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Classical mechanics and classical ensembles have provided numerous insights into the dynamics of
strong-field double ionization. In this paper we show that in classical multi-dimensional modeling,
the laser intensity at which sequential ionization begins to dominate depends on the softening of the
interaction between electron and nucleus. We show that an unsoftened interaction in two or three
dimensions can lead to classical orbits in which an electron can start deep in the nuclear potential-
energy well, gain energy from the oscillating laser field, and ionize over the barrier without any
recollision. We discuss how this energy gain occurs, with the electron orbit favoring one side of the
nucleus or the other, depending on which side corresponds with the rising potential energy curve.

PACS numbers: 32.80.Rm, 32.60.+i

I. INTRODUCTION

Multi-electron atoms in strong laser fields are remark-
ably complex nonlinear systems that have proven chal-
lenging to understand[1]. Theoretical investigations of
such systems have employed various approaches, includ-
ing quantum mechanical S-matrix [2] and numerical stud-
ies, semiclassical[3] models, and fully classical analyses.
Two electrons in three dimensions have six degrees of
freedom, posing huge computational challenges for fully
quantum mechanical studies[4]. Consequently most of
the quantum mechanical studies have restricted the elec-
trons to one dimension[5] with a soft-core potential[6].
These quantum studies for two-electron systems revealed
very classical behavior[7] and helped to stimulate fully
classical examinations[8]. These are effective (especially
at visible and infrared wavelengths) because of the very
strong oscillating field and the quantum mechanical state
mixing that it induces. Classical studies are easily gener-
alizable to two electrons in three dimensions (see, e.g., [9]
and [10]), and have helped to provide valuable insights
into the dynamics of non-sequential double ionization.
Classical studies are also generalizable to three electrons
in multiple dimensions [11] and to molecular systems [12].
It is important to understand the characteristics and

behavior of classical ensembles because such ensembles
may be widely used in coming years for investigating
complex systems in external fields. Ensembles also link
strong field atomic physics with the fields of nonlinear
dynamics and chaos[13].
In fully classical systems, all escapes are over the bar-

rier – there is no tunneling. For a two-electron system,
the first ionization can occur in part through energy shar-
ing by the two electrons. One electron escapes over a sup-
pressed barrier when the laser field field is strong, leaving
the other fairly deep in the well. In the usual three-step
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model of Non-Sequential Double Ionization [3] the inner
electron remains deep in the well until the other electron
returns and imparts energy through recollision. The in-
ner electron may be directly ionized by the collision, or
there may be Recollision Excitation with Subsequent Ion-
ization. An alternative to recollision is independent se-
quential ionization, usually just called sequential ioniza-
tion, in which the inner electron escapes the well without
the benefit of additional energy from recollision. The pri-
mary question we consider in the present paper regards
the ability of the inner electron to ionize without any rec-
ollision. In a quantum mechanical system, we might say
that this electron could absorb photons or tunnel through
the barrier to escape. But what about in a classical sys-
tem? Mauger, Chandre, and Uzer [13] have shown that
in one dimensional systems there is a stable inner region
of phase space, from which an electron does not escape,
and a higher energy region from which it may escape if
given sufficient time. In the present paper we consider an
electron in a potential-energy well that is exposed to an
oscillating laser field, and we examine the electron’s abil-
ity to absorb energy from the laser and thereby escape
the well.

II. SEQUENTIAL IONIZATION IN 3D

CLASSICAL ENSEMBLES

One characteristic of classical atoms is the possibility
for autoionization – if there is no lower bound on a con-
fined electron’s energy, then e-e energy sharing can allow
one electron to dive deep into the well while the other
escapes. This challenge can be met by softening the in-
teraction with the nucleus [14] and thereby introducing
a minimum value for the potential energy. In our ensem-
ble work we typically have replaced the Coulomb poten-
tial −2/r with the softened potential −2/

√
r2 + a2, with

a = 0.825 a.u. (We use atomic units unless otherwise
specified.) Then the minimum value for the potential is
−2/a = −2.42, somewhat below the energy −2 of the
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FIG. 1. (Color online) Double ionization yield vs. laser inten-
sity for three-dimensional classical ensembles, with different
values of nuclear softening parameter a after first ionization
(as described in the text). For a = 0.4: green dashed curve
with diamonds is total DI yield, black long-dashed curve with
inverted triangles is sequential yield. For a = 0.01: red solid
curve with circles is total DI yield, blue dotted curve with
squares is sequential yield. The onset for sequential ioniza-
tion occurs at lower intensity for a more exposed nucleus.
Laser wavelength λ = 800 nm, ensemble size 50,000 atoms,
with a trapezoidal (1+3+1) pulse.

actual helium ion. Two electrons with combined energy
equal to the helium ground state (-2.24) can jostle and
share energy without either one being able to escape the
nuclear well until the laser is turned on.

