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The effects of electric field on the magnetically induced 6Li-40K Feshbach resonances are inves-

tigated theoretically by using the asymptotic bound state model. We calculate the positions and

widths of the Feshbach resonances observed in the experiments in the presence of electric field and

give a detailed analysis. An electric field can change the relative magnetic moment and the coupling

strength in different extent. The variation of resonant width caused by strong electric field mainly

depends on the coupling strength, and the s-wave scattering cross section in electric field is sensitive

to the temperature of colliding system and the magnetic field intensity. The maximum of thermal

average scattering rate constant can be changed by several times by applying electric field.

PACS numbers: 34.50.Cx, 34.50.-s, 67.85.-d

I. INTRODUCTION

The Feshbach resonance is a useful tool for controlling the atom-atom interaction in ultracold atom gases [1–4].

By changing the magnetic field around resonance, the s-wave scattering length, which is a measure of the strength

of the interaction, can be obtained by arbitrary value [5, 6]. Meanwhile, the elastic scattering cross section can

be enhanced by several orders. Recent theoretical works have demonstrated that a static electric field can induce

Feshbach resonance in heteronuclear mixtures of atomic gases [7–11]. The mechanism stems from the interaction of

the instantaneous dipole moment of heteronuclear collision complex with the external electric field. This anistropic

interaction couples the states of different orbital angular momenta. The coupling between the open channel and closed

channel bound states can change the width of Feshbach resonance in some degree.

Wille et al. observed the Feshbach resonances in an ultracold mixture of 6Li and 40K and found some resonances

below 300 Gauss [12]. The combination of 6Li and 40K fermionic alkali species is a prime candidate to realize strongly

interacting Fermi-Fermi systems. Tiecke et al. calculated the widths and positions of all available Feshbach resonances

for 6Li and 40K collision complex using the asymptotic bound state model (ABM) [13, 14]. Naik et al. particularly

researched the inelastic scattering properties and provided the essential information to identify optimum resonances

for applications relying on interaction control in this Fermi-Fermi mixture [15]. They also proposed a way to create

ultracold 6Li40K molecules. Since the LiK molecule has a relatively large permanent dipole moment in its ground

electronic state, it is a good candidate to research the effect of static electric field on the Feshbach resonance.

Recently we investigated the external electric field modulation of the magnetically induced 6Li-40K Feshbach res-
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onances using the extended asymptotic bound state model [11]. In this paper, we investigate the effects of external

electric field on magnetically induced 6Li-40K Feshbach resonances, including the resonant position and width, the

scattering cross section and the thermal average rate constant, and give a detailed analysis about the interaction

mechanism in order to interpret experimental results. In Sec. II, we briefly introduce the ABM theory including an

external electric field. In Sec. III, we discuss the influences of electric field on all observable Feshbach resonances for

the 6Li-40K collision complex in experiments. In Sec. IV, a conclusion is drawn.

II. THEORETICAL APPROACH

The ABM has been successfully used to predict the magnetic field position and width of the Feshbach resonance

[11]. In the following, we demonstrate how the ABM can be used to determine the energy of the coupled molecular

states and the eigenstates of the total Hamiltonian Ĥ, without solving the actual coupled radial Schrodinger equation.

For the collision of two atoms in external magnetic and electric fields the total Hamiltonian is given by

Ĥ =
p2

2µ
+ Ĥint + V̂ (R) +

l̂2

2µR2
+ V̂ζ(R), (1)

where p
2

2µ represents the relative kinetic energy with µ being the reduced mass, and Ĥint is the two-body internal

energy determined by the hyperfine and Zeeman interactions. The direction of magnetic field B is chosen to be along

the quantization z axis. Hint can be expressed as [14]

Ĥint = Ĥα
int + Ĥβ

int =
aαhf
~2
Iα · Sα + (γeMSα

− γαI MIα) ·B +
aβhf
~2
Iβ · Sβ + (γeMSβ

− γβIMIβ ) ·B, (2)

where Sα (Sβ) and Iα (Iβ) are the electronic and nuclear spins for atom α (β), respectively, and γe and γαI (γβI ) are

respective gyromagnetic ratios. aαhf (a
β
hf) denotes the hyperfine energy for atom α (β). MSα

(MSβ
) and MIα (MIβ )

are the electronic and nuclear magnetic quantum numbers of atom α (β), respectively. The hyperfine interaction

describes the coupling between the electronic and nuclear spins, resulting in a total angular momentum fα = Sα +

Iα (fβ = Sβ + Iβ) for atom α (β).

