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We propose a feasible scheme to achieve quantum computation based on geometric manipulation of
ensembles of atoms, and analyze it for neutral rubidium atoms magnetically trapped in planoconcave
microcavities on an atom chip. The geometric operations are accomplished by optical excitation of
a single atom into a Rydberg state in a constant electric field. Strong dipole-dipole interactions and
incident lasers drive the dark state of the atom ensembles to undergo cyclic evolutions that realize
a universal set of quantum gates. Such geometric manipulation turns out naturally to protect the
qubits from the errors induced by non-uniform laser illumination as well as cavity loss. The gate
performance and decoherence processes are assessed by numerical simulation.

PACS numbers: 03.65.Vf, 03.67.Lx, 42.50.Pq, 32.80.Ee

I. INTRODUCTION

Quantum information processing (QIP) holds out the
possibility to run algorithms and protocols superior to
those of its classical counterpart [1, 2]. In recent
decades, numerous candidates for physical implementa-
tion of quantum information processors have been pro-
posed [3]. Because of long coherence times and excep-
tional controllability, quantum optical and atomic sys-
tems such as trapped ions [4, 5], neutral atoms [6, 7],
and cavity QED [8, 9], have taken a leading role in imple-
menting quantum logic. Photons are remarkably robust
candidates for qubits, and are easy to transport long dis-
tances; however, as we know, they interact only weakly
with each other, which makes the realization of quan-
tum gates based on photons difficult. For instance, in
linear optical quantum computation (LOQC) [10], extra
measurements are required, and the resulting gates suc-
ceed only probabilistically. On the other hand, ensembles
of trapped atoms or molecules may serve as convenient
and robust quantum memories for photons. They can
act as an interface with flying qubits, and store and re-
trieve single photons, for example by electromagnetically
induced transparency (EIT) [11, 12], which can preserve
coherence of quantum states for up to several hundreds
of milliseconds [13].
One might therefore hope to use controlled interac-

tions in the ensemble of atoms, once the flying qubits are
stored, to realize universal quantum logic gates in a de-
terministic and scalable way. Several promising schemes
for such operations, based on combining EIT with Ryd-
berg atoms, were proposed in Ref. [14, 15], exciting atoms
with lasers to high-lying Rydberg states and exploiting
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the long-range dipole-dipole interaction between Ryd-
berg states. Recent theoretical proposals include single-
step, high-fidelity entanglement of a mesoscopic number
of atoms [16], and quantum simulation of both coherent
dynamics and dissipative evolution processes for many
body systems [17]. Remarkably, the building blocks of
such proposals have been demonstrated experimentally
by several groups [18, 19]. In Ref. [20], an effective
strong dipole-dipole blockade effect is achieved by cou-
pling to microwave coplanar waveguide resonators to re-
alize quantum logic on ensembles of molecules. However,
dynamical control of such an ensemble is difficult due
to the inhomogeneous coupling between laser and atoms,
and it suffers from control noise as well. In addition, pro-
posals for geometric manipulation of ions [21] and neutral
atoms [22] have been made for their natural robustness
against certain control errors. However, for the single ion
or atom in these proposals it is very difficult to transfer
the photon signal to the matter states, and it needs an
extremely good cavity to realize a high fidelity two-qubit
quantum gate due to the small coupling efficiency.
To overcome the problems mentioned above, we put

forward here an alternative, scalable approach to realize
universal quantum gates based solely on laser-controlled
geometric manipulation of neutral atomic clouds trapped
on the surface of atom chips. The paper is organized as
follows. In section II, we introduce the basic model of the
atom/cavity system. Then, we show how to construct the
Hamiltonian of the system, and how to adiabatically ma-
nipulate the evolution to implement three quantum gates
geometrically: the phase gate, the y-rotation gate, and
the controlled phase gate. These constructions are given
in sections IIIA, IIIB, and IIIC, respectively. Numerical
analysis of their performance is also given in these three
sections. These three gates form a universal set of quan-
tum logic gates. In section IV, we show how to perform
qubit measurements on this system. Finally, both anal-
ysis and numerical study of decoherence and its effect
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on our system are given in section V, and we conclude
in section VI. In an Appendix to the paper, we discuss
how to choose suitable Rydberg states for this scheme,
in rubidium or other alkali atoms.