In Ref. [15], Haan and Smith noted that if one electron
ionizes and then returns to the nucleus, it can backscat-
ter only if it encounters a strong force from the nucleus –
and a softened potential will not allow for backscattering.
Consequently they adopted a rather ad hoc approach of
changing the softening parameter, trajectory by trajec-
tory, after first ionization. We do the same – after one
electron ionizes, we change the value of the softening pa-
rameter from 0.825 to either 0.01 or 0.4. We adjust the
softening for both electrons simultaneously, and we ac-
count for any decrease in potential energy with a compen-
satory change in (radial) kinetic energy, so total energy
remains fixed. One good feature of this approach is that
it allows for exploration of the importance of the details
of the interaction between the electrons and nucleus.

In Fig. 1 we show double ionization yield vs. laser in-
tensity for wavelength 800 nm and for the two different
values of the final softening parameter, 0.01 and 0.4. In
both cases we obtain the familiar knee or plateau, but
the plateau applies over a much shorter intensity range
for the less softened potential [16].

We have backtracked all DI trajectories and classified
them according to their ionization mechanism. In se-
quential ionization[17], the second electron escapes the
well without absorbing energy from the first electron (i.e.,
without recollision). The figure shows sequential ioniza-

tion yields for each case and indicates that the transition
to sequential ionization occurs at a lower intensity for the
less softened potential.
If one checks the initial energies and the amount of

barrier suppression, it immediately becomes evident that
the sequential ionization of Fig. 1 occurs because the elec-
tron that is left behind in the core is able to absorb energy
from the laser and “climb out” of the well. Our results
suggest that the escape dynamics may be different in the
multidimensional case than in the one dimensional cases
previously studied (e.g, in [13]).

III. ELECTRON ENERGY ABSORPTION IN

TWO DIMENSIONS

To investigate why sequential ionization “turns on” at
different intensities for the two different softening param-
eters, we focus our attention on the simpler case of one
electron in a 2d well exposed to an oscillating linearly
polarized laser field. We will return to our 3d, 2-electron
ensemble after we analyze this simpler system. We write
the energy as

E =
v2

2
− 2√

x2 + z2 + a2
+ zE0sinωt (1)

where v is the speed, x and z are position coordinates,
a is the softening parameter, E0 the laser electric-field
amplitude, and ω the laser angular frequency. We set a
= 0.01, E0 = 0.293 (intensity 3x1015W/cm2), and ω =
0.0570 a.u. (wavelength 800 nm).

A. An example trajectory

Figure 2 shows energy vs. time for one ionizing trajec-
tory for this system. The figure clearly shows the abil-
ity of the classical electron to absorb energy and escape
the well. The dark smoother curve shows the energy as
defined in Eq. (1), whereas the (light) oscillating curve
excludes the laser interaction energy, +zE0sinωt. For
the latter curve, the laser is external to the system, and
each oscillation in the well becomes evident as the laser
force alternately does positive or negative work on the
electron. The electron’s oscillations in the well occur on
much shorter time scales than the laser cycle. The two
curves cross whenever z = 0 and at each half cycle when
the laser field goes through zero.
We now focus our attention on the shorter time scale

from t = 1.0 to 1.5 cycles (c.), an interval in which there is
significant energy gain. In Fig. 3 we show energy vs. time
and the z coordinate vs. time for this interval, as well as
the spatial trajectory over a short interval around the
field maximum at 1.25 c. We show cross-sections of the
2d potential-energy well at specific times in Fig. 4. There
the dashed horizontal line segment shows the energy of
maximum barrier suppression.
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FIG. 2. (Color online) Electron energy vs. time for a single
electron with an oscillating laser field in a 2d nuclear well,
with nuclear softening parameter a = 0.01. The electron
absorbs energy and escapes the well. The oscillatory curve
(brown) neglects the laser interaction energy +zE0sin(ωt),
whereas the smoother curve (black) includes it.