The Coulomb interaction potential V̂ (R) depends on the total electronic spin S = Sα+Sβ and interatomic distance

R. It can be expressed as [8]

V̂ (R) =
∑

SMS

|SMS〉VS(R)〈SMS |, (3)

where VS(R) is the adiabatic molecular potential of the collision complex in the spin state S. The centrifugal potential

l̂2

2µR2 and Coulomb potential form the effective potentials V l
S(r), where l denotes the rotational quantum number.

The operator V̂ζ(R), describing the electric field-complex interaction, can be written as [7]

V̂ζ(R) = −−→
ζ · −→d = −ζ(êζ · êd)

∑

SMS

|SMS〉dS(R)〈SMS |, (4)

where êζ and êd represent the unit vectors of the electric field and the dipole moment, respectively. ζ is the electric

field magnitude and dS(R) the spin-dependent dipole moment of the collision complex. The dipole moment is given

by [10]

dS(R) = DS exp[−αS(R−RS
e )

2], (5)
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with the parameters R0
e = 7.5aB , α0 = 0.0406a2B and D0 = 3.807 D for the singlet state, and R1

e = 5.3aB , α1 =

0.105a2B and D1 = 0.95 D for the triplet state, where the Bohr radius is aB = 0.0529177 nm. The numerical data of

dipole moments calculated by Aymar and Dulieu [16] are fitted well to the above analytical expression.

In the ABM, the Schrodinger equation for Hamiltonian (1) is solved starting from a restricted set of discrete

eigenstates |ψSl
ν 〉 of relative motion of two-body composed of the kinetic energy and Coulomb potential including the

centrifugal potential, using binding energy ǫSl
ν as a free parameter. The set of {|ψSl

ν 〉} corresponds to the bound state

wave functions in the effective potentials V l
S(r), with ν being vibrational quantum numbers.

We specify the ABM basis states as {|ψSl
ν 〉|σlml〉}, where the spin basis states |σ〉=|SMSMIαMIβ 〉 and ml denotes

the magnetic quantum number corresponding to the orbital angular momentum l. The sum MF =MS +MIα +MIβ

is a conserved quantity and limits the number of spin states in the basis set.

The matrix elements of V̂ζ(R) are evaluated by using the following expression

〈ψ|〈lml|V̂ζ |l′m′
l〉|ψ′〉 = ζ〈ψSl

ν |dS(R)|ψSl
′

ν 〉〈lml|êζ · êd|l
′

m
′

l〉, (6)

where 〈ψSl
ν |dS(R)|ψSl

′

ν 〉 =
∫∞

0
(ψSl

ν )∗dS(R)ψ
Sl′

ν dR is defined as the transition factor from |l〉 to |l′〉 in this paper. Since

it depends on interatomic distance R, the eigenfunctions of bound state {ψSl
ν } need to be pre-calculated by using

the mapped Fourier grid method [17–19]. The coupling between electric field and dipole moment depends on the

angle χ between them, i.e., êζ · êd = cosχ. It is convenient to define two angles γ and θ as follows: γ is the angle

between electric field and quantization z axis, and θ is the angle between dipole moment and the z axis. The angular

calculation can be expressed as

〈lml|êζ · êd|l′m
′

l〉 =
1√
2
sin γ(−1)m

′

l

√

(2l + 1)(2l′ + 1)





l 1 l′

0 0 0









l 1 l′

ml −1 −m′

l





+cos γ(−1)m
′

l

√

(2l+ 1)(2l′ + 1)





l 1 l′

0 0 0









l 1 l′

ml 0 −m′

l





− 1√
2
sin γ(−1)m

′

l

√

(2l + 1)(2l′ + 1)





l 1 l′

0 0 0









l 1 l′

ml 1 −m′

l



 .