II. MODEL

FIG. 1: Schematic of trapped ensembles of atoms in magnetic
atom traps inside plano-concave optical microcavities (hori-
zontal). Each atomic cloud is a qubit, and forms a processing
cell. Different qubits couple to each other mediated by the
photonic modes of another Fabry-Perot cavity (vertical).

Atom chips supply a good platform for precise control
and manipulation of neutral atoms [23, 24]. We will show
that an atom chip with integrated Fabry-Perot (FP) mi-
crocavities can realize a universal set of all-optical uni-
versal quantum gates for atomic ensemble qubits.
Consider several plano-concave Fabry-Perot (FP) mi-

crocavities resonators [25] integrated on the atom chip,
which are parallel to each other. Another large FP cavity
is integrated so that its mode is perpendicular to all the
plano-concave cavities. A schematic diagram is shown in
Fig. 1. A plano-concave resonator consists of an isotropi-
cally etched dip in a silicon surface, and the cleaved tip of
a single-mode fiber [26] serves as the input-output chan-
nel. Atomic ensembles are placed in the region of high-
est field strength of the cavity modes, leading to higher
values of the coupling g, and a Q value over 106. The
perpendicular FP cavity modes serve as a data bus to
couple different qubits.
The atomic clouds must be confined in traps inside

the cavities. We can introduce magnetic fields produced
by current-carrying wires on the surface and coupled to
the magnetic dipole of the atoms. The small scale of
the structure produces strong magnetic field gradients,
which make tight traps for magnetic atoms. Atoms in
a weak-field-seeking state will be attracted and held in
this region. The hyperfine states |F = 2,mF = 1〉 and
|F = 1,mF = −1〉 of 5S1/2 of 87Rb are ideal weak-field-
seeking states that can be trapped by a static magnetic
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FIG. 2: (Color online.) Storage of a single photon qubit.
The level scheme of a single 87Rb atom is shown. The input
qubit is encoded as |0〉 if there is no photon in the input
mode, and |1〉 if there is a photon in the input mode. Here,
we use the hyperfine levels of manifold 5S1/2: clock states
|g〉 = |F = 1,mF = −1〉 and |s〉 = |F = 2, mF = 1〉; |a−〉 =
|F = 1, mF = 0〉 and |a+〉 = |F = 2,mF = 0〉 are used
as ancillary states. A state of manifold 5P1/2 serves as an
intermediate state |e〉 (|F = 1, mF = 0〉). The storage process
mapping single photon signals into collective excited atomic
states of |s〉 can be accomplished by adiabatically turning on
the classical laser field Ω(t) to a value much larger than the
coupling constant g when the photon arrives. The reverse
process can be used to read out the photon.

potential [23]. In addition, these two states have op-
posite Landé factors, so that they experience identical
magnetic potentials. Thus, the decoherence of an arbi-
trary superposition of these two states due to current
intensity fluctuations is strongly inhibited [27]. Coherent
oscillations between these states have been observed with
decoherence times as long as τc = 2.8± 1.6s [28]. So it is
natural to consider these two states of 87Rb for quantum
information processing.

The state of the 87Rb atom cloud can be initialized
by inputting a single photon qubit to the plano-concave
cavity through the fiber, as shown in Fig. 2. The state
|0〉ph corresponds to no photons in the input channel, and
the state |1〉ph corresponds to one photon. An arbitrary
qubit state can be represented as α|0〉ph + β|1〉ph. In
general, the state of n input channels is an entangled
state in a Hilbert space of dimension 2n.