From Fig. 3 we learn that for this time interval, the
electron’s orbit is primarily on the z > 0 side of the
nucleus until about time 1.27 cycles, then switches to
being primarily on the z < 0 side of the nucleus. It is
this switch and its timing at about the laser maximum of
1.25 c. that leads to the energy gain, as we explain more
fully below.

When the laser interaction energy +zE0sinωt is in-
cluded in the electron energy, the electron can gain or
lose energy depending on its z coordinate as the laser
field strength changes. It can “ride” an increasing laser
potential to greater energy or a decreasing laser potential
to lower energy. The electron of Fig. 3 is primarily on
the z > 0 side of the nucleus during the interval from
t = 1.0 to 1.25 c.; during this time the z > 0 side of the
potential energy curve is rising (see Fig. 4) and conse-
quently the electron’s energy increases. After t = 1.25 c.
the z > 0 side of the curve begins to drop back down,
and the z < 0 side begins to rise. If the electron had
maintained an orbit primarily on the z > 0 side of the
nucleus, it could have lost the energy it had gained dur-
ing the previous quarter cycle, but instead it jumps to
an orbit that favors the z < 0 side of the nucleus (or
perhaps we should say the electron is pushed to that side
by the laser), and the electron continues to gain energy
by “riding” the rising side of the potential energy curve.

The ability to have a net energy absorption thus seems
to be related to having an orbit that favors a specific
side of the nucleus during specific half cycles. Such or-
bits can arise when there is low angular momentum and
an unshielded nucleus – the electron can come close to
the nucleus and experience the large force needed for an
abrupt change in the direction of motion. By contrast, a
softened nuclear potential is flat near r = 0 and does not
provide sufficiently large force for the abrupt direction
change.

If the electron’s orbit did not jump from favoring one
side of the nucleus to the other, then it could alternately
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FIG. 3. (Color online) Top: Electron energy vs. time, with
(black, smooth) and without (brown, oscillatory) the laser
interaction, for the trajectory of Fig. 2, zoomed in on 1.0 c.
< t < 1.5 c. Center: z coordinate of that same electron.
The curves in the top plot cross whenever z = 0. Bottom:
Spatial trajectory for a few oscillations before and after t=1.25
c. The curve changes from green to black (light to dark)
at t = 1.25 c. (second quadrant, close to the origin). The
electron switches its oscillation from one side of the nucleus
to the other at about 1.27 c., when the laser force is strong in
the−z direction. That switch plays a key role in the electron’s
energy increase.

gain and lose energy. This is evident, for example, in
Fig. 2 from t = 0 to 0.5 c. For the entire half cycle from
t = 0 to 0.5 c., the electron is primarily on the side of the
nucleus toward which the laser is pushing (z < 0). How-
ever, during the next half cycle the laser pushes in the op-
posite direction, and the electron’s orbit changes so that
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FIG. 4. (Color online) Effective energy plots from t = 1.0
c. through 1.5 c. for the same trajectory as the previous fig-
ure. The dashed horizontal line segment shows lowest barrier
height. The electron gains or loses energy depending on its
value of z as the laser raises the potential energy curve on
one side of the nucleus and reduces it on the other side. We
plot the potential energy vs. z for the actual x value of the
electron; the parametric dependence on x changes the shape
of the well [18].
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FIG. 5. (Color online) Position coordinates x (dashed red or
light) and z (solid blue or dark) vs time, as well as angular
momentum L (green, transitioning from − to +) vs time. The
angular momentum of the orbit increases as the “jump” to the
new orbit approaches, then passes through zero just after the
jump.

by the end of that half cycle the electron is again favor-
ing the side of the nucleus toward which the laser pushes.
The result is a net increase in energy. The “jump” from
an orbit primarily favoring one side of the nucleus to an
orbit favoring the other side is not completely random,
but due in part to the force from the laser.
The angular momentum L (= Ly) vs time is shown