(7)

To determine the characteristic properties of Feshbach resonances including the widths and positions, we need to

examine the behavior of the coupled bound states near the threshold of an open channel. By comparing the total

energy with channel threshold which is determined by the internal energy of the collision complex, we can distinguish

the open from closed channels. Then the Hilbert space can be partitioned into open- and closed-channel subspaces

[20, 21]. The Hamiltonian of the collision system is written as

Ĥ = ĤPP + ĤQQ + ĤPQ + ĤQP , (8)

with ĤPP = P̂ ĤP̂ and ĤQQ = Q̂ĤQ̂ and ĤPQ(= Ĥ†
QP )=P̂ ĤQ̂, where P̂ and Q̂ are projection operators of the open-

and closed-channel subspaces, respectively. ĤPQ provides a measure for the coupling between the open P channel

and the closed Q channel.

In order to calculate the width of a Feshbach resonance, three quantities are required: the binding energy ǫP of

the open channel, the energy ǫQ of the closed channel responsive to the Feshbach resonance, and the coupling matrix

element K between the two channels. Since the width ∆B is defined as the difference in magnetic fields between
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a = 0 and a = ∞, we define a S matrix as S = SPSQ, where SP denotes the direct scattering matrix describing the

scattering process in the P space and SQ is the resonance scattering matrix. In the case without shape resonance, if

one open channel is coupled to a single closed channel in the vicinity of a resonance, the SQ matrix can be expressed

as [22, 23]

SQ = 1− 2πi
|〈φQ|HQP|Ψ+

P〉|2
E − ǫQ − γ(E)

, (9)

where φQ is the eigenstate of ĤQQ and Ψ+
P denotes the scattering eigensate of ĤPP. The collision energyE = ~

2k2/(2µ)

is defined with respect to the open channel threshold energy. The complex energy shift γ(E) describes the dressing

of bare bound state φQ by coupling to the P space.

Experimentally, the colliding complex is prepared in a hyperfine state. For an ultracold atomic collision, the energy

thresholds of the open and closed channels can be determined by the Zeeman hyperfine interaction. Performing a basis

transformation from the spin basis state |σ〉 to atomic hyperfine states |f,mf 〉α⊗|f,mf 〉β , we can distinguish the open

and close channel subspaces. In the case of one open channel, ĤPP is a single matrix element on the diagonal of Ĥ ,

corresponding to the bare binding energy of the least bound state of the entrance channel, ǫP = −~
2κ2P /(2µ). Then we

consider the second basis transformation in which the closed-channel subspace is diagonalized and the open-channel

subspace keeps unchanged. We obtain the eigenstates of ĤQQ and are able to identify the bound state responsive to

a particular Feshbach resonance. The one-dimensional P space is not changed by the basis transformation. Using

the basis of eigenstates of ĤPP and ĤQQ, we easily find the coupling matrix element K = 〈φP |ĤPQ|φQi
〉, where |φP 〉

denotes the bare bound state in the P space and |φQi
〉 is the ith bound state with binding energy ǫQi

(i=1,2. . . ) in

the Q space. The resonant width ∆B can be expressed as [14]

∆B =
1

abg

K2

2κP |ǫP |µrel

. (10)

The background scattering length abg = aPbg + aP , where aPbg ≈ 1
2
(2µC6

~
)1/4 and aP = κ−1

P . µrel is the relative

magnetic moment of the collision complex between the open and closed channels. The resonant position is related to

the crossing of uncoupled bound state (B′
0) with the threshold [14]

B0 = B′
0 +

K2

2µrel|ǫP |
. (11)

The scattering length can be expressed as

a(B) = abg

(

1− ∆B

B −B0

)

. (12)

Up till now we have considered only the scattering at T = 0. However, even at ultralow temperature the finite

temperature plays a significant role. In the following description, the influence of temperature on scattering amplitude

and cross section is taken into account. The s-wave scattering amplitude f0 is expressed as

f0 =
1

k
eiη0 sin η0 =

1

k cot η0 − ik
, (13)

where η0 is the s-wave phase-shift and k =
√

2µkBT/~2, with kB being the Boltzmann constant and T being the

temperature of the collision complex. The s-wave scattering cross section σ(k) is given by

σ(k) = 4π|f0|2 = 4π
1

k2 cot2 η0 + k2
. (14)
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In the absence of shape resonance we can express an energy-dependent s-wave phase shift as

η0(E) = −kabg − arg(−δ + ikΩ) = ηbg(E) + ηres(E), (15)

where Ω = K2

2κP |ǫP | corresponds to the coupling strength between the open and closed channels and δ = µrel(B−B0)−E
is the detuning from the resonance. The resonant phase shift is given by

ηres(E) = arctan

(

−k abg∆Bµrel

E − µrel(B −B0)

