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Abstract

The spectrum of resonance fluorescence is calculated for a two-level system excited by an intense,

ultrashort x-ray pulse made available for instance by free-electron lasers such as the Linac Coherent

Light Source (LCLS). We allow for inner-shell hole decay widths and destruction of the system

by further photoionization. This two-level description is employed to model neon cations strongly

driven by x rays tuned to the 1s 2p−1 → 1s−1 2p transition at 848 eV; the x rays induce Rabi

oscillations which are so fast that they compete with Ne 1s-hole decay. We predict resonance

fluorescence spectra for two different scenarios: first, chaotic pulses based on the Self Amplified

Spontaneous Emission principle, like those presently generated at XFEL facilities and, second,

Gaussian pulses which will become available in the foreseeable future with self-seeding techniques.

As an example of the exciting opportunities deriving from the use of seeding methods, we predict,

in spite of above obstacles, the possibility to distinguish at x-ray frequencies a clear signature of

Rabi flopping in the spectrum of resonance fluorescence.
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I. INTRODUCTION

The spectrum of resonance fluorescence which is emitted by an ensemble of atoms and ions

driven by an intense near-resonant electric field [1, 2] is one of the cornerstones of quantum

optics [3, 4]. The spectrum is measured experimentally by exposing an atomic ensemble

to intense light and detecting the scattered photons as shown in Fig. 1. During the last

decades such studies have received wide attention and have stimulated the development

of non-perturbative methods in quantum electrodynamics for the study of the coherent

interaction between light and matter [5–10].

The resonance fluorescence spectrum of a two-level system driven by a monochromatic

electric field is the simplest case and has been studied extensively at optical frequencies

[5, 6, 11–13]. For a sufficiently strong continuous-wave (CW) driving field a nonlinear three-

peak structure appears in the spectrum [14–16] which is explained theoretically by the

non-perturbative approach of Mollow [5, 6]. The presence of three peaks, frequently called

dynamic Stark splitting, is explained as the result of the dressing of bare levels by the

external field [17].

A CW field is one of the few cases for which an exact analytical solution of the equations
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Figure 1. (Color online) An atom ensemble (red) is driven by x rays (blue) tuned to a resonance.

The emitted photons (green) are measured perpendicularly to the propagation direction of the

x rays.
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of motion (EOMs) of the two-level system exists. When the system interacts with a short

pulse, a special class of time-dependent functions, including the case of a hyperbolic secant

pulse, were analytically explored for particular values of the physical parameters [18–20] and

a rich multi-peak structure in the spectrum of resonance fluorescence was predicted [21–27].

This property, which still represents a signature of Rabi oscillations induced by the intense

driving field, is also predicted to depend upon the pulse area, but cannot be intuitively

explained by means of dressed states [28].

In this paper we investigate, in terms of a two-level model, the coherent interaction of

x rays with core electrons by exciting K-shell transitions. Previous studies of strong-field

resonance fluorescence have been relevant only at optical frequencies, for which a wide range

of models and schemes have been investigated [29–35], because of the lack of coherent and

sufficiently intense light sources at short wavelengths. The recent construction of X-ray Free-

Electron Lasers (XFELs) [36–40] provides one with tunable x-ray pulses of unprecedented

brilliance, up to one billion times higher than the intensity available at third-generation

synchrotron facilities. The intense and ultrafast pulses now available at XFELs offer the

opportunity to study nonlinear physics at short wavelengths [41–50]. In the particular

case that we are going to investigate here, x rays are able to induce stimulated emission

and absorption of photons (Rabi flopping) at a time scale that can be compared to and,

therefore, compete with the ultrafast inner-shell Auger decay [51, 52].

Existing facilities such as the Linac Coherent Light Source (LCLS), the world’s first

hard x-ray FEL, are based on the principle of Self Amplified Spontaneous Emission (SASE)

[53, 54], i.e., the beam shot noise gives rise to the emitted radiation which, as a result,

possesses only partial temporal coherence and a spiky temporal profile. An analogous sit-

uation occurred at the beginning of optical laser science, when it was timely to study the

interaction with the chaotic pulses available at that time [55, 56]. In the foreseeable future,

self-seeding or optical laser-seeding methods are being developed, for which the emitted

light is produced by the amplification of a regular (Gaussian) seeding pulse, which exhibits

high temporal coherence [57–59]. The rapid development of XFEL sources makes, therefore,

further theoretical work timely [60].

In a recent experiment, intense and ultrashort x-ray pulses from the LCLS have been used

to excite the 1s 2p−1 → 1s−1 2p transition at 848 eV in Ne+ [52]. The electron spectrum

of resonant Auger decay was measured to investigate Rabi flopping. With only partial
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coherence of the SASE pulses presently available at LCLS and the lack of means for single-

shot diagnostics, though, the clear observation of Rabi oscillations and its distinction from

noise effects is challenging [52].

Auger decay is the predominant mechanism of inner-shell hole decay of light elements

such as neon. Because of the large Auger yield, high-resolution electron spectroscopy is

well suited for soft x rays. Besides Auger decay, K-holes also decay by x-ray fluorescence,

i.e., by spontaneous emission of photons while the system is driven by an external field.

The spectrum of resonance fluorescence represents an alternative way to study the coherent

and nonlinear interaction between x rays and atoms and ions. It complements the results

coming from the detection of electron spectra of resonant Auger decay. High gas densities

can generally be used for x-ray emission spectroscopy—orders of magnitude larger than with

electron spectroscopy—which compensates for the small fluorescence yield and enables high-

resolution measurements with gratings or crystal spectrometers. In the case of resonance

fluorescence, however, self-absorption can produce line broadening [61], so the gas density

and path length need to be adjusted to minimize self-absorption effects and make them neg-

ligible. Furthermore, photons are scattered much less off electrons or ions in the interaction

volume than electrons, i.e., space-charge effects are of little concern [62].

For x-ray energies, present instruments are expected to detect the fluorescence spectrum

with high frequency resolution. For the purposes of this paper, there are at least three

choices of instruments: a cryogenic spectrometer [63], a diffraction grating [64] and a crystal

spectrometer [65]. Cryogenic spectrometers such as microcalorimeters are mostly used in the

astrophysics community for detecting x rays from atoms with high atomic number and high

fluorescence yield [66]; at 1 keV, Ref. [67] suggests a frequency resolution lower than 0.8 eV.

For modern grating instruments based on the design described in [68] and [69] a resolution of

0.4 eV at 848 eV is expected. It might also be possible to achieve higher frequency resolution

by using higher-order reflections from gratings and crystals—though with loss of detection

efficiency. With the use of wavelength-dispersive spectrometers, such as diffraction gratings

and crystal spectrometers, one might take advantage of their polarization sensitivity in a

parallel and perpendicular setup, e.g., for background reduction [70].

In this paper, we develop a time-dependent theory of resonance fluorescence to study the

interaction of a two-level model with x-ray pulses. In Sec. II we describe our theoretical

approach, by defining the spectrum of resonance fluorescence and its main properties and
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by introducing the two-level model that is used throughout the paper. Results are discussed

in Sec. III, where the spectrum of resonance fluorescence is examined for different driving

pulses. In particular, we compare different spectra for the presently available chaotic pulses

produced via the SASE principle and for pulses with a Gaussian temporal profile that seeding

techniques will make available in the near future. Section IV concludes the paper. Atomic

units are used throughout unless otherwise stated.

II. THEORETICAL MODEL

A. Two-level model

The coherent interaction between atoms and ions and x rays tuned to a particular atomic

resonance can be described in terms of a two-level model when the transition is isolated from

other levels. In our case, we use such a model to study the 1s 2p−1
z → 1s−1 2pz transition in

Ne+ at an energy of 848 eV [52], driven by a near-resonant electric field linearly polarized

along the z direction. The two-level model, which is depicted in Fig. 2, is justified by the fact

that the transition is very well isolated, by more than 70 natural linewidths separated from

the next Rydberg excitation 1s → 3p of neutral Ne at 867 eV [52]. For neon, relativistic

effects and fine-structure splitting do not play an important role and, therefore, spin-orbit

splitting can be neglected.