in Fig. 5, along with the x and z position coordinates.
The angular momentum changes sign very shortly after
the “jump”. In examining other trajectories, we have
noted that orbital jumps are very frequently associated
with zeroes or minima in |L|, and consequently angular
momentum is worthy of further consideration. A “jump”
from an orbit favoring the z > 0 side of the nucleus to one
favoring the z < 0 side (or vice versa) can be achieved if
the electron travels nearly radially in the ±z-direction –
and radial motion is precisely the condition for a mini-
mum or a zero in L. Changes in L can only arise from the
torque from the laser force, and since the laser force is
always in the ±z direction, the torque in our 2d system
depends on the x-coordinate of the particle’s position.
The orbital spiral for our example trajectory has several
spirals that favor x > 0 and a torque in the +y direc-
tion. Thus L increases from from roughly −0.8 toward
zero (we maintain a right-handed coordinate system, so
the +y direction is into the page). The “jump” occurs
when the electron penetrates very close to the nucleus
and scatters into the −z direction, thus illustrating how
jumps can correlate with zeroes or minima in |L|. In the
example trajectory of Figs. 3-5, the electron continues to
oscillate primarily on the x > 0 side of the nucleus af-
ter the jump, so L continues to grow more positive. If
the electron’s initial turning point after the “jump” had
x < 0, then the torque would have been negative and the
angular momentum would have returned to a negative
value. We have examined numerous other trajectories,
and found that the orbital “jumps” from one side of the
nucleus to the other can be associated with minima in
|L|, but there need not be a sign change for L.
An alternative description of the energy gain can be

given if one wishes to treat the laser as external to the
system, as in the highly oscillatory curves of electron
energy. Then the laser alternates between doing posi-
tive and negative work with each half orbit of the elec-
tron. Slight variations in work done from one half cycle
to the next can accumulate. Critically, if the electron
orbit changes from favoring one side of the nucleus to fa-
voring the other, then as the orbit changes the electron
can have an extended path in the direction of the laser
force and considerable positive work can be done. The
corresponding big jumps in energy are clearly evident in
the figures.

B. 1- and 2-d ensemble behavior and dependence

on softening parameter

To investigate the universality of an electron’s abil-
ity to absorb energy and escape from a well, we have
done systematic variations of initial conditions for classi-
cal electrons in one- and two- dimensions, and with dif-
ferent values of the softening parameter. In each case we
exposed the electron to an electric force −E0sinωt and
then calculated electron energy (excluding the laser inter-
action) 2.75 cycles later. We consider the final energy at
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FIG. 6. (Color online) Electron energy (excluding the laser interaction) at t=2.75 cycles vs. electron energy at t=0 for a single
electron in a nuclear potential-energy well exposed to a sinusoidal laser force at I = 3x1015 W/cm2 with λ = 800 nm. Nuclear
potential energy is −2/

√
r2 + a2. In all plots the vertical dashed line shows the energy of the maximally suppressed barrier.

Top Left 1d, a = 0.4. Top Right 1d, a = 0.01. Bottom Left 2d, a = 0.4 Bottom Right 2d, a = 0.01. For all plots, initial
positions and velocities were systematically varied. The electron can “climb” out of the well only for the unsoftened potential
in multiple dimensions.

a time of peak laser field because if no forces other than
the laser were acting, the energy at peak field would cor-
respond to the electron’s drift energy. Results are shown
in Fig. 6. On the left we show results for a softened nu-
cleus a = 0.4, and on the right a less softened nucleus,
a = 0.01. The top row applies for a one-dimensional sys-
tem, and the bottom row a two-dimensional system. In
each image, the vertical dashed line identifies the energy
of the maximally suppressed barrier (i.e., the saddle point
energy at peak field, and the minimum energy needed for
a classical particle to escape the well). In one dimension,
electrons must start with energy greater than this refer-
ence energy in order to escape. For the two-dimensional
system, results depend on the softening parameter. For
a = 0.4 (bottom left) the vertical bar closely matches
the threshold initial energy for escape. In contrast at
a = 0.01 (bottom right) electrons are able to start with
energy significantly below the barrier energy and still es-
cape the nuclear well. This establishes the key result
that for the unsoftened nuclear potential in multiple di-
mensions, the electron can absorb energy and “climb”
out of the nuclear potential well, but for other cases re-
mains trapped. For completeness, we comment that for
the 2d case the initial conditions were systematically var-
ied from 0.2 < x0 < 1.4, −1.4 < z0 < −0.2, 0 < v0x < 1,

and −1 < v0z < 0, each with a step size of 0.1.
Final energies can reach about 15 a.u. or 2.4 Up. These

high energies can be achieved through what Ref. [15]
dubbed a boomerang – the laser force pushes a bound
electron outward from the nucleus in one direction, but
the electron remains bound and the oscillating laser force
goes to zero at about the same time as the nucleus stops
the outward motion. The nucleus and laser then act to-
gether in the opposite direction; the electron traverses
the region of the nucleus and reaches the other side of
the well just as the laser suppresses the barrier, allowing
escape and the possibility of final energy above 2Up. This
mechanism was discussed in [19] as an important post-
recollision ionization mechanism leading to high energy
electrons.
We comment that calculating the energy at the peak