)

. (16)

Assuming the non-resonant phase shift ηbg(E) = −kabg ≃ − tankabg in the case of ultralow temperature, we can

obtain the energy-dependent scattering cross section

σ(k) =
4π

k2
(kΩ− kabgδ)

2

(1 + k2a2bg)(δ
2 + k2Ω2)

. (17)

To obtain a thermally averaged cross-section we need to average all possible collision energy E. The collision rate

n〈συ〉 is an important parameter in experiments, where n and υ =
√

2E/µ is the density and the relative velocity of

the collision complex, respectively. Since 〈σ〉 is independent of r, we can obtain [24]

〈συ〉 =
√

8

πµ(kBT )3

∫ ∞

0

σ(E)Ee−E/kBTdE. (18)

The above expression can be given analytically when the Wigner law is valid [25].

III. RESULTS AND DISCUSSIONS

In the present work, we investigate the magnetically induced 6Li-40K Feshbach resonances modulated by external

electric field. We neglect the weak dipole-dipole interaction and only consider s- and p-wave bound state scatterings

since the resonance induced by high order coupling is very weak compared to the one induced by direct coupling

[10, 26]. The adiabatic molecular interaction potential VS(R) is adopted from Ref. [27]. The transition factors we

calculated are 406.181 and 23.219 cm−1 for the singlet and triplet states, respectively.

Firstly, we distinguish two different s-wave resonances: the intrinsic s-wave resonance which exists in the absence

of electric field, and the electric field-induced s-wave resonance which only exists in the presence of electric field. In

order to investigate the mechanism of electric field modulation of the magnetically induced Feshbach resonance, we

calculate the positions and widths of the Feshbach resonances observed in experiments at ζ = 100 kV/cm in Table I,

where the electric field is directed along the z axis. The inelastic losses caused by coupling to the p-wave open channel

can be neglected since we choose the energetically lowest spin combination. In the case of an initial s-wave, there is

one s-wave channel that is energetically open. The s-wave resonances shift to different directions and the shifts are

irregular. Specially, two of electric field-induced s-wave resonances at 13.9 G for MF = -3 and 17.5 G for MF = -2

shift quickly to lower magnetic field. Due to energy repulsion, the shift of s-wave resonance depends on the relative

magnetic moment µrel. The resonances shift to high magnetic field when µrel > 0, and shift to low magnetic field if

µrel < 0. Though the s-wave resonances in Table I possess the positive relative magnetic moments, they are situated

at lower magnetic field and the energy level spacing between the s- and p-wave bound states are small compared to

those at higher magnetic field. The widths of intrinsic s-wave resonances are changed slightly by the external electric
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TABLE I: Survey of s-wave resonances of 6Li-40K in external electric field. The first four columns list the total angular moment

projections MF , the hyperfine states of
6Li and 40K, the resonant positions B0 and widths ∆B in the absence of electric field in

experiments. For all resonances, fLi = 1/2 and fK = 9/2. Here we present the atomic hyperfine states in which the resonances

have been observed in experiments [12, 13]. Note that the experimental width of the loss feature ∆Bexpt is not the same as

the field width ∆B of the scattering length singularity. The resonant positions we calculated agree well with the experimental

results. The last two columns give the variations of resonant positions and the widths at ζ = 100 kV/cm. Since the p-wave

resonance can induce the s-wave resonance in the presence of electric field, we also give the variations of electric filed-induced

resonances in the last two columns.

MF mfLi
,mfK

Experiment Theory

B0 (G) ∆Bexpt (G) B0 (G) ∆B (G) shift (G) ∆B′-∆B (G)