We describe the emitted fluorescent light field by a quantum operator Ê(r, t) =

Ê
+(r, t) + Ê

−(r, t), where Ê
+(r, t) and Ê

−(r, t) are respectively the positive-frequency

and negative-frequency parts of the operator [71]. However, it is sufficient to describe the

relatively strong driving field classically [12], via

E(t) = E0(t) cos(ωXt+ ϕX(t) + ϕX,0), (1)

where E0(t) is the time-dependent electric-field envelope, ωX the x-ray central frequency,

ϕX(t) the time-dependent phase of the field and ϕX,0 the carrier-envelope phase (CEP). We

assume throughout an electric field linearly polarized along the z direction, E0(t) = E0(t) êz,

with the unit vector in z direction êz. The use of planar undulators at XFEL facilities,

in fact, produces linearly polarized x-ray pulses [40]; experimental evidence for a very high

degree of linear polarization of LCLS x rays has been given in Ref. [42, 52]. We further
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Figure 2. (Color online) Two-level model used to describe the coherent interaction between Ne+

and the external driving field tuned to the 1s 2p−1 → 1s−1 2p transition at 848 eV [52]. The ground

state 1s 2p−1 is given by |1〉 = |L = 1, ML = 0〉 and the core-excited state 1s−1 2p is written as

|2〉 = |L = 0, ML = 0〉. The external field is linearly polarized along the z direction and induces

Rabi flopping between these states. Spontaneous decay, however, also allows the core-excited state

to decay to valence-ionized states with ML = ±1.

assume a pulse with uniform intensity distribution profile; spatial averaging is therefore not

performed.

In order to properly model the atomic transition, we see in Fig. 2 that the 1s 2p−1 config-

uration is a spin doublet state with total orbital angular momentum of L = 1; consequently,

it is triply degenerate in energy. The three eigenstates of the unperturbed atomic Hamil-

tonian Ĥ0 with energy ω1 which diagonalize the z component of the total orbital angular

momentum operator are |1+〉, |10〉 and |1−〉, respectively with ML = +1, 0, −1. Conversely,

the 1s−1 2p configuration corresponds to the single eigenstate |2〉 of the field-free atomic

Hamiltonian, with L = 0, ML = 0 and energy ω2. The energy of the atomic transition is

ω21 = ω2 − ω1. The relevant raising and lowering atomic operators are

σ̂ij = |i〉〈j|, i, j ∈ {1+, 10, 1−, 2}. (2)
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The interaction between the ions and the electric field is described in the dipole approx-

imation because the 1s orbital of neon is very compact, involving dimensions much smaller

than the wavelength associated with the transition 1s 2p−1 → 1s−1 2p, such that nondipole

terms are small [51]. The Hamiltonian of the system is

Ĥ = Ĥ0 + Ĥint, (3)

where Ĥ0 =
∑

i ωi σ̂ii is the unperturbed atomic Hamiltonian with eigenvalues ωi, whereas

Ĥint represents the interaction of the ion with the classical, linearly polarized, near-resonant

field (1) [3],

Ĥint = −P̂ · E0(t) cos(ωXt+ ϕX(t) + ϕX,0). (4)

The operator P̂ in (4) is the total atomic polarization operator

P̂ = P̂
+ + P̂

−, (5)

with P̂
− = [P̂+]† and [72]

P̂
+ = 〈1+|P̂ |2〉 σ̂1+2 + 〈10|P̂ |2〉 σ̂102 + 〈1−|P̂ |2〉 σ̂1−2

= ℘(êσ+ σ̂1+2 + êz σ̂102 + êσ− σ̂1−2),
(6)

where êx, êy, êz are unit vectors in the x, y, z directions and êσ± = (∓êx + iêy)/
√
2 are

circular polarization vectors, positive (negative) for polarizations λ = ±1, with êσ± = −ê
∗
σ∓ .

Due to spherical symmetry, the dipole matrix element is real, ℘ = ℘∗, and is the same for all

transitions; as the atomic states have a definite parity, 〈1±, 0|P |1±,0〉 = 〈2|P |2〉 = 0, dipole

transitions only couple states with different total angular momentum quantum numbers,

∆L = 1 [72].

Since the external electric field is assumed to be linearly polarized [42, 52], the dipole

interaction only couples the states |2〉 and |10〉 satisfying the condition ∆ML = 0 [72]: in

Eq. (4), within the rotating-wave approximation [3] and by using Eq. (6), Ĥint reduces to

Ĥint = −ΩR(t)

2

(

σ̂102 e
i(ωXt+ϕX(t)) + σ̂210 e

−i(ωXt+ϕX(t))
)

, (7)

where we have set the CEP ϕX,0 to 0 and where the instantaneous Rabi frequency

ΩR(t) = ℘ E0(t) (8)

has been introduced.
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In our model the dynamics of the two x-ray coupled states |2〉 and |10〉 is independent

from the other two states |1±〉 and one can develop an actual two-level description of the

system in which the EOMs exclusively contain the two aforementioned states |10〉 = |1〉 and

|2〉 and neglect the other two states entirely.

B. Density matrix formulation and equations of motion

We investigate in the following the two-level system formed by the states |1〉 ≡ |10〉 and

|2〉.
We introduce the density matrix

ρij(t) = 〈i|ρ̂(t)|j〉 = 〈σ̂ji(t)〉 (9)

(i, j ∈ {1, 2}), whose evolution is described by the master equation [73]

dρ̂

dt
= −i [Ĥ, ρ̂(t)] + Lρ̂(t) +Dρ̂(t). (10)

The first term −i [Ĥ, ρ̂(t)] describes the coherent dynamics of the two-level system. In the

total Hamiltonian Ĥ [Eq. (3)] the only relevant terms of the unperturbed atomic Hamilto-

nian Ĥ0 are ω1σ̂11 and ω2σ̂22. The Lindblad operator Lρ̂(t) represents the norm-conserving

spontaneous decay of the population from the excited state |2〉 to the ground state |1〉. The

rate at which this process occurs is given by [3]

ΓR,z =
4ω3

21

3c3
|℘|2. (11)

Atoms and ions with high atomic number are usually characterized by a high fluorescence

yield, i.e., the importance of spontaneous decay increases with the atomic number of the ion

of interest. The last term Dρ̂(t) denotes the norm-nonconserving term not present in the

Lindblad form of the master equation [74]. We introduce this term to describe the decrease of

the population of both the upper and lower states [4]. These norm-nonconserving processes

include Auger decay, photoionization of the system due to the intense external field and

spontaneous decay from the excited level |2〉 to the two levels |1±〉 which are not coupled

by dipole interaction. We do not include Doppler broadening [61] and collision effects [4] in

our model, because they involve time scales much longer than the decay time of the system

and, at room temperature and for a pressure of 1 atmosphere, they can be neglected [75].
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Auger decay and photoionization destroy the two-level system by further ionization of

Ne+ to levels which need not to be taken into account explicitly. The Auger decay width is

ΓA, whereas the rate of photoionization ΓP,i(t), i ∈ {1, 2}, is [76]

ΓP,i(t) = σX,iJX(t), (12)

with the photoionization cross section for the level i σX,i = σi(ωX), the x-ray flux

JX(t) = I(t)/ωX (13)

and the x-ray intensity

I(t) =
E2
0 (t)

8πα
. (14)

Notice that we evaluate the photoionization cross section and the flux at ωX since the cross

sections do not vary much within the bandwidth of the field.

