step size is way smaller than the spatial step size. First

FIG. 2. (Color online) Propagation dynamics of a solitary
wave solution in a PT -symmetric Bragg structure; intensity
evolution for both the forward (left) and backward waves
(right) during propagation.

we investigate the behavior of the solitary wave solution
given by Eqs. (7-13). Figure 2 depicts the corresponding
propagation dynamics of this solution for both the
forward and backward waves. According to this figure,
these two components propagate at a common velocity
and they have the same profile (except from a scaling

factor that is clear from Eqs. (8)). In this numerical
example g/κ = 0.8, and the space-time coordinates are
normalized as follows: Z = κz and T = κvt. In addition
the forward and backward electric fields are also here
normalized with respect the quantity E0 =

√

κ/γ. The
parameter σ that determines the beam width of these
solitons is taken to be π/2, and parameter ∆ that deter-
mines the common velocity of the two constituent waves
is taken to be 0.8. Figures (3,4) on the other hand show

FIG. 3. (Color online) Propagation dynamics of a Gaussian
wavepacket when injected only in the forward direction when
the PT grating is operated below the PT -symmetry breaking
threshold. (a),(b) depict the forward and backward compo-
nents respectively and (c) the associated energy as a function
of normalized time.

FIG. 4. (Color online) The same as figure 3 when the PT
grating is operated at the PT -symmetry breaking threshold.
(a),(b) depict the forward and backward components respec-
tively and (c) the associated energy as a function of normal-
ized time.

the evolution of a Gaussian pulse when it excites only
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the forward wave within such a PT -symmetric Bragg
grating, for two different cases: below the PT -symmetry
breaking point and at threshold. In these simulations
g/κ is set to be 0.8, 1 respectively. In these figure the
total energy of each component that is proportional
to

∫∞
−∞ |H(z, t)|2dz (where H is either a forward or a

backward wave) is also plotted as a function of time. In
the case of PT -symmetric soliton solutions this quantity
is constant with propagation.
According to Fig. 3, below PT threshold there is an
oscillatory power exchange between the forward and
backward waves. In this same regime, by increasing
the amplitude of the imaginary potential (amplitude of
gain or loss), the rate of this energy exchange decreases.
Figure 4 on the other hand, shows that the forward
Gaussian wave remains unchanged during propagation
while the backward wave is not excited at all. This
is in agreement with our previous discussion, as ex-
pected from equation (19). This is because there is no
energy coupling between the forward and backward wave.

V. CONCLUSIONS

In this work we have demonstrate that a new family
of optical Bragg solitons is possible in Kerr nonlinear

PT -symmetric periodic structures. By considering the
connection to the classical modified massive Thirring
model, solitary wave solutions were obtained in closed
form. The basic properties of these slow solitary waves
and their dependence on their respective PT -symmetric
gain/loss profile were explored and pertinent numerical
simulations were carried out to elucidate their behavior.
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