-5 -1/2,-9/2 215.5 1.7 215.6 0.16 12.75 0.012

-4 +1/2,-9/2 157.6 1.7 157.6 0.08 -6.02 -0.015

-4 +1/2,-9/2 168.2 1.2 168.5 0.08 8.17 -0.002

-4 +1/2,-9/2 249.0 11.0 244.3 p-wave 6.53 0.025

-3 +1/2,-7/2 16.1 3.8 13.9 p-wave -13.33 < 0.0001

-3 +1/2,-7/2 149.2 1.2 149.1 0.12 -5.87 -0.041

-3 +1/2,-7/2 159.5 1.7 159.7 0.31 6.42 0.025

-3 +1/2,-7/2 165.9 0.6 165.9 0.0005 5.98 0.0007

-3 +1/2,-7/2 263.0 11.0 260.7 p-wave 6.47 0.024

-2 +1/2,-5/2 Not observed 17.5 p-wave -16.77 < 0.0001

-2 +1/2,-5/2 141.7 1.4 141.4 0.12 -5.07 -0.040

-2 +1/2,-5/2 154.9 2.0 154.8 0.50 4.89 0.024

-2 +1/2,-5/2 162.7 1.7 162.6 0.07 6.18 -0.012

-2 +1/2,-5/2 271.0 14.0 274.0 p-wave 5.86 0.020

+5 +1/2,+9/2 114.47(5) 1.5(5) 115.9 0.91 -2.50 -0.240

field except for the resonances at 149.1 G for MF = -3, 141.4 G for MF = -2 and 115.9 G for MF = 5. Moreover, we

can see that three electric field-induced Feshbach resonances at 244.3 G for MF = -4, 260.7 G for MF = -3 and 274

G for MF= -2 are greater than or equal to 0.02 G at ζ = 100 kV/cm, which may be easily observed in experiment.

However, the widths of two s-wave resonances induced by electric field at 13.9 G for MF = -3 and 17.5 G for MF =

-2 are very small, < 0.0001 G, which are hardly observed.

According to Eq. (10), the width of a Feshbach resonance in the presence of electric field is determined directly by

the relative magnetic moment µrel and the coupling strength K because the open-channel energy is hardly changed by

the electric field [11]. To further research the effect of electric field on the width, we plot µrel, K2 and resonant width

in the atomic spin state | 1
2
, 1
2
〉Li⊗| 9

2
,− 5

2
〉K as a function of electric field intensity in Fig. 1. In the presence of electric

field with γ = 0, there are five s-wave resonances. Two of them, at AS and ES , are the Feshbach resonances induced

by electric field and the others are intrinsic resonances. In Fig. 1(a), the relative magnetic moments for the resonances

at BS , CS and DS decrease with increasing electric field intensity, and vary slowly when ζ > 500 kV/cm. This is

because the relative magnetic moment is directly related to the energy of bound state, µrel = ∂ǫQ/∂B|B=B0
. The
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FIG. 1: (Color online) The relative magnetic moment µrel, the square of coupling strength K and the resonant width versus

the electric field intensity. In the presence of electric field, five s-wave resonant positions AS ∼ ES in the atomic spin state

| 1
2
, 1

2
〉Li ⊗ | 9

2
,− 5

2
〉K are labeled in the order of increasing magnetic field. Note that the resonance at AS shift to lower magnetic

field with increasing electric field intensity and vanishes when ζ ≥ 105 kV/cm.

energies of s-wave and p-wave bound states related to these resonances are very close to each other. A weak electric

field can modify the energies of s-wave and p-wave bound states and result in a avoided crossing between them. By

increasing electric field intensity, the resonances shift away from the avoided crossing and the energy spacing between

the s- and p-wave bound states increase at the resonant positions. The effect of electric field on the energies of the

bound states and the relative magnetic moment µrel are changed slowly. While the relative magnetic moments at

AS and ES increase slowly with increasing electric field intensity since the energy spacing between the s- and p-wave

bound states related to the two resonances are large enough in the absence of electric field.

The electric field can not only change the relative magnetic moment of the collision complex, it can also change the

coupling strength between the open channel bound state and the closed channel bound state which is responsive to the

Feshbach resonance. Figure 1(b) shows the square of coupling strength versus the electric field intensity. The curves

do not exhibit a monotonic variation since the energies of both dressed and uncoupled bound states are modified by

the electric field in varying degrees. The coupling strengths associated to the resonances at AS and ES reach their

respective maxima and then decrease with the increase of electric field intensity. We also observe the variation of
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FIG. 2: (Color online) The electric field dependence of s-wave scattering cross section in the atomic spin state | 1
2
, 1

2
〉Li⊗| 9

2
,− 5

2
〉K

in different magnetic fields: (a) B = 160 G, (b) B = 158 G, (c) B = 12 G and (d) B = 10.5 G. The temperature of the collision

complex is 12 µK (black solid lines), 1.2 µK (red dashed lines) and 120 nK (light blue lines).