The spontaneous decay of the excited level |2〉 to the states |1±〉 also represents a process

which does not conserve the norm of our two-level system. The total radiative decay rate is

given by

ΓR = ΓR,σ+ + ΓR,z + ΓR,σ− = 3ΓR,z, (15)

where ΓR,z is the spontaneous decay width to the state |1〉 given in (11) and ΓR,σ± are defined

analogously for the other two decay channels; the second equality exploits Eq. (6). Since

the spontaneous decay of the excited level |2〉 only depends on the population of the state

itself, as we are going to show in the following EOMs, the actual dynamics of states |1±〉
can be indeed neglected for our purposes.

The total decay processes are included in Eq. (10). In order to derive the EOMs for

the four relevant components of the density matrix, we move to the rotating frame [77], by

introducing the operators

ς̂ii = σ̂ii, ς̂12 = eiωXt σ̂12, ς̂21 = e−iωXt σ̂21, (16)

whose expectation values are denoted by

Rij(t) = 〈ς̂ji(t)〉, (17)

which, from (9) and (16), implies that Rii(t) = ρii(t), R12 = ρ12 e
−iωXt and R21 = ρ21 e

iωXt.

We introduce the vector

~R(t) = (R11(t), R12(t), R21(t), R22(t) )
T,
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whose components are given by the elements of the density matrix Rij(t) in the rotating

frame. Before the arrival of the light pulse the two-level system is assumed to be in the

ground state, i.e., ~R0 = (1, 0, 0, 0 )T. This assumption is supported by experimental obser-

vations of orbital alignment in ions produced by strong-field ionization [78]. If the fraction

of ions in the ML = 0 ground state is lower than 1, the resonance fluorescence spectrum

must be multiplied by this factor.

The master equation (10) can be rewritten in matrix form

d~R(t)

dt
= M(t)~R(t), ~R(0) = ~R0, (18)

where M(t) is the following time-dependent matrix

M(t) =















−γ1(t) −iΩR(t)
2

e−iϕX(t) iΩR(t)
2

eiϕX(t) +ΓR,z

−iΩR(t)
2

eiϕX(t) i∆− 1
2
(γ1(t) + γ2(t)) 0 iΩR(t)

2
eiϕX(t)

iΩR(t)
2

e−iϕX(t) 0 −i∆− 1
2
(γ1(t) + γ2(t)) −iΩR(t)

2
e−iϕX(t)

0 iΩR(t)
2

e−iϕX(t) −iΩR(t)
2

eiϕX(t) −γ2(t)















,

(19)

with

γ1(t) = σX,1JX(t), (20a)

γ2(t) = σX,2JX(t) + ΓA + ΓR, (20b)

where we have defined the detuning ∆ = ω21 − ωX.

The knowledge of the time evolution of the atomic one-time expectation values is used

to derive the two-time expectation values necessary for the computation of the spectrum of

resonance fluorescence. For this purpose, we introduce the two-time vector

~Y (t1, t2)

= (Y11(t1, t2), Y12(t1, t2), Y21(t1, t2), Y22(t1, t2) )
T,

(21)

whose elements are defined as

Yij(t1, t2) = 〈ς̂ji(t1)ς̂12(t2)〉. (22)

Applying the quantum regression theorem [77, 79] yields

∂~Y (t1, t2)

∂t1
= M(t1)~Y (t1, t2), t1 ≥ t2, (23)
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with the initial conditions given by Yij(t2, t2) = δi1R2j(t2). The solution of the first set

of differential equations (18) provides one with the initial conditions for the second set of

differential equations (23), whose solution gives

Y12(t1, t2) = 〈ς̂21(t1)ς̂12(t2)〉

= 〈σ̂21(t1)σ̂12(t2)〉 e−iωX(t1−t2).
(24)

C. Spectrum of resonance fluorescence

The study and computation of the spectral properties of the fluorescent light requires the

knowledge of the first-order autocorrelation function of the electric field operator [80, 81]

G(1)(t1, t2, r) = 〈Ê−(r, t1) · Ê+(r, t2)〉. (25)

In the case of CW light, when the first-order autocorrelation function depends explicitly

on the time difference τ = t1 − t2, i.e., G(1)(t1, t2, r) = G(1)(τ, r), the Wiener-Khintchine

theorem [3] states that the power spectrum of resonance fluorescence associated with the rate

of photons emitted at a given frequency is well defined and given by the Fourier transform of

G(1)(τ, r) [82]. However, for ultrashort light pulses, G(1)(t1, t2, r) explicitly depends upon the

two distinct instants t1 and t2 and the Wiener-Khintchine theorem cannot be analogously

used to define a power spectrum. Instead, one needs to study the energy spectrum of

resonance fluorescence, defined as a quantity proportional to the probability that an ideal

photon detector—modelled itself as a two-level system with tunable transition energy ω—is

excited by the fluorescent light. In first order of perturbation theory and in the electric

dipole approximation, the energy spectrum is defined as [80]

S(ω, r) =
1

4πα

∫ +∞

−∞

∫ +∞

−∞

G(1)(t1, t2, r) e
−iω(t1−t2) dt1 dt2. (26)

Here, S(ω, r) dω dA represents the energy detected on average in the differential energy

interval [ω, ω + dω] and in a surface element dA = r2 dΩ êr centered on r = r êr. Further,

α is the fine-structure constant, dΩ is the differential solid angle and êr = r/|r| is the unit

vector in the direction of observation (0 is the position of the atom).

We assume that the driving field propagates along the y axis. In the far-field limit and

in the electric-dipole approximation—away from the y propagation axis in which also the

driving field would be present—the electric-field operator associated with the fluorescent
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light can be related to the atomic polarization operator P̂
+(t) [Eq. (6)] via the relation

[3, 7, 12]

Ê
+(r, t) =

ω2
21

c2r

(

P̂
+(t− r/c)− (P̂+(t− r/c) · êr) êr

)

. (27)

If the detector is placed along the x axis, as shown in Fig. 1, then êr = êx and one obtains

from (6)

Ê
+(r êx, t) = Ê+

z (r êx, t) êz + Ê+
y (r êx, t) êy, (28)

with

Ê+
z (r êx, t) =

℘ω2
21

c2r
σ̂102(t− r/c) (29)

and

Ê+
y (r êx, t) =

i√
2

℘ω2
21

c2r

(

σ̂1+2(t− r/c) + σ̂1−2(t− r/c)
)

, (30)

whereas, because of the placement of the detector, the x component of the electric-field

operator Ê+
x (r êx, t) vanishes. Analogously, the autocorrelation function is split into two

parts:

G(1)(t1, t2, r êx) = 〈Ê−
z (r êx, t1) Ê

+
z (r êx, t2)〉+

〈Ê−
y (r êx, t1) Ê

+
y (r êx, t2)〉.

(31)

The first term in (31) is the autocorrelation function of the fluorescence photons which are

polarized along the z direction; the transition with which they are associated (|1〉 → |2〉) is

driven by the external field, which modulates the polarization operator along the z direction

and induces Rabi flopping. The general case of a detector placed in the x− z plane, forming

an arbitrary angle θ with respect to the x axis, is discussed in Appendix A.

