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We show that, in analogy to light fields, effective bosonic modes of atomic ensembles in the
Holstein-Primakoff representation can be prepared in multimode squeezed states, and multipartite
continuous variable cluster and Greenberger-Horne-Zeilinger (GHZ) entangled states. Our scheme
uses a cascade of optical cavities, in each of which one atomic ensemble is placed. Through Raman
transitions between stable atomic ground states, the atomic ensembles are in the interactions with
the cavity and laser fields. Because of the long-lived ground states, the atomic ensembles act as
quantum network nodes, whose cluster entangled states are applicable in the one-way quantum
computer, and whose GHZ entangled states have potential for quantum communiations.
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I. INTRODUCTION

Squeezed state is one of the key concepts in quantum
optics and finds its wide applications in the high-precision
measurement [1]. Squeezing of an optical field is defined
as a reduction of the quantum fluctuations in one quadra-
ture below the standard quantum limit at the expense of
the enhanced fluctuations in the conjugate quadrature
[2]. Squeezing can occur for quadratures of single modes,
two or more modes. The two- or multi-mode squeezing
takes place when a collective operator has its noise below
the standard quantum limit. This is exclusive for mul-
tiple fields because it happens even when no individual
field is squeezed.

The extreme importance of two- or multi-mode squeez-
ing is the close relation to the bipartite or multipar-
tite continuous variable (CV) entanglement [3–8], which
is an indispensable resource in quantum information
and quantum communication networks [9]. Two im-
portant classes of multipartite CV entangled states are
Greenberger-Horne-Zeilinger (GHZ) state [10] and clus-
ter state [11]. The multipartite CV GHZ entangled state
is a multimode (N -partite) momentum (position) eigen-

state with total momentum
∑N

l=1 pl = 0 (total position
∑N

l=1 xl = 0) and relative positions xj − xk = 0 (relative
momenta pj − pk = 0), j = k = 1, 2, · · · , N , j 6= k. The
GHZ entangled state is used for quantum teleportation
[12–17], dense coding [17–20], and quantum secret shar-
ing [21–23]. Su et al. [24] have prepared the quadripartite
GHZ entangled states experimentally. The tripartite and
quadripartite GHZ entanglements have been studied in
the parametric interactions [25–28] and in the semicon-
ductor [29]. On the other hand, the cluster entangled
states are such that in the limit of infinite squeezing,
the states become zero eigenstates of a set of quadrature
combinations, pi −

∑

j∈Ni
xj → 0, ∀i ∈ N . In terms of

a graph state, every mode i ∈ N represents a node and
the modes j ∈ Ni are the nearest neighbors of mode i.
There is an exception that a tripartite linear cluster state
is up to local unitary operation equivalent to a tripartite
GHZ state [30, 31]. The cluster state is applied to one-

way quantum computer [32–35]. The multipartite optical
cluster entanglement has been studied extensively. Su et

al. [24] and Yukawa et al. [36] have prepared the quadri-
partite cluster entangled states experimentally.

Parallel to the squeezing and entanglement of light
fields, the squeezing and entanglement of atomic ensem-
bles has received great attention as well [37–44]. In the
Holstein-Primakoff representation [45] atomic ensembles
are treated as effective bosonic modes. Similarly, the
atomic squeezing can occur for the quadratures of sin-
gle, two, or more ensembles, and the two-mode or multi-
mode squeezing is closely related to the bipartite or mul-
tipartite CV entanglement. The squeezed atomic ensem-
bles are not only used in high-precision spectroscopy [38]
and atomic clock, but also serve as quantum memories
in the quantum networks [46–48]. Kuzmich et al. [40]
proposed a scheme for spin squeezing in an ensemble of
atoms by transferring quantum state from nonclassical
light to atoms, and then Hald et al. [41] performed the
experimental observation by using cold atoms. Choi et
al. [42] demonstrated mapping of an entangled state of
photons into and out of an atomic ensemble. Julsgaard et

al. [43] verified a quantum memory for CV entanglement.
Kuzmich et al. [44] observed the spin squeezing by moni-
toring continuous quantum nondemolition of a collective
atomic spin with an off-resonant laser beam. Duan et al.

[49] proposed that bipartite entanglement can be gen-
erated between distant free space atomic ensembles by
using only coherent light pulse, and then Julsgaard et

al. [43] gave the experimental verification. Parkins et al.
[50] proposed a scheme for the unconditional prepara-
tion of two-mode squeezing of separated atomic ensem-
bles. Their scheme is based on the light-atom Raman
interactions in one or two optical cavities. To our knowl-
edge, however, so far the experimental progress in atomic
squeezing and CV entanglement has mainly confined to
the two-mode case.