coupling strength for all five electric field-induced s-wave resonances listed in Table I and find they exhibit similar

behavior. This can be explained as follows: A strong electric field can enhance the coupling between the s-wave and

p-wave bound states. However, it can also shift the position of Feshbach resonance at which the Zeeman interaction is

changed. When the electric field is weak, the shift of Feshbach resonance is small and the coupling between the s-wave

and p-wave bound states mainly depends on electric field intensity. In a strong electric field, ζ > 200 kV/cm, the shift

of Feshbach resonance nearly linearly change with the electric field intensity [11] and the coupling strength depends

on the Zeeman interaction and the electric field-complex interaction. The two interactions have opposite effects on

the coupling strength related to the electric field-induced resonances for 6Li-40K, which leads to the decrease of the

coupling strength with increasing the electric field intensity.

Since the energy of open channel can not be changed by electric field, the variation trend of Feshbach resonant

width is similar to that of K2/µrel. Figure 1(c) shows the resonant width versus electric field intensity. By observing

Fig. 1, we conclude that the electric field can change µrel and K2 in different extent, and the strong electric field can

more obviously influence K2 than µrel.

Figure 2 displays the changes of s-wave scattering cross section with electric field intensity in different magnetic

fields in the atomic spin state | 1
2
, 1
2
〉Li ⊗ | 9

2
,− 5

2
〉K. The resonance feature in Fig. 2(a) and (b) is the shift of intrinsic

magnetic Feshbach resonance at CS shown in Fig. 1 to higher magnetic field, and the resonance feature in Fig. 2(c)

and (d) is the shift of an electric field-induced resonance at AS shown in Fig. 1 to lower magnetic field when the

electric field intensity increases. For case of representation, we define the resonant position ζ0 and width ∆ζ for the

s-wave scattering in electric field as a = ∞ and the difference between a = 0 and a = ∞, respectively. From Fig.

2, we can see that the resonant positions ζ0 are shifted for k > 0 and converge at the temperature of nK. We also

find the temperature of the collision complex (or collision energy) has different influences on the resonant positions
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FIG. 3: (Color online) (a) The scattering cross section σ(E) at temperature T=12 µK and (b) the corresponding thermal

average scattering rate constant 〈συ〉 in the atomic spin state | 1
2
, 1

2
〉Li ⊗ | 9

2
, 9

2
〉K as a function of magnetic field intensity in

different electric fields. The amplitudes of the electric fields are 0 kV/cm (black solid lines), 50 kV/cm (red dashed lines), 100

kV/cm (green dashed-dotted lines) and 200 kV/cm (blue dotted lines).

at different magnetic field intensities and the shifts of ζ0 depend on µrel of the collision complex. At T = 12 µK, the

shifts of resonant positions in the electric field are 2.4, 1.6, 1.2 and 1.0 kV/cm at B = 158, 160, 12 and 10.5 G in

order. The relative magnetic moments corresponding to magnetically induced resonances at B = 158, 160, 12 and

10.5 G decrease in turn. So temperature has a significant influence on ζ0 for a larger µrel. The resonant position and

width in electric field can be changed in great extent by changing magnetic field intensity. At the temperature of

nK, the resonant positions are situated at ζ0 = 69.25 and 43.22 kV/cm for B = 160 and 158 G, respectively. The

resonant position shift in electric field caused by magnetic field is 26 kV/cm and the resonant width is also changed

obviously. However, not all s-wave resonances are sensitive to the magnetic field intensity. At the temperature of nK,

the resonant positions are located at 55.90 and 63.27 kV/cm for B = 12 and 10.5 G, respectively, and the widths are

nearly the same. The resonant positions and widths in electric field at different magnetic field intensities are related

to ∆B and B0, as shown in Fig . 1(c). When a magnetic Feshbach resonance is shifted by electric field at a speed of

dB0

dζ , the corresponding resonance in electric field is shifted by magnetic field at a speed of dζ0
dB (= dζ

dB0
). The resonance

at AS is shifted by electric field quickly than the resonance at CS . As a result, the resonant positions in Fig. 2(a)

can be obviously changed by slightly varying magnetic field. In the case of ∆B unchanged, ∆ζ is mainly determined

by dζ
dB0

. From Fig. 1(c), the resonant width at AS increases a little when ζ changes from 55.90 to 63.27 kV/cm.