With (26) and (31), the resonance fluorescence energy spectrum is also split into two

terms S(ω, r êx) = Sz(ω, r êx)+Sy(ω, r êx). The calculation of Sy(ω, r êx) goes beyond the

two-level approximation we adopt in this paper and requires a complete four-level description

of the system. In this paper we describe the appearance of Rabi flopping in the resonance

fluorescence spectrum for those photons which are emitted in the transition to the ground

state |1〉. For êr = êx this represents the only contribution in Sz(ω, r êx) and its observation

can be experimentally realized using a polarization-dependent detection to selectively detect

the radiation which is linearly polarized in the z direction, in order to select those fluorescence

photons associated with the transition to the state with ML = 0.
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Polarization-dependent measurements can be very informative, e.g., they have played an

important role for molecules where the valence orbitals can be resolved [83, 84]. Reflections

from mirrors, gratings, or crystals at angles that achieve high polarization selectivity at the

frequency of the atomic transition involved allow one to measure the polarization of the

radiation. The use of wavelength-dispersive spectrometers, which involve reflecting x rays

from a grating or crystal, can provide one with polarization selectivity. Energy-dispersive

spectrometers, such as a cryogenic spectrometer, can be polarization-sensitive if they are

pixellated and the x rays are hard enough to Compton scatter in the absorber. In addition,

polarization-dependent detection in a parallel and perpendicular setup facilitates background

reduction.

By exploiting the polarization properties of the emitted light, we can focus on the first

component of the first-order autocorrelation function (31), which is expressed as

G(1)
z (t1, t2, r êx) = I(r) 〈σ̂21(t1 − r/c) σ̂12(t2 − r/c)〉, (32)

where

I(r) =
(ω2

21 |℘|
c2r

)2

(33)

is a factor dependent on the position of observation at which the detector is placed and

having the dimension of an intensity [12].

By introducing the time delay τ = t1−t2 and noticing that 〈σ̂21(t1)σ̂12(t2)〉 = 〈σ̂21(t2)σ̂12(t1)〉∗,
we conclude that knowledge of 〈σ̂21(t1)σ̂12(t2)〉 in the region t1 ≥ t2 (and hence τ ≥ 0) is

sufficient for the calculation of the energy spectrum of resonance fluorescence [77]. We

rewrite (26) in compact form as

Sz(ω, r êx) =
3ΓR,z ω21

8π r2

∫ +∞

−∞

∫ +∞

0

Re
[

e−iωτ 〈σ̂21(t2 + τ)σ̂12(t2)〉
]

dτ dt2, (34)

where we use Eqs. (11), (32) and (33). As a result, one can use Y12(t1, t2) from the solution

of (23) to compute the energy spectrum of resonance fluorescence.

In the following, we are going to compute Sz(ω, Ω) = r2 Sz(ω, r êx) for a detector along

the x axis. Sz(ω, Ω) dΩ dω is the energy emitted into dΩ and dω; in atomic units Sz(ω, Ω)

has the dimension of 1/steradian. Finally, we notice that the total detected energy emitted

into dΩ is

E =

∫ +∞

−∞

Sz(ω, Ω) dω =
3ΓR,z ω21

8

∫ +∞

−∞

R22(t) dt, (35)
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exploiting the relation

2π δ(t1 − t2) =

∫ +∞

−∞

e−iω(t1−t2) dω.

III. RESULTS AND DISCUSSION

Here we apply our two-level model to study neon cations on the 1s 2p−1 → 1s−1 2p

transition at ω21 = 848 eV [52], i.e., the detuning is ∆ = ω21 − ωX = 0. Scattered x rays

could be observed if the XFEL beam energy is detuned from resonance. As demonstrated

in Ref. [85], for example, Compton scattering, resonant Raman scattering, and Rayleigh

scattering can be observed as the resonance is approached from below. At 848 eV, however,

resonance fluorescence will dominate the measured spectrum.

The destruction rate of our effective two-level system is dominated by the Auger decay

width of Ne 1s−1 which is ΓA = 0.27 eV [86]. The dipole moment ℘ = 0.0524 a0 is computed

with the Hartree-Fock-Slater mean-field model [87–89], whereas the photoionization cross

sections are computed using the Los Alamos Atomic Physics Codes [90, 91]. From Eq. (11)

the radiative decay width follows, where ΓR,z = 0.0012 eV, the total decay rate is ΓR =

0.0039 eV [92], in good agreement with Eq. (15).

The spectrum Sz(ω, Ω) that we will compute represents the emitted photons linearly

polarized along the z direction from our two-level model. Off-resonant Rayleigh scattering

from 2s and 2p electrons in Ne is, however, not taken into account. This elastic scattering

is predicted to be anisotropically distributed for a linearly polarized electric field: in our

case, E(t) = E(t) êz, the intensity of the elastic scattering would be affected by the source-

dependent polarization factor sin2 ψ [76], where ψ is the angle between the z axis and the

direction of detection êr at which the detector is placed. This additional contribution is not

included in the two-level approximation that we implement in this paper. Its only effect is

an enlargement of the central peak of the spectrum.

A. Gaussian x-ray pulses

Self-seeding techniques at LCLS will soon provide one with pulses with an approximately

Gaussian temporal profile [58, 59]; it is interesting therefore to predict the evolution of the

atomic properties in time and the spectrum of resonance fluorescence for Ne+ cations for

14



this case. We write the Gaussian pulse as

E0,G(t) = Emax e
− t

2

2T2 , ϕX(t) = 0, (36)

where T = τG/(2
√
ln 2) and τG is the FWHM of E2

0,G(t). The FWHM of |Ẽ0,G(ω)|2 is

∆ωG = 4 ln 2/τG, where

Ẽ0,G(ω) =
∫

E0,G(t) eiωt dt = T
√
2π Emax e

−ω
2
T
2

2

is the Fourier transform of E0,G(t) [71]. The peak intensity [Eq. (14)] is IG = E2
max/(8πα),

yielding a maximum Rabi frequency [Eq. (8)] ΩRG,max = ℘Emax = ℘
√
8πα IG.

Further, we introduce the pulse area

Q =

∫ +∞

−∞

ΩR(t) dt, (37)

which was shown to play an important role in the description of the dynamics of a two-level

system in interaction with a regular pulse (ϕX(t) = 0) and in the properties of the correspond-

ing resonance fluorescence spectrum [21–24]. Let us assume for now that level decay and

photoionization are both negligible. Then, for ∆ = 0, if n is a natural number and Q = 2πn,

the final population after the interaction with the pulse is in the ground state, whereas for

Q = 2π(n + 1/2) a complete inversion happens and the total final population occupies the

excited state. For a Gaussian regular pulse the area (37) is QG = ΩRG,max τG
√

π/(2 ln 2).

We begin by studying the interaction of Ne+ cations driven by a Gaussian x-ray pulse

with peak intensity IG = 2.6×1017W/cm2 and τG = 5 fs: such x-ray pulses will be available

in the foreseeable future from seeding techniques implemented at LCLS. In Fig. 3 we show

the time evolution of the two-level system when Auger decay is included and when it is not

included (ΓA = 0) in the EOMs (18). The time evolution of the total population of the

system reveals that Auger decay is the major depopulation mechanism. Photoionization

makes, however, also a noticeable contribution at the chosen x-ray intensity; the maximum

rates of photoionization are [Eq. (12)] ΓP1,max = 0.03 eV and ΓP2,max = 0.04 eV, which is

small compared with the Auger decay width ΓA = 0.27 eV. In Ref. [51] this channel was,

therefore, neglected entirely. The decay time associated with Auger decay is approximately

given by ∆τ = 1/ΓA = 2.4 fs. As one notices in Fig. 3, the total population of the system

almost completely vanishes after the pulse of 5 fs. Whether Auger decay is included or

not does not interfere with Rabi oscillations which are clearly discernible; the pulse area

QG = 7× 2π results in 7 oscillations.
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The corresponding energy spectra of resonance fluorescence are shown in Fig. 4. The

Rabi oscillations induced by the intense external x-ray field appear in both cases with and

without Auger decay, with nonvanishing contributions in the region approximately given by

[−ΩRG,max , ΩRG,max], with the maximum Rabi frequency ΩR,max,G = 3.9 eV. First, when

only spontaneous decay and photoionization are taken into account, a multi-peak structure

is predicted, in analogy to what was computed in absence of any decay process [21]. The

presence of many peaks is non-trivially related to the pulse-shape of the electric field, i.e., to

its finite duration and width. The seven peaks in the energy spectrum—six lateral peaks and

the seventh central one—are related, as was shown in [21], to the pulse area QG = 7 × 2π.