Here we generalize the scheme of Parkins et al. [50] to
arbitrarily many separated atomic ensembles and show
that it is possible to prepare multimode squeezed states
and multipartite cluster and GHZ entangled states. Our
scheme uses a cascade of cavities, in each of which one
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FIG. 1: (Color online) A scalable scheme for the generation of multimode squeezed states and multipartite cluster and GHZ
entangled states of atomic ensembles in a cascade of optical cavities. The atomic ensembles are divided in two groups, one of
which is for m ensembles on the lower right arms with the numbers of atoms N1,3,··· ,2m−1, and the other is for n ensembles on
the lower left arms with the numbers of atoms N2,4,6,··· ,2n.

atomic ensemble is placed. It is shown that multimode
squeezed states and multipartite CV entanglement of
cluster and GHZ types are achievable. The advantage
of the present scheme lies in the following four aspects.
First, the multipartite entanglement is unconditionally
prepared as proposed for the two-mode case [50], but
not probabilistically, as proposed in Ref. [51]. Second,
the multipartite entanglement is generated without the
preparation of light entanglement, as in the quantum
state transfer scheme from light to atoms [42, 43]. This is
based on the interaction of the atoms with the cavity and
laser fields. Thirdly, the present scheme avoids selective
interactions as required in Ref. [52], where quadripar-
tite case was considered and the selective interaction was
used. In that scheme, however, particularly chosen se-
quences for the atom-field interactions, interaction times,
and different phases of the driving fields were required.
For the more parties, such operations become so com-
plicated and challenging. Instead, the present scheme
is suitable for arbitrarily many parties. Fourthly, this
scheme is robust against spontaneous emission because
the interactions of the atoms with cavity and laser fields
occur between long lived ground states.

II. MODEL AND EQUATION

In Fig. 1 we depict a cascade of cavities, in each of
which one ensemble of atoms is placed. Each atomic en-
semble has two stable ground states (denoted by |1〉 and
|2〉) and two excited states (labeled as |3〉 and |4〉), as
shown in Fig. 2. The quantum transitions due to the
cavity and laser fields are in the Raman configurations.
The atomic ensembles under consideration are arranged
into two families, i.e., one is for those that are placed on
the lower right arms and labeled by the numbers Nj of
atoms with odd subscripts (j = 1, 3, 5, · · · , 2m− 1), and
the other is for those that are placed on the lower left
arms with even number subscripts (j = 2, 4, 6, · · · , 2n).
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FIG. 2: (Color online) Atomic energy-level structures and
quantum transitions due to the cavity fields (a1,2 and b1,2)
and the driving fields (Ωa1,2 and Ωb1,2). The left part is for
the atomic ensembles on the first lower-right arm in Fig. 1 and
the right one is for the atomic ensemble on the first lower-left
arm.

The atomic ensembles on the lower right arms are ini-
tially prepared in the state |1〉, while those on the lower
left are initially prepared in the state |2〉. The light is
assumed to circulate unidirectionally in the cavity. The
laser fields of angular frequencies ωaj

and ωbj interact
with the atoms via Rabi frequencies Ωaj

and Ω
bj
, respec-

tively. The cavity modes aj and bj of angular frequencies
νaj

and νbj are coupled to the atoms with the strengths
ga

j
and gbj , respectively. We derive the master equation

for the cascade of atomic ensembles through three steps
as follows.

(1) Hamiltonian for the interaction of atomic ensem-

bles with the cavity and laser fields. In the dipole approx-
imation and in an appropriate frame rotating at atomic
resonance transition frequencies, the Hamiltonian of the
system is written as

H = H0 +H1 +H2, (1)
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with

H0 =
∑

j

~

(

δaj
a†jaj + δbjb

†
jbj

)

,

H1 =
∑

j

~

(

Ωaj
σ
(j)
32 e

−i∆aj
t +Ωbjσ

(j)
41 e

−i∆bj
t
)

+H.c.,

H2 =
∑

j

~

(

gaj
ajσ

(j)
31 + gbjbjσ

(j)
42

)

+H.c., (2)

where j = 1, 3, 5, · · · , 2m−1 are for the atomic ensembles
and the light fields associated with the lower right arms in
Fig. 1, and j = 2, 4, 6, · · · , 2n involve the atomic ensem-
bles and the fields associated with the lower left arms. H0

is the free Hamiltonian associated with the cavity modes,
H1 presents the atom-laser-field interaction Hamiltonian,
andH2 describes the atom-cavity-field interaction Hamil-

tonian. σ
(j)
kl =

∑Nj

µj=1 |kµj 〉〈lµj | (k, l = 1 − 4) are the

dipole operators of the jth atomic ensemble for k 6= l

and the projection operators for k = l. ∆aj
= ωaj

−ω(j)
32 ,

∆bj = ωbj − ω
(j)
41 are, respectively, the detunings of the

laser frequencies ωaj
and ωbj from the atomic resonance

transition frequencies ω
(j)
32 and ω

(j)
41 . δaj

= νaj
− ω

(j)
31

and δbj = νbj − ω
(j)
42 are the detunings of the cavity fre-

quencies νaj
and νbj from the atomic resonance transi-

tion frequencies ω
(j)
31 and ω

(j)
42 , respectively. The laser

frequencies are assumed to satisfy the resonance condi-
tions ωbj − ωaj

= 2ω0j [50], where ω0j are the difference
frequencies of the two ground states of the jth atomic
ensembles.