Similarly, the resonant width at CS increases when ζ changes from 43.22 to 69.25 kV/cm. However, dζ
dB0

is nearly

unchanged at B0 = 10.5 and 12 G, and increases 50% at B0 = 158 G compared to the result at B0 = 160 G. This

provides an alternative way to steer the interatomic interaction by utilizing external electric field.

Though an electric field can modify the scattering length, another interesting aspect in experiment is its effect

on the scattering cross section, especially the thermal average cross section related to the collision rate. Figure 3

displays the scattering cross section at temperature T=12 µK and the thermal average rate constant in the atomic
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FIG. 4: (Color online) The number of Li atoms as a function of magnetic field intensity and holding time t in the atomic spin

state | 1
2
, 1

2
〉Li ⊗ | 9
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2
〉K in electric fields (a) ζ = 0 kV/cm and (b) ζ = 200 kV/cm.

spin state | 1
2
, 1
2
〉Li ⊗ | 9

2
, 9
2
〉K as a function of magnetic field intensity in different electric fields with γ = 0. With

increasing the electric field intensity, the resonant width becomes small and the maximum of scattering cross section

is nearly unchanged. However, the maximum of the thermal average rate constant decreases with increasing electric

field intensity. In our calculation, the maximum of 〈συ〉 at ζ = 200 kV/cm approximately decreases to one third of

the value in the absence of electric field. According to Eq. (17), at ultralow temperature the maximum of scattering

cross section mainly depends on the wave vector k but not the resonant width, so it varies slightly under the action of

electric field. Since 〈συ〉 is an average over all συ, its maximum is related to the resonant width. However, at a lower

temperature, e.g. nK, the effect of electric field on the maximum of 〈συ〉 weakens. This provides another interesting
way to research the collision rate by applying an electric field.

The Fano profile of Feshbach resonance can be observed by measuring the distillation rate (or evaporation rate)

of the Li from the K-rich Li-K mixture in the optical trap as a function of magnetic field intensity. We assume the Li

evaporates at a rate proportional to the inter-species elastic cross section. Since the component of Li is minor in the

Li-K mixture, this distillation process proceeds at an approximately constant rate. The distillation of Li as a function

of time t is described by N(t) = N0e
−t/τeve−t/τbg , where N0 = 3×103 is the initial number of Li atoms, τbg = 25 s the

vacuum limited lifetime and τ−1
ev ≃ nK〈σ(k)~k/µ〉e−ηLi the thermally-averaged evaporation rate. nK = 2× 1011cm−3

is the central density of the K atoms. ηLi = 2.7 is the truncation parameter of Li atoms after decompression. Figure

4 displays the distillation of Li atoms as a function of magnetic field intensity and holding time in different electric

fields. The resonant position and width can be determined by observing magnetic field-dependence of the number of

Li atoms at different times. We can see the resonant position and width are obviously changed by electric field. The

losses of 50% and 15% in 1 s holding time at resonant positions for ζ = 0 and 200 kV/cm are observed, respectively.

Since the maximum of thermal average evaporation rate at ζ = 200 kV/cm reduce to 1/3 of the value in the absence

of electric field, the distillation of Li atoms decreases. Moreover, the distillation of Li atoms also depends on the

density of K atoms and the truncation parameter of Li atoms.

In the above discussion, the electric field is parallel to the magnetic field (angle γ = 0). Li et al. investigated the

effect of nonparallel electric and magnetic fields on the Feshbach resonances [10]. They found the resonant position of

the p-wave remains unchanged and the scattering cross section of the p-wave is nearly unchanged for different angle γ.

We also study the effect of nonparallel electric and magnetic fields on the s-wave resonances (γ 6= 0). We find that the
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resonant position and width of the s-wave scattering are not influenced by γ. This is because the coupling between

the s-wave and p-wave bound states, which influences the s-wave resonant position and width, keeps unchanged for

different γ. However, it is noteworthy that the nonparallel electric and magnetic fields may influence the transition

from the open channel for the s-wave to the open channels for the p-wave. This needs to be further explored.