field as we have done may give slightly different results
from calculating the final energy after ramping the field
amplitude to zero. For example, in the latter case there
is the possibility for an ionized electron with low drift ve-
locity to reattach when the laser field turns off, a process
sometimes referred to as frustrated ionization [20].
Also, we note that the smoother curves at the highest

energies in Fig. 6 arise because the dynamics of electrons
that begin with higher energy are dominated by the laser
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FIG. 7. (Color online.) Ionization probability vs. initial en-
ergy for the two-dimensional system, with a = 0.01, for in-
tervals of 2.75 (lower curve) and 4.75 c. (upper curve). The
vertical dashed line shows the energy of the maximally sup-
pressed barrier.

field (with different results in 1d depending on the sign
of the initial position). In analogy with the results of
Mauger et al. [13], the 1d case shows an energy region in
which escape is possible, but not assured. This “sticky”
region extends to noticeably higher energies in the 2d
case, indeed well above the threshold marked by the ver-
tical bar.

It is natural to expect that if a longer time interval
were considered, additional electrons might ionize. Thus
we have repeated the analysis through t = 4.75 c. and
calculated the fraction of trajectories that ionize. Results
for t = 2.75 and 4.75 cycles are superposed in Fig. 7 and
confirm the expectation.

IV. ENERGY ABSORPTION IN 3 DIMENSIONS

We return now to examining sequential ionization in
our 3d ensembles that led to Fig. 1. In Fig. 8 we exam-
ine one specific trajectory for intensity 3x1015 W/cm2,
one of the lowest intensities at which sequential double
ionizations occur. The upper plot shows energy on the
time interval from t = 0.0 to 4.0 cycles, and the middle
plot shows the spatial trajectory from 3.16 to 3.24 cycles.
The upper plot shows the various stages in the double

ionization process. Initially the two electrons jostle each
other and there is considerable energy fluctuation for an
individual electron. At first ionization, the remaining
electron drops low in the well. There is no recollision.
Instead the electron gains energy from the field – espe-
cially in the time interval from 3 to 4 c. – and escapes.
The plots indicate that at about 3.2 c., slightly before
the laser maximum, the electron jumps from an orbit
that favors z > 0 to an orbit that favors z < 0. The laser
force is given by −zE0f(t)sinωt, and the electron’s jump
takes it toward the side of the nucleus toward which the
laser force is pushing, i.e., toward the “downhill” side of
the potential energy curve. Then, as the laser force di-
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FIG. 8. (Color online) Top plot shows energy vs. time for
one sequential-ionization electron from our 3d ensemble, for
a = 0.01 and I = 3x1015 W/cm2 over the interval 0.0 < t < 4.0
cycles As in Fig. 2, the highly oscillatory curve (brown) ne-
glects the laser interaction energy. Middle plot shows the elec-
tron position for 3.16 < t < 3.24 cycles. The curve changes
from green to black (light to dark) at t = 3.19 cycles. Bot-
tom plot shows magnitude of angular momentum, |L|, for the
same time interval, and with color change at the same time.
At about this time the electron jumps from orbiting primarily
on the z > 0 side of the nucleus to oscillating primarily on
the z < 0 side, and the laser does considerable positive work.
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FIG. 9. (Color online) Top: position vs. time for an electron
in 1d; I = 3x1015 W/cm2 with λ = 800 nm and a = 0.01.
Bottom: Energy vs. time, with the laser interaction included.
The energy of the maximally suppressed barrier is shown as a
dashed (black) line. Dots show energies at time of laser zeroes
(upper dots) and maxima (lower dots).

minishes over the quarter cycle from 3.25 to 3.5 c., the
electron gains energy as the z < 0 side of the curve rises.
From 3.5 c. until about 3.75 c. it stays on the z < 0
side, where the potential energy curve is continuing to
rise. (The highly oscillatory curve is below the smoother
curve whenever the electron is on the “uphill” side of
the nucleus, and above the smoother curve whenever the
electron is on the “downhill” side.) Then, when the field
is strong the electron jumps to the “downhill” side of the
potential curve and escapes over the suppressed barrier.