(2) Effective Hamiltonian for the two-channel Ra-

man processes. For the atomic ensembles on the lower

right arms, 〈σ(j)
11 〉 = Nj (j = 1, 3, 5, · · · , 2m − 1), the

collective atomic spin operators are defined as J−
j =

∑Nj

µj=1 σ
µj

12 = (J+
j )† and Jz

j = 1
2

∑Nj

µj=1(σ
µj

22 − σ
µj

11 ). For

the atomic ensembles on the lower left arms, 〈σ(j)
22 〉 = Nj

(j = 2, 4, 6, · · · , 2n), the collective atomic spin oper-

ators are defined as J−
j =

∑Nj

µj=1 σ
µj

21 = (J+
j )† and

Jz
j = 1

2

∑Nj

µj=1(σ
µj

11 − σ
µj

22 ). In the Holstein-Primakoff

representation [45], the collective atomic operators may
be associated with harmonic oscillator annihilation and
creation operators cj and c

†
j ([cj , c

†
j] = 1) via J−

j = (Nj−
c†jcj)

1/2cj and J
z
j = c†jcj −Nj/2. When 〈c†jcj〉 ≪ Nj, the

collective atomic operators are thus well approximated
by

J−
j ≃

√

Njcj , J+
j ≃

√

Njc
†
j , Jz

j ≃ −Nj/2. (3)

In the case of large detuings, the atoms interact disper-
sively with the cavity and laser fields, then the atomic
excited states are unpopulated. For the sake of simplic-
ity we remove the Stark shifts by tuning the cavity fields

such that νaj
= ωbj − ω0j −

|gaj
|2Nj

∆aj

and νbj = ωbj − ω0j

for j = 1, 3, 5, · · · , 2m− 1 and such that νaj
= ωbj − ω0j

and νbj = ωbj − ω0j −
|g

bj
|2Nj

∆bj

for j = 2, 4, 6, · · · , 2n.

Then the effective Hamiltonian Heff is dervied as [53]

Heff =
2m−1
∑

j=1,3

~(g̃aj
a†jcj + g̃

bj
b†jc

†
j)

+

2n
∑

j=2,4

~(g̃aj
a†jc

†
j + g̃

bj
b†jcj) + H.c., (4)

where g̃aj
=

Ωaj

∆aj

g∗aj

√

Nj and g̃bj =
Ωbj

∆bj

g∗bj
√

Nj, and the

constant energy terms are omitted.
(3) Master equation for the atom reduced density op-

erator. The Langevin equations for the cavity fields are
derived as

ȧj = −κaj
aj − ig̃aj

cj +
√

2κaj
ainj ,

ḃj = −κbjbj − ig̃bjc
†
j +

√

2κbjb
in
j , (5)

for j = 1, 3, 5, · · · , 2m− 1, and

ȧj = −κaj
aj − ig̃aj

c†j +
√

2κaj
ainj ,

ḃj = −κbjbj − ig̃bjcj +
√

2κbjb
in
j , (6)

for j = 2, 4, 6, · · · , 2n. The output of each cavity is
governed by the input-output formalism ainj + aoutj =
√

2κaj
aj and binj + boutj =

√

2κbjbj . Since the output

from the j-th cavity is the input of the (j + 1)-th cav-
ity, we have aoutj = ainj+1 and boutj = binj+1. In the case
of κ ≫ (|g̃aj

|, |g̃bj |), we have aj = a1 and bj = b1. In
the bad cavity limit, the field variables a1 and b1 can be
eliminated adiabatically [50, 54].
We consider the following two conditions. The first

condition is

Ωaj
∆bjg

∗
aj

Ω∗
bj
∆aj

gbj
= C1δj,odd + C2δj,even, (7)

where C1 and C2 are respectively the positive definite
constants, δj,odd = 1 for j = 1, 3, · · · , 2m − 1, and oth-
erwise δj,odd = 0, δj,even = 1 for j = 2, 4, · · · , 2n, and
otherwise δj,even = 0. The second condition is

C1

C2
>
Ga1

Ga2

> 1, (8)

or equivalently C1

C2

>
Gb2

Gb1

> 1, where Ga1
=

(

∑2m−1
j=1,3

∣

∣g̃aj

∣

∣

2
)1/2

, Ga2
=

(

∑2n
j=2,4

∣

∣g̃aj

∣

∣

2
)1/2

, Gbj =

Gaj
(a → b). The above two conditions are met by tun-

ing the laser fields and/or manipulating the numbers of
atoms. It is convenient to introduce the collective modes
c̃1,2

c̃1 =

2m−1
∑

j=1,3

g̃aj

Ga1

cj , c̃2 =

2n
∑

j=2,4

g̃∗aj

Ga2

cj . (9)

From now on, for convenience of description, we call cj
an odd (even) mode when j is an odd (even) number.
By such definitions, we see that c̃1 (c̃2) represent a col-
lection of the odd (even) modes. It should be noted that
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although there are other (m+n−2) independent modes,
c̃3, c̃4, · · · , c̃m+n (not written explicitly here), orthogonal
with the c̃1,2 modes, they are not in interactions with the
cavity modes. As a particular example, for two ensem-
bles with r1 = r2 > 0, we are reduced to the case as in
Ref. [50].
Finally we derive the master equation for the reduced

density operator as

ρ̇ =
Γ1

2
(2d1ρd

†
1 − d†1d1ρ− ρd†1d1)

+
Γ2

2
(2d2ρd

†
2 − d†2d2ρ− ρd†2d2), (10)

where d1 and d2 are expressed as

d1 = c̃1 cosh r1 + c̃†2 sinh r1,

d2 = c̃2 cosh r2 + c̃†1 sinh r2, (11)

with the parameters r1 and r2

r1 = arctanh

(

Ga2

Ga1

)

, r2 = arctanh

(

Gb1

Gb2

)

, (12)

and the decay rates Γ1,2 are given as Γ1 = 2
κ(G

2
a1

−G2
a2
)

and Γ2 = 2
κ (G

2
b2

−G2
b1
).