IV. CONCLUSION

We have investigated theoretically the effect of an electric field on the magnetic field-induced Feshbach resonances

for the ultracold 6Li-40K collision complex using the asymptotic bound state model. The relative magnetic moment

can be changed by electric field in varying degrees. The width of a Feshbach resonance in electric field mainly depends

on the coupling strength between the open channel and closed channel bound states in a strong electric field. The s-

wave scattering cross section in electric field is sensitive to the temperature of the colliding complex and the magnetic

field intensity. The variation of temperature can cause a position shift of the maximal cross section in electric field for

a collision system with a larger magnetic moment. The resonant feature in electric field can be changed in great extent

by slightly changing magnetic field intensity. One can steer the interaction of heternuclear molecules with a small

permanent dipole moment by utilizing electric field and magnetic field. An electric field can change the maximum of

thermal average rate for the ultracold 6Li-40K collision system by several times at the temperature of µK. However,

at the temperature of nK, the effect of electric field on the thermal average rate weakens.
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[1] T. Weber, J. Herbig, M. Mark, H-C Nägerl, and R. Grimm Science 299, 232 (2003).

[2] I Bloch Nature (London) 453, 1016 (2008).

[3] C Chin, R. Grimm, P. Julienne and E. Tiesinga Rev. Mod. Phys. 82, 2 (2010).

[4] Z. Li, Phys. Rev. A 81, 012701 (2010).

[5] T. Xie, G.-R. Wang, Y. Huang, W. Zhang and S.-L. Cong, J. Phys. B 45, 145302 (2012).

[6] G.-R. Wang, T. Xie, W. Zhang, Y. Huang, and S.-L. Cong, Phys. Rev. A 85, 032706 (2012).

[7] R. V. Krems, Phys. Rev. Lett. 96, 123202 (2006).

[8] Z. Li and R. V. Krems, Phys. Rev. A 75, 032709 (2007).

[9] B. Marcelis, B. Verhaar, and S. Kokkelmans, Phys. Rev. Lett. 100, 153201 (2008).

[10] Z. Li and K. W. Madison, Phys. Rev. A 79, 042711 (2009).

[11] T. Xie, G.-R Wang, W. Zhang, Y. Huang, and S.-L. Cong, Phys. Rev. A 84, 032712 (2011).

[12] E. Wille et al., Phys. Rev. Lett. 100, 053201 (2008).

[13] T. G. Tiecke, M. R. Goosen, A. Ludewig, S. D. Gensemer, S. Kraft, S. J. J. M. F. Kokkelmans, J. T. M. Walraven, Phys.

Rev. Lett. 104, 053202 (2010).

[14] T. G. Tiecke, M. R. Goosen, J. T. M. Walraven, and S. J. J. M. F. Kokkelmans, Phys. Rev. A 82, 042712 (2010).



12

[15] D. Naik, A. Trenkwalder, C. Kohstall, F.M. Spiegelhalder, M. Zaccanti, G. Hendl, F. Schreck, R. Grimm, a , T. M. Hanna,

and P.S. Julienne, Eur. Phys. J. D 65, 55 (2011).

[16] M. Aymar and O. Dulieua, J. Chem. Phys. 122, 204302 (2005).

[17] W. Zhang, Y. Huang, T. Xie, G.-R. Wang, and S.-L. Cong, Phys. Rev. A 82, 063411 (2010).

[18] W. Zhang, Z.-Y. Zhao, T. Xie, G.-R. Wang, Y. Huang, and S.-L. Cong, Phys. Rev. A 84, 053418 (2011).

[19] W. Zhang, T. Xie, Y. Huang, and S.-L. Cong, Phys. Rev. A 84, 065406 (2011).

[20] H. Feshbach, Ann. Phys. 5, 357 (1958).

[21] H. Feshbach, Ann. Phys. 19, 287 (1962).

[22] A. J. Moerdijk, B. J. Verhaar, and A. Axelsson, Phys. Rev. A 51, 4852 (1995).

[23] B. Marcelis, E. G. M. van Kempen, B. J. Verhaar, and S. J. J. M. F. Kokkelmans, Phys. Rev. A 70, 012701 (2004).

[24] T. Tiecke. Feshbach resonances in ultracold mixtures of the fermionic quantum gases 6Li and 40K. PhD thesis, Van der

Waals-Zeeman Institute of the University of Amsterdam, 2009.

[25] R. V. Krems and A. Dalgarno, Phys. Rev. A 67, 050704(R) (2003).

[26] C. J. Hemming and R. V. Krems, Phys. Rev. A 77, 022705 (2008).

[27] E. Tiemann, H. Knöckel, P. Kowalczyk, W. Jastrzebski, A. Pashov, H. Salami, and A. J. Ross, Phys. Rev. A 79, 042716

(2009).