Second, when Auger decay is taken into account, the multipeak structure of the spectrum

becomes smoother because of the increase in the decay rate. Furthermore, the intensity of
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Figure 3. (Color online) Time evolution of the population of a two-level system driven by a Gaus-

sian x-ray pulse (36) of peak intensity IG = 2.6 × 1017 W/cm2 and FWHM duration τG = 5 fs,

corresponding to a pulse area of QG = 14π. The dashed lines show the total population of the

two-level system ρ11(t)+ρ22(t) [Eq. (9)] in the absence (black line) and presence (red line) of Auger

decay. The solid lines show the corresponding occupation of the excited state ρ22(t).
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the radiation emitted by the two-level system decreases, since Auger decay destroys it and,

consequently, reduces the fraction of atoms which can Rabi flop. The resulting maximum

Rabi frequency ΩR,max,G = 3.9 eV is however much higher than the bandwidth of the pulse,

∆ωG = 0.36 eV, the Auger decay width, ΓA = 0.27 eV, and the frequency resolution of

present spectrometers ∆ωres = 0.4 eV [68]. Hence the signature of Rabi flopping, clearly

visible in Fig. 4, will be detectable.

In Fig. 5 and 6 we consider different pulses with τG = 2 fs and QG = 2π(n− 1/2) [panels

(a)] or QG = 2πn [panels (b)], for n ∈ {1, 2, 3}. One can clearly see a dependence of the

population of the two-level system upon the area QG. When this area is an odd multiple

of π [Fig. 5a], a major part of the population at the end of the pulse occupies the excited

state: one can discern the n − 1/2 oscillations due to the interaction with the pulse and

the following Auger decay of the system when the pulse is over. As shown in Fig. 6a, the

long Auger decay which follows the interaction with the pulse results in a high Lorentzian

peak in the spectrum of resonance fluorescence at ω = ωX with a width that can be related
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Figure 4. (Color online) Energy spectrum of resonance fluorescence for the Gaussian pulse used in

Fig. 3 in the absence (black, dashed line) and presence (red, solid line) of Auger decay. As indicated

by the arrows, the scale on the left refers to the black, dashed curve, whereas the scale on the right

refers to the red, solid curve.
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to the major decay process, i.e., ΓA. This peak results from the fact that the excited

system decays freely, radiatively and electronically, without Rabi flopping. In contrast, a

considerably different situation appears when the area of the pulse is an even multiple of

π [Fig. 5b]: after n complete oscillations, the population of the excited state is almost 0 at

the end of the pulse. Consequently, the previously present post-x-ray-exposure decay does

not take place. The total emitted energy is therefore lower because the central peak at ω21

is reduced by almost one order of magnitude, as one can clearly see by looking at Fig. 6b.

In the case of a longer pulse, so that the two-level system has completely Auger decayed

before its conclusion, the difference between pulses whose area is an odd or even multiple of

π becomes less important.

The dependence of the resonance fluorescence spectrum upon the duration of the pulse

is an additional point that needs to be investigated. In order to observe this dependence,

in Fig. 7 we study the main features of the spectrum as functions of the normalized pulse

area QG/(2π) and of the pulse FWHM duration τG. We recall that for fixed τG the area

of the Gaussian pulse is directly proportional to the square root of the intensity, QG =

2π℘τG
√

(α/ ln 2) IG. In Fig. 7a we show the total emitted energy E [Eq. (35)] for three

different values of τG; for the shortest pulses one can clearly observe an oscillating behaviour

of the total emitted energy as a function of QG/(2π); this behaviour is less pronounced

for the longest pulses. It is also worthwhile to notice that for increasing values of QG,

the intensity can become so high that also for the shortest pulses the system is in any

case completely destroyed by photoionization within the duration of the pulse itself. The

increasing importance of photoionization implies a less remarkable difference in the time

evolution of systems driven by pulses whose area is an odd or even multiple of π and,

consequently, resonance fluorescence spectra characterized by a lower dependence upon the

area of the pulse.

In Fig. 7b we display πΓAS(ωX)/2, where S(ωX) is the central maximum value of the

spectrum of resonance fluorescence. The constant prefactor πΓA/2 allows us to compare the

shape of the spectrum of resonance fluorescence with that of a Lorentzian function of Auger

decay width ΓA. If the only process involved was a decay causing a rate width Γ , then the

spectrum of resonance fluorescence would be a Lorentzian function

L(ω) =
πΓ

2
L0

Γ/(2π)

(ω − ωX)2 + (Γ/2)2
, (38)
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Figure 5. (Color online) Time evolution of the population of the excited state ρ22(t) for a two-level

system driven by Gaussian x-ray pulses [Eq. (36)] of different peak intensities (shown in the legend)

and a FWHM duration τG = 2 fs. In panel (a) pulse areas QG = 2π(n − 1/2), for n = 1 (red,

dotted line), n = 2 (black, dashed line) and n = 3 (green, solid line) are used. In panel (b) pulse

areas QG = 2πn, for n = 1 (red, dotted line), n = 2 (black, dashed line) and n = 3 (green, solid

line) are used.
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Figure 6. (Color online) Spectrum of resonance fluorescence of a two-level system driven by Gaussian

x-ray pulses of different peak intensities (shown in the legend) and a FWHM duration τG = 2 fs.

Line styles of panels (a) and (b) as in Fig. 5.
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with peak value L0 = L(ωX) and with total emitted energy EL =
∫ +∞

−∞
L(ω) dω = πΓL0/2.

By computing in Fig. 7b the quantity πΓAS(ωX)/2, we can relate it to the actual total

emitted radiation of Fig. 7a and understand the relative importance of Auger decay in

relation to the other decay processes. By comparing the oscillating features in Fig. 7b with

those of Fig. 7a, one notices that πΓAS(ωX)/2 approaches E only for short pulses satisfying

Q = 2π(n − 1/2). In these cases, as we have already discussed in Fig. 5a, the main term

is represented by post-x-ray-exposure Auger decay of the system. Nonetheless, because of

the non-negligible role played by Rabi flopping, photoionization and spontaneous decay, one

can notice in Fig. 7 a clear difference between πΓAS(ωX)/2 and E .

Figures 4 and 6 reveal that Rabi flopping produces a clear signature in the spectrum

of resonance fluorescence of Gaussian pulses, which will be soon available by self-seeding

at LCLS [58, 59]. However, since shot-to-shot variations in pulse intensity and duration

are anticipated, we investigate how the spectrum of resonance fluorescence is influenced

by the presence of these fluctuations. For this purpose, we compute the energy spectrum

of resonance fluorescence for a wide set of Gaussian pulses [Eq. (36)], by independently

randomizing their duration and energy. The mean duration is chosen to be τG = 7 fs and

the mean peak intensity is IG = 7 × 1017W/cm2, giving a mean peak Rabi frequency of

approximately 6 eV. We compute the energy spectrum of resonance fluorescence for 500

different realizations of the driving pulses. Thereby, the duration and the intensity are

random variables whose probability distribution is Gaussian with a variance of 20% of the

mean value. The resulting average resonance fluorescence spectrum is shown in Fig. 8.

It reveals that Rabi flopping is discernible even if energy and duration of the pulse vary

appreciably from shot to shot.