III. QUANTUM CORRELATIONS

In this section we analyze the quantum correlations of
the atomic ensembles using the master equation (10). In
Sec. IIIA we first examine the properties of the multi-
mode squeezing, then we discuss the multipartite cluster
and GHZ entanglements in Sec. IIIB and in Sec. IIIC,
respectively.

A. Multimode squeezed states

For simplicity, we first focus on the case of r1 = r2 =
r > 0 and Γ1 = Γ2. The two collective modes c̃1,2 have
the symmetric behavior, as will be seen in the following
subsection. In this case the d1,2 modes in Eq. (11) con-

stitute a pair of orthonormal modes, [dj , d
†
k] = δjk and

[dj , dk] = 0. Therefore, the master equation (10) consists
of two standard damping terms [54]. Thus the d1,2 modes
are not populated and damped into the vacuum states.
Correspondingly, c̃1,2 are both in the squeezed vacuum
states at the steady state [50]. In fact, the d1,2 modes
are related to the c̃1,2 modes through a unitary squeeze
transformation, i.e.,

d1,2 = U(r)c̃1,2U
†(r), (13)

with the squeeze operator

U(r) = exp(rc̃1c̃2 − rc̃†1c̃
†
2), (14)

where r is called the squeezing parameter. The inverse
transformation is c̃1,2 = U †(r)d1,2U(r), which indicates

that c̃1,2 are both in the squeezed vacuum state at the
steady state. Introducing the collective quadrature oper-
ators

Xl =
1√
2
(c̃l + c̃†l ), Pl =

1

i
√
2
(c̃l − c̃†l ), (15)

l = 1, 2, we can obtain their correlations [2]

〈(δX1,2)
2〉 = 〈(δP1,2)

2〉 = 1

2
+ sinh2 r,

〈δX1δX2〉 = −〈δP1δP2〉 = −1

2
sinh(2r). (16)

We further define quadrature operators

X = X1 +X2, P = P1 + P2, (17)

and obtain the quadrature fluctuations

〈(δX)2〉 = e−2r, 〈(δP )2〉 = e2r. (18)

The variance 〈(δX)2〉 is below the standard quantum
limit 1, which reveals that the two-mode squeezing oc-
curs in the amplitude quadrature X . In terms of the
collective forms of modes c̃1,2 in Eq. (9), the suppres-
sion of noise in X quadrature, in essence, indicates the
occurrence of multimode squeezing. This is seen clearly
by expanding c̃1 and c̃2 in Eq. (14) in terms of the in-
dividual atomic modes. After doing so, we obtain the
multimode squeeze operator [55]

U(ε) = exp





1

2

2m−1
∑

j=1,3

2n
∑

k=2,4

(ε∗jkcjck − εjkc
†
jc

†
k)



 , (19)

where εjk =
g̃∗

aj
g̃ak

Ga1
Ga2

r (j = 1, 3, · · · , 2m − 1; k =

2, 4, · · · , 2n). Applying the multimode squeeze operator
U(ε) to the vacuum states, we can obtain the multimode
squeezed state, i.e.,

|ψ〉 = U †(ε)|01, 03, · · · , 02m−1, 02, 04, · · · , 02n〉. (20)

In addition, the case for r1 6= r2 becomes complicated
and we no longer give the further description. However,
it can be analyzed in the same way as below for the dis-
cussion of the multipartite entanglement.

B. Multipartite cluster entanglement

Now we turn to discussing the possibilities of obtain-
ing the cluster entangled states, as represented by two-
colorable graph states in Fig. 3, where each vertex stands
for one atomic mode, and each edge for the interaction
between an odd atomic mode and an even one. We con-
sider m odd modes and n even modes. When m = 1,
n > 2 (or n = 1, m > 2), the networks are in the star-
like configurations as shown in (i, iii and vi) of Fig. 3.
For (m,n) > 2, we have at least one quadrilateral config-
uration, as shown in ii, iv, v, vii-ix) of Fig. 3. It should
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FIG. 3: (Color online) Graphical representation for the cluster states, where each vertex stands for one mode, and each edge
for the interaction between the odd and even modes. It should be noted that the tripartite cluster state in (i) is equivalent to
the tripartite GHZ state [30, 31].

be noted that the tripartite cluster configuration as in (i)
is equivalent to the tripartite GHZ state [30, 31].
As a general case we include the cases of both r1 = r2

and r1 6= r2. To do so, we define the parameter ratio

q =
r2
r1
. (21)

q = 1 corresponds to the case r1 = r2 and q 6= 1 to the
case of r1 6= r2. To explore the quantum correlations for
the above two cases, we employ the generalized P repre-
sentation [57, 58] to transform the master equation into
the Langevin equations for the c numbers. We choose a

definite operator order: c†2, c
†
1, c1, c2, and use the corre-

spondences of the operators to the c-numbers α∗
2 ↔ c̃†2,

α∗
1 ↔ c̃†1, α1 ↔ c̃1, α2 ↔ c̃2. Substituting d1,2 into the

master equation (10), we derive the Langevin equations
as

dα1

dt
= λ̃1α1 − χα∗

2 + Fα1
,

dα2

dt
= λ̃2α2 + χα∗

1 + Fα2
, (22)

where we have defined λ̃j = λj−γj and χ = χ1−χ2, with

λ1 = 1
2Γ2 sinh

2 r2, λ2 = 1
2Γ1 sinh

2 r1, γj = 1
2Γj cosh

2 rj ,

and χj = 1
2Γj sinh(2rj), j = 1, 2. It is easily seen that

at the steady-state (t → ∞) the mean solutions of Eq.
(22) are zero, 〈α1,2〉 = 〈α∗