This confirms that the energy-absorption mechanism
which we discussed for our 2d one electron system is also
present in our 3d classical ensemble model. A check of
multiple trajectories reveals that this mechanism is in-
deed responsible for the early onset of the sequential ion-
ization when the nuclear force is minimally softened.

V. LACK OF ENERGY ABSORPTION IN 1D

We round out this paper looking at the one dimen-
sional model that we used for the top row of Fig. 6. An
example 1d case is depicted in Fig. 9 for a = 0.01. The
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FIG. 10. (Color online) Effective energy plots of the elec-
tron of Fig. 9 over 1 laser cycle in intervals of 0.125 cycles.
Horizontal line shows the energy of the maximally suppressed
barrier. The electron never escapes.

top plot shows position z vs. time over a single cycle,
and the bottom plot shows electron energy vs. time (in-
cluding the laser interaction energy). Snapshots of the
nuclear potential-energy well at specific times are shown
in Fig. 10. For this one dimensional case, the electron
cannot backscatter off the nucleus, but always overshoots
(regardless of the value of the softening parameter). This
overshoot is clearly evident in the plot of z vs. t. Nonethe-
less from t = 0 to 0.5 c. there is a slight preference for
z < 0 and from t = 0.5 to 1.0 c. there is a slight prefer-
ence for z > 0. This preference is toward the direction of
the laser force and the “downhill” side of the potential
energy curve (Fig. 10).

The energy curve (Fig. 9), which is on a finer energy
(vertical) scale than our other energy plots, shows rapid
oscillations superposed on slower, larger oscillations. The
rapid energy oscillations occur as the electron moves from
one side of the nucleus to the other. The electron gains
energy when it is on the side of the nucleus where the field
is increasing (i.e., the potential curve is rising) and loses
energy when on the other side. The energy includes the
laser interaction energy, so these oscillations are different
from the large rapid oscillations that arose in Figs. 2
and 3. The visibility of these fluctuations is, to a large
extent, due to the fine energy resolution we are using as
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well as the distance the electron overshoots the nucleus
each orbit – close examination of the smooth curve in the
top plot of Fig. 3 shows small oscillations as well.
The slower oscillations visible in Fig. 9 occur at twice

the laser frequency, with peak energy at about the time
of each laser zero (indicated by green [light] dots) and
minimum energy at about the laser maxima (red [dark]
dots). These slower oscillations occur because the elec-
tron spends more time on the “downhill” side of the well
than the “uphill” side. Consequently, after each laser
zero, the electron shows an overall energy loss as the
downhill side drops, then an increase as the curve rises
again. The dashed line across the graph shows the barrier
suppression energy. Over most of the cycle the electron
actually has energy above the barrier, but the electron en-
ergy is near its minimum when the barrier is maximally
suppressed and the electron remains trapped. This exam-
ple illustrates why Fig. 6 indicated the need for starting
energy above the barrier. (We recall that the starting
energy was defined at a zero of the laser field, not at a
laser maximum).

VI. CONCLUDING COMMENTS

We have noted that in three-dimensional classical en-
sembles, the ability of a single electron in a nuclear
potential-energy well to absorb energy from an oscillating
laser field depends critically on the steepness of the well
close to the nucleus. If the electron is in a low-angular
momentum orbit that takes it close to the nucleus, then
a large force from the nucleus can backscatter the elec-
tron; thus its orbit can be primarily on one side of the
nucleus. If this orbit lies primarily on the side of the
nucleus for which the potential energy from interaction

with the laser is increasing, the electron can “ride” the
increasing potential energy toward greater energy. If the
orbit were always on the same side of the nucleus, such
an increase would be balanced by a decrease during the
subsequent half cycle. However, we found that the laser
force can help the electron to jump from an orbit that
favors one side of the nucleus to an orbit that favors the
opposite side. If this jump occurs at about the time of the
peak laser field, then the electron can ride the increasing
potential energy curve over successive half cycles, gain
significant energy, and escape the well.
In one dimensional systems, the electron always over-

shoots the nucleus and the electron can remain trapped
in the well. Similarly in two or three dimensions, if the
nuclear force has been softened, the electron may simply
overshoot the core area, and consequently be trapped in
the well.
We have not sought here to apply these ideas to spe-

cific physical systems, but instead have analyzed and em-
phasized what can happen within classical models. We
hope that these ideas and insights will be helpful to other
researchers who employ classical models to understand
complex atomic or molecular systems in external fields.
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