B. SASE x-ray pulses

After investigating resonance fluorescence with laser-like regular Gaussian pulses, we turn

to the presently available SASE pulses at LCLS. The SASE light is modelled with the Partial

Coherence Method (PCM) [93, 94], whose details are discussed in Appendix B. The SASE

pulses have a central photon energy which is tuned to the transition energy of Ne+ of 848 eV,

with a bandwidth (FWHM of |Ẽ(ω)|2) of ∆ωSASE = 6 eV. The envelope function f(t) that

we adopt [Eq. (B8)] has FWHM duration τenv = 6.5 fs. Further details are discussed in

21



Appendix B.

In Fig. 9a we display the time-dependent Rabi frequency [Eq. (8)] ΩR(t) = ℘ E0(t) induced

by the amplitude of a SASE pulse and in Fig. 9b the phase ϕX(t) of a SASE LCLS pulse

obtained with the PCM method. The mean Rabi frequency and phase are also given. In
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Figure 7. (Color online) (a) Total emitted energy E =
∫ +∞

−∞
Sz(ω, Ω) dω and (b) peak value of the

spectrum S(ωX) multiplied by πΓA/2 as functions of the normalized pulse area QG/(2π) [Eq. (37)]

for τG = 2 fs (red, dashed line), τG = 5 fs (black, dotted line) and τG = 10 fs (green, solid line).
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Fig. 10a the time evolution of the population of the excited state and the total population

of the two-level system are plotted if the phase of the pulse is supposed constant, ϕX(t) = 0,

and the spiky time-dependent Rabi frequency of Fig. 9a is used to integrate the EOMs. In

Fig. 10b both the Rabi frequency and the phase of Fig. 9 are used to integrate the EOMs.

If the phase fluctuations are neglected, the decay of the system is slower; in both cases, due

to the chaotic SASE pulse shape, the time evolution is very irregular. For the case displayed

in Fig. 10a, though, one can see the presence of complete oscillations in ρ22(t), reaching its

minimum at ρ22(t) = 0 and its maximum when ρ11(t) = 0: this feature disappears when the

phase fluctuations of Fig. 9b are taken into account.

In contrast to the case of a Gaussian pulse, one cannot extract from the time evolution of

the system any clear relation to the pulse area. Nevertheless, one observes a relation between

the Rabi frequency of Fig. 9a and the frequency with which the population of the excited
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Figure 8. Average resonance fluorescence spectrum for 500 different realizations of the Gaussian

driving pulses [Eq. (36)]. The mean duration of the pulses is τ̄G = 7 fs, the mean peak intensity is

Ī = 7× 1017 W/cm2. Here τG and I are Gaussian random variables independently chosen for each

realization with a variance equal to the 20% of the respective mean values.
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state ρ22(t) oscillates in Fig. 10. These oscillations, in fact, take place in a time interval which

is shorter than the time characterizing the random fluctuations of Fig. 9. They are Rabi

oscillations induced by the interaction with the intense driving field; as we show in Fig. 11, if

a pulse of similar bandwidth but of far lower intensity is used to excite the system, the time

evolution of the atomic system displays slower oscillations, whose mean frequency increases

at increasing intensities. We further notice that, because of photoionization, the increase in

the intensity of the driving field reduces the actual decay time of the system: this emerges

by comparing the graphs displayed in Fig. 11 with that of Fig. 10b.

In Fig. 12 we display the resonance fluorescence spectrum from SASE x rays. To observe

Rabi flopping we need the Rabi oscillations to occur within the coherence time of the pulse;

for this reason, the intensity of the external electric field is chosen such that the maximum

Rabi frequency is larger than the bandwidth ∆ωSASE of the pulse itself. We look in par-

ticular at the emitted spectrum by averaging over 1000 independent SASE pulses. The

tails appearing in the spectrum of Fig. 12 are non-vanishing contributions at frequencies

higher than the bandwidth of the pulse itself. These tails would not appear if the field

had equal bandwidth but lower intensity: they represent, therefore, a signature of the Rabi

oscillations described in Fig. 10. These tails are also in good agreement with the spectrum

emitted when a Gaussian transform-limited pulse of identical intensity and time duration—

but clearly with much lower bandwidth—is used to excite the system. If the phase of the

SASE pulse remained constant and only its amplitude displayed chaotic fluctuations, then

the spectrum emitted after one single pulse would be symmetric; furthermore, the average

spectrum would present a lower width, due to the absence of phase fluctuations. A clear

observation of the tails of Fig. 12 and of the enlargement of the resonance fluorescence spec-

trum at increasing intensities might represent a possible way to detect Rabi flopping also at

present SASE facilities.

Analogous conclusions had been drawn for the resonant Auger electron spectrum [51]:

the width of the resonant Auger electron line profile was expected to help in estimating the

presence of Rabi oscillations in the system. Nonetheless, the very short coherence times at

present XFEL facilities limited the actual experimental observability of this effect at LCLS

[52].

As last point, we study the dependence of the resonance fluorescence spectrum on the

duration of the SASE pulse. In Fig. 13 we plot the average spectrum emitted by Ne+
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Figure 9. (Color online) (a) The Rabi frequency ΩR(t) induced by the amplitude of a SASE pulse

and (b) the phase ϕX(t) of the SASE pulse (red, solid lines) and their mean value (black, dashed

lines). The mean pulse has a duration τenv = 6.5 fs and a peak intensity I = 3.8× 1018 W/cm2. Its

bandwidth is ∆ωSASE = 6 eV.
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Figure 10. (Color online) Time evolution of a two-level system driven by a SASE pulse with the

time-dependent Rabi frequency of Fig. 9a. The phase is assumed to be (a) constant, ϕX(t) = 0,

or (b) to be equal to the phase of Fig. 9b. The red, dashed line shows the evolution of the total

population ρ11(t) + ρ22(t) [Eq. (9)]; the black, solid line represents the occupation of the excited

state ρ22(t).
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Figure 11. (Color online) Time evolution of a two-level system driven by SASE pulses generated with

the PCM described in Appendix B. In both cases the pulses have a mean duration τenv = 6.5 fs

and a bandwidth ∆ωSASE = 6 eV. The peak intensity is (a) I = 3.8 × 1015 W/cm2 and (b)

I = 8.8×1017 W/cm2. The red, dashed line shows the evolution of the total population ρ11(t)+ρ22(t)

[Eq. (9)]; the black, solid line represents the occupation of the excited state ρ22(t).
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cations when excited by an ultrashort pulse with peak intensity I = 1.6× 1018W/cm2 and

bandwidth ∆ωSASE = 6 eV. The results are obtained by averaging over spectra resulting

from SASE pulses respectively with a FWHM duration of τenv = 6.5 fs and of τenv = 2 fs. It

is worth noticing a remarkable difference between different pulse durations. Naively, after

the previous considerations, we would assume that the resonance fluorescence peak has a

FWHM associated with the large bandwidth of the pulse ∆ωSASE = 6 eV. For the shortest

pulses, though, the resonance fluorescence spectrum exhibits a higher central peak whose

width is clearly lower than ∆ωSASE. The explanation is based on the same arguments that

we used to describe the spectra depicted in Fig. 6a, in which the post-x-ray-exposure decay

results in a high Lorentzian peak of width given by the Auger decay width of the system.

Analogously, for the ultrashort SASE pulses with τenv = 2 fs used in Fig. 13, the interaction
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Figure 12. (Color online) Resonance fluorescence spectrum for SASE pulses. The black, dotted line

shows the spectrum from a Gaussian pulse with FWHM duration τG = 6.5 fs and peak intensity

IG = 3.8 × 1018 W/cm2. The red, solid line is the arithmetic mean over 1000 SASE pulses with

average peak intensity IG, FWHM duration τG and a bandwidth of ∆ωSASE = 6 eV. The green,

dashed line is for the pulse in Fig. 9.
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with the pulse is shorter than the time needed by the system to completely decay; hence, at

the end of the pulse, the probability of destruction of the system is about 90%. The Auger

decay which follows the interaction with an ultrashort SASE pulse implies, therefore, the

high central peak in the resonance fluorescence spectrum shown in Fig. 13; for the same

reason, its width is lower than the bandwidth of the pulse itself. A similar reduction of the

FWHM was also observed in [52] in the Auger electron spectrum. In that case, by using the

same x-ray pulse to create Ne+ ions and to drive the 1s 2p−1 → 1s−1 2p transition, the system

could not completely Auger decay before the end of the pulse. The decay of the excited

state with the natural decay time of the system turned out to dominate the observation.