1,2〉 = 0. The fluctuation forces
F ’s have zero average values 〈Fx(t)〉 = 0, but follow the
δ-correlations, i.e., 〈Fx(t)Fy(t

′)〉 = Dxyδ(t − t′). The
nonzero diffusion coefficients are obtained as Dα∗

1
α1

=
2λ1, Dα∗

2
α2

= 2λ2, Dα1α2
= −(χ1 + χ2), together with

Dyx = Dxy and Dx∗y∗ = D∗
yx.

For convenience we define n1 = 〈α∗
1α1〉, n2 = 〈α∗

2α2〉
and n12 = 〈α1α2〉. The equations for these correlations
are derived from Eq. (22) as

dn1

dt
= 2λ̃1n1 − 2χn12 +Dα∗

1
α1
,

dn2

dt
= 2λ̃2n2 + 2χn12 +Dα∗

2
α2
,

dn12

dt
= (λ̃1 + λ̃2)n12 + χ(n1 − n2) +Dα1α2

, (23)

from which we have the solutions at steady state

n1 = u[2λ2χ+ 2λ1(λ̃
2
2 + χ2 + λ̃1λ̃2)− λ̃2χ(χ1 + χ2)],

n2 = u[2λ1χ+ 2λ2(λ̃
2
1 + χ2 + λ̃1λ̃2) + λ̃1χ(χ1 + χ2)],

n12 = u[2χ(λ̃1λ2 − λ1λ̃2)− λ̃1λ̃2(χ1 + χ2)], (24)
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FIG. 4: (Color online) Variance V12 versus r1 for m = n = 1− 9 (i-ix) and q = 1, 0.8, 0.5, 0.2, 0.

with u = −[2(λ̃1 + λ̃2)(λ̃1λ̃2 + χ2)]−1. The correlations
for the quadrature operators [Eq. (15)] of the collective
modes are calculated as

〈(δXj)
2〉 = 〈(δPj)

2〉 = 1

2
+ nj ,

〈δX1δX2〉 = −〈δP1δP2〉 = n12, (25)

with j = 1, 2. In particular, when r1 = r2 = r and
Γ1 = Γ2, we have χ = 0, which reduces Eq. (25) to
Eq. (16). In addition, from Eq. (22) we have 〈α1α

∗
2〉 =

〈α∗
1α2〉 = 0. These correlations and those in Eq. (24) will

be used in the following calculations of the correlations
for the entanglement criteria.
According to the criteria of Loock and Furusawa [59],

the multipartite CV cluster entangled states shown in
Fig. 3 occurs if all of the following inequalities are satis-
fied simultaneously,

Vjk = 〈(δxj + δxk +

2n
∑

i=2,4;i6=k

ςiδxi)
2〉

+〈(δpj − δpk +

2m−1
∑

i′=1,3;i′ 6=j

ςi′δpi′)
2〉 < 2, (26)

where j = 1, 3, · · · , 2m − 1, and k = 2, 4, · · · , 2n. The
optimal factors ς ’s are determined by the algebraic linear

equations below

0 = 〈δxjδxl〉+ 〈δxkδxl〉+
2n
∑

i=2,4;i6=k

ςi〈δxiδxl〉,

0 = 〈δpjδpl′〉 − 〈δpkδpl′〉+
2m−1
∑

i′=1,3;i′ 6=j

ςi′〈δpi′δpl′〉, (27)

where j, l′ = 1, 3, · · · , 2m − 1; l′ 6= j, and k, l =
2, 4, · · · , 2n; l 6= k.

Here we focus on the the symmetric case, where the
individual modes have the same weight in the collective
modes, i.e., the collective modes take the forms c̃1 =
1√
m

∑2m−1
j=1,3 cj and c̃2 = 1√

n

∑2n
j=2,4 cj . The asymmetrical

case is treated in a similar way. For the symmetric case,
we have ςi = ς2 and ςi′ = ς1, and the all variances in Eq.
(26) are equal, i.e., Vjk = V12, for given m,n. Then we
obtain the optimal factors

ς1 = −
√

m
n n12 + n1

1
2 + (m− 1)n1

,

ς2 = −
√

n
mn12 + n2

1
2 + (n− 1)n2

, (28)
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FIG. 5: (Color online) Variance V12 versus r1 for m = 2, n = 3− 11 (i-ix) and q = 1, 0.8, 0.5, 0.2, 0.

and the variance

V12 =
2mn+ n1n+ n2m

mn
+
m− 1

2
ς21 + n1 ς̃

2
1

+
2n12√
n
ς̃1 +

n− 1

2
ς22 + n2ς̃

2
2 +

2n12√
m
ς̃2, (29)

where ς̃1 = 1√
m
[1+ (m− 1)ς1] and ς̃2 = 1√

n
[1+ (n− 1)ς2].