-10 -5 0 5 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ω - ΩX HeVL

E
ne

rg
y

sp
ec

tr
um
Hs

r-
1 L

Figure 13. (Color online) Average resonance fluorescence spectrum over SASE pulses. The pulses

have an average peak intensity of I = 1.6× 1018 W/cm2 and bandwidth ∆ωSASE = 6 eV. The red,

solid line shows the average over SASE pulses with average FWHM duration of τenv = 6.5 fs; the

black, dotted line is associated with pulses of average FWHM duration of τenv = 2 fs.
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IV. CONCLUSION

In this paper we study theoretically the resonance fluorescence for intense ultrashort x

rays. The fundamental role played by resonance fluorescence for the study of the quantum

properties of light renders it a cornerstone of x-ray quantum optics. It also gives an al-

ternative and more easily available point of view on resonant Auger decay in ultraintense

x rays, whose study, at present, is not fully conclusive yet [52]. Therefore, we investigate

the nonlinear phenomena of Rabi flopping, i.e., repeated cycles of stimulated emission and

absorption of photons induced by the interaction with the ultraintense pulses from XFELs,

and its signature in the resonance fluorescence spectrum at x-ray frequencies.

We develop a two-level model of resonance fluorescence whose time evolution is described

by master equations which include the coherent interaction of the system with the classical

x-ray field. All processes that destroy the system, namely, Auger decay and photoionization,

are fully taken into account. We use our model to describe Ne+ cations driven by an intense

linearly polarized x-ray field tuned to the 1s 2p−1 → 1s−1 2p transition at 848 eV; the

transition is well isolated, i.e., separated by more than 70 natural linewidths from the lowest

lying Rydberg excitation, 1s→ 3p [52]. The intensity available at present x-ray FELs such

as LCLS is sufficiently high to induce Rabi flopping at frequencies that compete with the

rate of destruction of the system. The two-level approximation allows us to investigate the

resonance fluorescence of photons associated with the transition to the state with ML = 0

for two different scenarios. First, we consider SASE radiation from present XFELs; second,

we explore resonance fluorescence from coherent Gaussian pulses which will become soon

available via the use of self-seeding techniques at fourth-generation x-ray sources. The

measurement of the spectra predicted in this paper need to take advantage of the polarization

properties of the emitted light.

In the case of laser-like Gaussian pulses a clear signature of Rabi flopping is predicted.

We further show that the observation of Rabi flopping persists even when intensity and

duration of the pulse vary appreciably from shot to shot. For SASE pulses, even though Rabi

flopping does not manifest itself as clearly as in the previous case, we predict the appearance

of tails in the spectrum that might represent a good signature of Rabi oscillations in the

atomic system. These tails would not appear if the system was excited by a less intense

pulse of equally large bandwidth. In the case of the resonant Auger spectrum, however,
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the presently large bandwidth at LCLS represented a limit for the observation of analogous

effects in the resonant Auger electron line [52] and the signature of Rabi flopping did not

appear indistinguishably. Also in the case of resonance fluorescence the identification of

Rabi flopping in the spectrum might be challenging. The amplitude of the aforementioned

tails in which one is interested is predicted to be neither very high nor easily distinguishable.

A much clearer signature is, however, identified for ions driven by Gaussian pulses, making

the prospects with self-seeded LCLS very promising.

The results which have been presented motivate further experimental investigation of

resonance fluorescence at XFEL facilities. In particular, the method which has been dis-

cussed here is a good candidate for further studies at hard x-ray frequencies. In the case of

argon cations, for instance, the spectrum of resonance fluorescence, because of the higher

fluorescence yield compared with that of neon, is more intense than the one predicted in this

paper. By including the radiative decay width in the EOMs (18), the model can be used to

study the resonance fluorescence spectrum of cations, e.g., argon, with higher fluorescence

yield than the cations considered here. The basic features are discussed in this work and

no qualitative differences are expected in heavier cations. Studies of resonance fluorescence

in different atomic systems might require the use of a generalized formalism. The two-level

approximation adopted in this paper, in fact, is not always sufficient to properly describe

the atomic transitions of interest: in these cases multilevel systems have to be considered. In

addition, in order to take into account the atomic properties for different x-ray transitions,

a considerable amount of new atomic data is necessary, such as for example Auger pathways

and decay rates. A detailed theoretical study of the atomic properties of the system would

have to be implemented, motivating further research in this field.

Studies of resonance excitations followed by K-shell photoionization are receiving a lot

of interest also for their potential applications in the biomedical sector [95–98]: even though

present facilities are not available yet for medical applications, studies of resonance fluores-

cence of K-shell transitions might also significantly contribute to the development of such

applications of XFELs.

In addition, resonance fluorescence plays a crucial role in the study of the nonclassical

properties of light, such as photon antibunching [11, 12, 99, 100] and squeezing [101–104].

Our study opens the x-ray regime up for quantum optical effects which can be investigated

by means of ultraintense pulses now available at XFELs.
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Finally, for non-stationary light, e.g. when the electric field has a pulse-shaped envelope,

the study of the time-dependent power spectrum [24, 77, 105–107], i.e., the time-dependent

rate of detected photons, would allow to investigate how the spectral properties of the

fluorescent light evolve during the pulse. Even though such a power spectrum cannot be

measured at present because of the ultrashort nature of XFEL pulses, with duration of the

order of 10 to 100 fs, and because of the lack of sufficiently fast detectors, the study of the

time-dependent power spectrum might provide better understanding and further knowledge

of the interaction between matter and x rays.

Appendix A: Polarization effects and measurement geometry

We consider here the resonance fluorescence spectrum emitted by the two-level system

displayed in Fig. 2 which is measured by rotating the detector around the y axis of Fig. 1,

i.e. the spectrum at point r = r êr(θ), with êr(θ) = cos θ êx + sin θ êz, where θ is the angle

between êr(θ) and the x axis, lying in the x − z plane. We further introduce the vector

êθ(θ) = − sin θ êx+cos θ êz, which also lies in the x−z plane and is orthogonal to êr(θ); in this

way, from (6) and (27), one has that Ê+(r êr(θ), t) = Ê+
θ (r êr(θ), t) êθ(θ)+Ê

+
y (r êr(θ), t) êy,

with

Ê+
θ (r êr(θ), t) =

℘ω2
21

c2r

[

cos θ σ̂102(t
′)

+ sin θ
σ̂1+2(t

′)− σ̂1−2(t
′)√

2

]

(A1)

and

Ê+
y (r êr, t) =

i√
2

℘ω2
21

c2r

(

σ̂1+2(t
′) + σ̂1−2(t

′)
)

, (A2)

with t′ = t−r/c. The autocorrelation function (25) isG(1)(t1, t2, r êr(θ)) = G
(1)
θ (t1, t2, r êr(θ))+

G
(1)
y (t1, t2, r êr(θ)), with

G
(1)
θ (t1, t2, r êr(θ)) = I(r)

[

cos2 θ 〈σ̂210(t′1) σ̂102(t′2)〉

+
sin2 θ

2

(

〈σ̂21−(t′1) σ̂1−2(t
′
2)〉+ 〈σ̂21+(t′1) σ̂1+2(t

′
2)〉

)

]

(A3)

and

G(1)
y (t1, t2, r êr(θ)) = I(r) 1

2

(

〈σ̂21−(t′1) σ̂1−2(t
′
2)〉

+〈σ̂21+(t′1) σ̂1+2(t
′
2)〉

)

,

(A4)
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where I(r) is defined in (33) and the application of the quantum regression theorem allows

one to show that the cross-terms 〈σ̂2i(t′1) σ̂j2(t′2)〉, with i, j ∈ {1+, 1−, 10}, i 6= j, vanish

for any t′1 and t′2. An analogous spatial dependence can be displayed also in the resonance

fluorescence spectrum S(ω, r êr(θ)) = Sθ(ω, r êr(θ)) + Sy(ω, r êr(θ)).