So far the criteria in Eq. (26) for the multipartite
entanglement is reduced to a single inequality

V12 < 2. (30)

The variance V12 is strongly dependent on the mode num-
bers (m,n) and the parameters (r1, r2) [i.e., equivalently
(r1, q)]. The numerical results are presented in Fig. 4-6
for q = 1, 0.8, 0.5, 0.2, 0. We plot the variance V12 versus
r1 in Fig. 4 for m = n = 1 − 9, in Fig. 5 for m = 2,
n = 3− 11, and in Fig. 6 for m = 1, n = 2− 10. Here we
have shown only the case of q 6 1. However, the case for
q > 1 is similar, which is seen by noting that the plots
for variance V12 versus r2 are precisely the same as Fig.
4-6 when q is replaced by 1/q and when m is exchanged
with n. We have also set Γ1 = Γ2 throughout the pa-
per although our treatment includes the case of Γ1 6= Γ2.
For comparison we have plotted variance for the bipartite
case [Fig. 4(i)]. It is seen that the entanglement criterion

is satisfied depending on the values of (m,n, r1, q). There
are three characteristic features as follows.

(1) Cluster states for (m,n) > 2 occur in a broad region

or even over the entire region depending on m and n.
There are two cases, one of which is for m = n > 2, as
shown in Fig. 4, and the other is for m 6= n, as shown in
Fig. 5. The corresponding graph state has one [Fig. 3(ii)]
or even more [Fig. 3(iv-v and vii-ix)] loop configurations.
For comparison we have included the m = n = 1 case for
two parties. In these two cases, the variances exhibit the
similar features. The variances are below the standard
quantum limit 2 in a broad region or even over the entire
region, as shown in Fig. 4 and in Fig. 5. The multipartite
cluster entanglement occurs when V12 < 2. When m and
n are relatively small, the inequality is easier to satisfy.
As a consequence, the cluster entanglement criterion is
satisfied over the whole regime, as shown in (i-iv) of Fig.
4 and in (i,ii) of Fig. 5. In contrast, when m or n is
relatively large, such inequality is fulfilled only when r1
is bigger than a certain value.

(2) Cluster states for m = 1 and n > 2 (or for n = 1
and m > 2) exist in a narrow region. In this case, the
graph state is an open configuration and displays star-like
structure, as shown in Fig. 3(i, iii and xi). The criterion
V12 < 2 is met only in a limited region of r1, i.e., the
dips below the standard quantum limit, as shown in Fig.
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FIG. 6: (Color online) Variance V12 versus r1 for m = 1, n = 2− 10 (i-ix) and q = 1, 0.8, 0.5, 0.2, 0.

6. As n rises, the dips move in the upper right direction.
When n is relatively small, the inequality V12 < 2 holds
in a region ranging from 0 to a certain value. But when
n is relatively large, the criterion V12 < 2 is satisfied only
for a region of intermediate value of r1. In addition, it
should be noted that the tripartite cluster state in (ii) is
equivalent to the tripartite GHZ state [30, 31].
(3) Cluster states appear for r1 6= r2. We note the

m = n = 1 case [Fig. 4(i)], which corresponds to the
two parties, as discussed by Parkins et al. [50]. In their
work, r1 = r2 is required for obtaining two-mode squeeze
operator. In fact, the two-mode squeezing is existent for
r1 6= r2, including r1 = 0 or r2 = 0. Although this is
not shown here, we have shown the quantum correlation
for bipartite entanglement criterion [the solid line in Fig.
4(i)]. It shows clearly that the bipartite entanglement
exists over the entire r1 region even when r1 6= r2. For the
various multipartite cases we have relaxed the condition
of q = 1 for entanglement. We find that even though r1
and r2 are remarkably different from each other (or one of
them is zero), multipartite entanglement is obtainable. It
is seen that the present work generalizes that of Ref. [50]
in two aspects. One is for (m,n) > 1 and the other is for
r1 6= r2. It should also be noted that, generally, r1 6= r2

gives rise to a negative effect on the entanglement. In
comparison with the case of r1 = r2, the variance curves
for r1 6= r2 shift up, and the criterion V12 < 2 becomes
relatively difficult to fulfil when m or n becomes large.

C. Multipartite GHZ entanglement

In a similar fashion, we turn to exploring the quantum
correlations for the multipartite GHZ entanglement. The
multipartite GHZ entanglement can be represented by
graphs (as shown in Fig. 7), where each vertex stands
for one atomic mode, and each edge for the interaction
between arbitrarily two atomic modes. For the graphic
presentation of a multipartite GHZ state, arbitrarily two
of the vertices are connected with an edge. When m odd
modes in Fig. 1 and n even modes are involved, we have
GHZ entanglement for m+ n parties.

According to the criteria of Loock and Furusawa [59],
the multipartite CV GHZ entangled states occurs form+
n atomic ensembles if all of the following inequalities are
satisfied simultaneously,
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FIG. 7: (Color online) Graphical representation of CV GHZ entangled states of the effective modes c1,3 and c2,4 (i), c1,3 and
c2,4,6 (ii), and c1,3,5 and c2,4,6 (iii), where each vertex stands for one mode, and each edge for the interaction between arbitrarily
two modes.
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Vjk = 〈(δxj + δxk)
2〉+ 〈(δpj − δpk +

2m−1
∑

i=1,3;i6=j

ξiδpi +

2n
∑

i′=2,4;i′ 6=k

ξi′δpi′)
2〉 < 2,

Vjj′ = 〈(δxj − δxj′ )
2〉+ 〈(δpj + δpj′ +

2m−1
∑

i=1,3;i6=j,j′

ηiδpi +

2n
∑

i′=2,4

ηi′δpi′)
2〉 < 2,

Vkk′ = 〈(δxk − δxk′ )2〉+ 〈(δpk + δpk′ +
2m−1
∑

i=1,3

ζiδpi +
2n
∑

i′=2,4;i′ 6=k,k′

ζi′δpi′)
2〉 < 2, (31)

where the first inequality is for j = 1, 3, 5, · · · , 2m − 1 and k = 2, 4, 6, · · · , 2n, the second one is for j, j′ =
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1, 3, 5, · · · , 2m − 1 and j < j′ , and the third one is for
k, k′ = 2, 4, 6, · · · , 2n and k < k′. We note that the
second inequality is absent when m = 1 and so is the
third inequality when n = 1. In the symmetrical case as
in the above subsection, the optimal parameters in Eq.
(30) become ξi = ξ1, ξi′ = ξ2, ηi = η1, ηi′ = η2, ζi = ζ1,
ζi′ = ζ2, and the variances become Vjk = V12, Vjj′ = V13,
and Vkk′ = V24. Then we obtain the expressions for the
optimal parameters

ξ1 = −u12
[

n− 1

mn
(n1n2 − n2

12)−
n12

2
√
mn

+
n1

2m

]

,

ξ2 = u12

[

m− 1

mn
(n1n2 − n2

12)−
n12

2
√
mn

+
n2

2n

]

,

η1 = −u13
[

2

m
n1(n2 +

1

2
)− 2

m
n2
12

]

,

η2 = −u13
n12√
mn

,

ζ1 = −u24
n12√
mn

,

ζ2 = −u24
[

2

n
n2(n1 +

1

2
)− 2

n
n2
12

]

, (32)

with

u12 =

[

(m− 1)(n− 1)

mn
(n1n2 − n2

12) +
m− 1

2m
n1

+
n− 1

2n
n2 +

1

4

]−1

,

u13 =

[

m− 2

m
(n1n2 − n2

12) +
m− 2

2m
n1 +

n2

2
+

1

4

]−1

,

u24 =

[

n− 2

n
(n1n2 − n2

12) +
n1

2
n1 +

n− 2

2n
n2 +

1

4

]−1

,

(33)

and the variances

V12 = 2 +
m− 1

2
ξ21 +

n− 1

2
ξ22 +

n1

m
+
n2

n
+

2n12√
mn

+n1ξ̃
2
1 + n2ξ̃

2
2 + 2n12ξ̃1ξ̃2,

V13 = 2 +
m− 2

2
η21 + n1η̃

2
1 +

n

2
η22 + n2η̃

2
2 + 2n12η̃1η̃2,

V24 = 2 +
m

2
ζ21 + n1ζ̃

2
1 +

n− 2

2
ζ22 + n2ζ̃

2
2 + 2n12ζ̃1ζ̃2,

(34)
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FIG. 10: (Color online) Variances V12, V13 and V24 versus r1 for m = 2, n = 3 (top row), 4 (middle row), 5 (bottom row) and
q = 1 (left column), 0.5 (middle column), 0.2 (right column).

with

ξ̃1 =
1√
m
[1 + (m− 1)ξ1],

ξ̃2 =
1√
n
[1 + (n− 1)ξ2],

η̃1 =
1√
m
[2 + (m− 2)η1],

η̃2 =
√
nη2,

ζ̃1 =
√
mζ1,

ζ̃2 =
1√
n
[2 + (n− 2)ζ2]. (35)

Now the set of criteria in Eq. (31) for (m,n) > 2 are
reduced to the following three inequalities

V12 < 2, V13 < 2, V24 < 2. (36)

When m = 1 (n = 1), the inequality V13 < 2 (V24 < 2)
will be absent. The variances (V12, V13, V24) depend
strongly on the mode numbers (m,n) and the parame-
ters (r1, r2) [i.e., equivalently (r1, q)]. The numerical re-
sults are presented in Figs. 8-10, where the variances are
plotted as functions of r1 for different values of (m,n, q).
In all figures, the left, middle and right columns corre-
spond to q = 1, 0.5, 0.2, respectively. Figure 8 shows
the variances for the case of m = n, where we have
V13 = V24. The top, middle and bottom rows correspond

to m = n = 2, 3, 4, respectively. Note that in this case
only V12 and V24 are present. Plotted in Fig. 9 are the
variances for the m = 1 and n = 3 (top row), 4 (middle
row), 5 (bottom row). In Fig. 10 we give the variances
versus r1 for m = 2 and n = 3 (top row), 4 (middle row),
5 (bottom row). From these figures we find that the en-
tanglement criteria [Eq. (36)] are satisfied depending on
the values of (m,n, r1, q). Three characteristic features
are presented as follows.

(1) GHZ states for m = n > 2 are obtainable over

the entire region. For a given nonzero q value, the quan-
tum correlations in Eq. (36) drop below the standard
quantum limit 2 over the entire r1 region independent of
values of m and n so long as m = n, as shown in Fig. 8.
Comparing Fig. 4 with Fig. 8, we find that the cluster
states cannot appear when r1 is relatively small, but the
GHZ states always occur independent of the r1 value.