In conclusion, we notice that the photons emitted in transitions to the two undriven

states |1±〉 can be both polarized along the axes êy and êθ(θ). Conversely, the photons

spontaneously emitted to the state |10〉 are exclusively polarized along the axis êθ(θ) and

their intensity, varying in space as cos2 θ, is maximized for θ = 0, π. For the same angles the

intensity of the photons that are emitted in transitions to the two undriven states |1±〉 and

which are linearly polarized along êθ(θ) vanishes. This motivates our choice throughout the

paper of studying the spectrum of resonance fluorescence for θ = 0, êr = êx and êθ = êz.

Polarization-dependent detection of the resonance fluorescence spectrum can take advantage

of the properties just presented.

Appendix B: Partial Coherence Method

We use the Partial Coherence Method (PCM) introduced in Ref. [93] to generate random

realizations of the temporal shape of SASE XFEL pulses, whose knowledge is an important

prerequisite for meaningful investigations of nonlinear x ray-matter interaction [51]. Those

parameters which can be measured at present XFELs, such as the average spectral intensity

and the pulse duration, are taken into account as input parameters [94]. The PCM is used to

generate non-transform-limited pulses, with a coherence time lower than the average FWHM

duration of the pulse and with significant fluctuations in the pulse shape from shot to shot.

The pulses are generated starting from their frequency representation Ẽ(ω), whose am-

plitude is given by the average spectral intensity of the pulse. If the phase of Ẽ(ω) was

constant, then by Fourier transform one would obtain a transform-limited pulse. In order

to generate a SASE pulse, we let the spectral phase vary in [−π, π[.
The PCM models the classical electric field E(t) [Eq. (1)]. We introduce the com-

plex electric field [71] E±(t) = 1
2
E0(t) e∓i(ϕX(t)+ωXt) and the complex field envelope Ẽ(t) =

1
2
E0(t) e−iϕX(t), such that E(t) = Ẽ(t) e−iωXt + Ẽ∗(t) eiωXt. It follows that [71]

|E(t)|2 = 2|E±(t)|2 = 2|Ẽ(t)|2 = |E0(t)|2
2

. (B1)
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We define the Fourier transform of Ẽ(t) as

Ẽ(ω) =
∫ +∞

−∞

Ẽ(t)eiωt dt = |Ẽ(ω)| e−iφ(ω) (B2)

and from Parseval’s theorem it follows that

∫ +∞

−∞

|Ẽ(t)|2 dt =
1

2π

∫ +∞

−∞

|Ẽ(ω)|2 dω. (B3)

Analogously one can define E(ω) and E+(ω) as the Fourier transforms of E(t) and E+(t)

respectively. One notices that E+(ω) = Ẽ (ω − ωX) and therefore E(ω) = Ẽ (ω − ωX) +

Ẽ (ω + ωX), so that, from Parseval’s theorem (B3), one finds in agreement with (B1) that

∫ +∞

−∞

|E(t)|2 dt =
1

2π

∫ +∞

−∞

2 |Ẽ(ω)|2 dω. (B4)

The average spectral intensity of a SASE pulse is modeled here—close to measured spec-

tral intensities—as a Gaussian function, so that

|Ẽ(ω)|2 = |Ẽsp,max|2e−
ω
2

Ω2 , (B5)

whose FWHM is ∆ωSASE = 2Ω
√
ln 2. The FWHM duration of the squared modulus of the

inverse Fourier transform of |Ẽ(ω)| [71], which is here also a Gaussian function, is τSASE =

4 ln 2/∆ωSASE. It follows that

|E(ω)|2 = |Ẽsp,max|2
(

e−
(ω−ωX)2

Ω2 + e−
(ω+ωX)2

Ω2

)

. (B6)

The average spectral intensity, though, does not provide any information about the spec-

tral phase of the pulse. In analogy to the phase retrieval in x-ray crystallography [76], the

knowledge of the spectral amplitude is not sufficient to completely determine the temporal

shape of the pulse via inverse Fourier transform. In the PCM approximate phase retrieval

is achieved by assuming initially a random frequency-dependent spectral phase varying in

[−π, π[.
We define a discrete spectral component of the electric field Ẽ(ωi) = |Ẽ(ωi)| e−iφi, with a

sampling interval |ωi+1 − ωi| ≪ ∆ωSASE. φi are random numbers in [−π, π[. The discrete

inverse Fourier transform of Ẽ(ωi) provides the time-dependent discrete field R(tj).

The complex function R(t), obtained by interpolating R(tj), spans an infinitely long

interval in time because of the fluctuating φi. To generate SASE pulses of finite duration,

we multiply R(t) by a temporal filter function f(t). This function is non-zero only in a
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finite domain and the FWHM duration of |f(t)|2 is τenv. The finite duration of FEL pulses

is determined by the electron bunch duration [108] and is usually measured. All together,

we approximate the complex electric field by

Ẽ(t) = 1

2
E0(t) e−iϕX(t) = R(t)f(t). (B7)

Along the way, we notice that the inverse Fourier transform of R(t)f(t) is given by the

convolution of the respective inverse Fourier transforms Ẽ(ω) and f̃(ω). Ẽ(ω) has a random

fluctuating phase φ(ω), whereas |f̃(ω)|2 has a spectral FWHM ∆ωenv related to the inverse

of τenv. Hence, the spectral amplitude of a single pulse generated with the PCM also displays

a spiky structure, where the average FWHM frequency of each spike is about ∆ωenv [108].

In addition, since the average value of φ(ω) is 0, the average spectral amplitude results from

the convolution of |Ẽ(ω)| and f̃(ω) and, because τenv ≫ τSASE, the width of f̃(ω) is much

narrower than the width of |Ẽ(ω)|. Consequently, the convolution
∫ +∞

−∞

|Ẽ(ω − ω′)|f̃(ω′) dω′ ≈ |Ẽ(ω)|,

i.e., the multiplication by the envelope function f(t) does not affect significantly the average

spectral intensity of Ẽ(t).
To generate SASE pulses for this paper [Fig. 9] we use the envelope function

f(t) =







f0 cos
2(πt/T ) ; if |t| ≤ T/2

0 ; if |t| > T/2
(B8)

with T = πτenv/(2 arccos
4
√

1/2) and τenv = 6.5 fs, defined as the FWHM duration of |f(t)|2

[109]. The Fourier transform of f(t) is

f̃(ω) =
T

2
f0

sinc
(

ωT
2

)

1−
(

ωT
2π

)2 . (B9)

Then, ∆ωenv ≈ 2.41/τenv is the FWHM of |f̃(ω)|2. One notices that, for τenv = 6.5 fs and

∆ωSASE = 6 eV, one has ∆ωenv = 0.24 eV ≪ ∆ωSASE = 6 eV.

Alternative approaches have also been developed and adopted, e.g., in [56, 110]. In these

cases, the electric field is written as a Fourier series in time domain

E(t) =
∞
∑

k=−∞

ak cos(ωkt) + bk sin(ωkt), (B10)

where the real coefficients ak and bk are independent zero-mean Gaussian random variables.

Basically, this represents only a different description of Ẽ(ω) compared with the PCM.
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