(2) GHZ states for m 6= n are achieved in a narrow

regime. Note that such case for the cluster case happens
only when m = 1 and n > 2 or when n = 1 and m > 2.
For the present GHZ states, so long as m 6= n, the r1
range for entanglement is limited. As shown in Fig. 9
and in Fig. 10, the inequalities in Eq. (36) are met in a
narrow r1 regime ranging from 0 to a certain value.

(3) GHZ states happen for r1 6= r2. Similar to the
cluster case, GHZ states can appear for the r1 6= r2 case.
The essential difference is the absence of the GHZ entan-
glement when q = 0. In addition, generally, r1 6= r2 have
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also a slight negative effect on the quantum correlations
below the standard quantum limit.

IV. DISCUSSION AND CONCLUSION

So far we have presented a scalable scheme to generate
multimode squeezed states and multipartite cluster and
GHZ continuous variable entangled states of arbitrarily
many separated atomic ensembles. The atomic ensem-
bles are treated as the bosonic modes in the Holstein-
Primakoff representation [45]. The multimode squeezing
and the multipartite entanglement of atomic ensembles
are equivalences of those of the optical fields. As a nat-
ural extension of two-mode case, the present scheme in-
volves arbitrarily many separated atomic ensembles and
serves as a possible example of multipartite entangled
networks. The advantage is that an atomic ensemble
acts as a stationary node of quantum network. Several
advantages should be emphasized. First, the multimode
squeezed states and the multipartite entangled states are
unconditionally prepared, but not probabilistically as in
Ref. [51]. Second, the multipartite entanglement is gen-
erated via the interactions of the atoms with cavity fields
and laser fields, and no entanglement resource is needed,
as in Refs. [42, 43]. Thirdly, the present scheme operates
at steady state and avoids selective interactions as re-
quired in Ref. [52], where particularly chosen sequences
for the atom-field interactions, interaction times, and dif-
ferent phases of the driving fields were chosen. Fourthly,
this scheme is robust against spontaneous emission be-
cause the interactions of the atoms with cavity fields and
laser fields are manipulated between long lived ground
states.
It is interesting to compare the conditions between the

present scheme and that of Parkins et al. [50]. In their
scheme, only two modes are involved, but the numbers
of the atoms in the two modes are required to satisfy
two different equalities, i.e., the conditions (ii) and (iii)
in Ref. [50]. In fact, when we are reduced to two modes,
these two conditions are g̃a1

= g̃b2 and g̃b1 = g̃a2
. Under

such conditions, we have r1 = r2, and the two combina-
tion modes in Eq. (11) constitute a pair of orthonormal
modes. This gives us a pure squeezed state. So is for
the multimode cases, as shown in Sec. IIIA. Parkins et

al. [50] also pointed out that, by their numerical sim-
ulations, for deviations of the ratio g̃b2/g̃a1

from unity
by 10% − 15% the reduction in the Einstein-Podolsky-
Rosen variance [3] is degraded (for tanh r = 0.8) by only
1-2 dB. However, these two conditions become unneces-
sary if one does not require the pure squeezed state. As
shown above in Sec. IIIB and in Sec. IIIC, both the clus-

ter and GHZ multipartite entanglements are achievable
in general when r1 6= r2. This means that we relax the
conditions on the numbers of atoms in the odd and even
atomic modes for the squeezing and entanglement.

As a possible experimental system, we consider these
atomic ensembles consisting of N ∼ 106 87Rb atoms.
The ground states |1〉 and |2〉 correspond to the mag-
netic states {F = 1,mF = ±1}, respectively. These
quantum transitions are coupled via the circularly po-
larized cavity modes and laser fields. The degeneracy is
lifted up by the external magnetic field, and the pair of
Raman transitions are identified. For the realistic param-
eters we have the single-atom single-photon dipole cou-
pling strength g/(2π) ∼ 50 kHz [60, 61], the laser Rabi
frequencies Ω/(2π) ∼ 1 MHz, the atomic excited state
detunings ∆/(2π) ∼ 200 MHz. These give us Raman
transition rates g̃/(2π) ∼ 250 kHz. The cavity damping
rate is taken as κ/(2π) ∼ 1 MHz, which guarantees the
adiabatic elimination of the cavity modes. A readout of
the atomic quantum memory can be performed by cou-
pling once more to these modes alone and adiabatically
mapping their states onto the readout light fields. The
rate of decoherence of the atomic quantum memory due
to atomic spontaneous emission is determined by the rate

of single-atom spontaneous emission, i.e., γ Ω2

∆2 ∼ 0.15
kHz, with γ/(2π) ∼ 6 MHz being the spontaneous decay
rate of 87Rb from the excited states to the ground states.
Thus, the effect of spontaneous emission on the fidelity
is negligibly small.

In conclusion, we have shown that the multimode
squeezed states and the multipartite cluster and GHZ
entangled states can occur for atomic ensembles as the
correspondences of many light fields. The quantum
correlations of the atomic ensembles are remarkably
dependent on the atomic mode numbers (m,n) and the
parameters (r1, r2). For (m,n) > 2, the cluster states
are achieved in a broad r1,2 region when (m,n) are
large, or even over the entire r1,2 region when (m,n) are
relatively small. For m = 1 and n > 2 (or for n = 1 and
m > 2), the cluster states exist only in a narrow r1,2
region. It differs slightly for the GHZ states. The GHZ
states are obtainable over the entire r1,2 region so long
as m = n > 2, but in a narrow r1,2 region when m 6= n.
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