An ensemble of N identical multi-state atoms is
trapped in each cell. Using well-developed techniques,
all atoms can be initially prepared and trapped in a spe-
cific sub-level (hyperfine level |gi〉, i = 1, 2, 3, ..., N) of
the internal atomic ground space manifold [14]. Rele-
vant states of each atom include the other clock state
|si〉, two ancillary states |a−i〉, |a+i〉 (which are chosen
not be affected by the magnetic potential), and an inter-
mediate state |ei〉. (As mentioned earlier, |si〉 has a long
coherence time.) We also assume the atomic density is
not too high, so that interaction between atoms can be
safely neglected. Atoms are manipulated by illuminating
the entire ensemble, to excite all atoms with equal prob-
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ability, so only symmetric collective states are involved
in this process [14]. For loading quantum information
into the ensembles, we consider only three states: |ei〉,
|si〉 and |gi〉, where |ei〉 and |gi〉 are coupled to the cavity
mode of the plano-concave cavity, while |ei〉 and |si〉 are
coupled by a classical field. Initially, all the atoms are in
their ground states:

|g〉 = |gN 〉 = |g1〉...|gN 〉.

We define operators

Ŝ =
1√
N

∑

i

|gi〉〈si|,

Ê =
1√
N

∑

i

|gi〉〈ei|,

Â± =
1√
N

∑

i

|gi〉〈a±i|.

The storage state with excitation n is

|sn〉 ≡ |gN−n, sn〉 =
√

(N − n)!Nn

N !n!
(Ŝ†)n|g〉.

For the case when n = 1, this is

|s〉 =
1√
N

(
|s1, g2, g3...gN 〉+ |g1, s2, g3...gN〉

+ · · ·+ |g1, g2, g3...sN 〉
)
.

The commutation relation of Ŝ and Ŝ† is

[Ŝ, Ŝ†] = 1− 2n

N
.

For a sufficiently small number of excitations (n ≪ N),
these two operators can be approximated by bosonic an-
nihilation and creation operators of quasiparticles corre-

sponding to |s〉. Operators Ê and Ê†, and Â± and Â†
±

have the same properties.
As shown in Ref. [29] and Ref. [30], when the photon

arrives in the cavity, one can adiabatically turn on the
classical field coupling the states |e〉 and |s〉, until the
Rabi frequency Ω is much larger than the cavity-atom
coupling constant g. The state of the photon mode is
stored in the ensemble of atoms in the cavity in the form
|n〉ph → |sn〉, where |n〉ph represents the n-photon Fock
state. This process is reversible: one can retrieve the
photon from the ensemble of atoms. So, an arbitrary
input state α|0〉ph+β|1〉ph can be mapped into the state
α|g〉+ β|s〉 with high fidelity [29]. We denote |0〉L = |g〉
and |1〉L = |s〉 for the logical representation of a qubit in
each cloud of atoms.

III. A UNIVERSAL SET OF GEOMETRIC

GATES

We now discuss how to geometrically implement quan-
tum computation (holonomic quantum computation [31])
in our system. The first step is to construct a Hamilto-
nian that has an eigenspace with eigenvalue 0 to avoid dy-
namic phase during the cyclic evolution. This eigenspace
can either be nondegenerate, which would introduce sim-
ple Abelian phase factors (Berry phases) [32], or degen-
erate, which could cause general non-Abelian operations
[33]. It is well known that single-qubit operations, to-
gether with a nontrivial two-bit gate, make a universal
set of quantum logic gates for quantum computation [34].
By constructing an appropriate set of looped paths in
the parameter space we can obtain an arbitrary unitary
transformation in the computational space.
We choose for our universal set of gates

R(i)
z (φ1) = exp

(
iφ1|1i〉LL〈1i|

)
,

R(i)
y (φ2) = exp

(
iφ2σ

y
i

)
,

U (jk)(φ3) = exp

(
iφ3|1j0k〉LL〈1j0k|

)
.

The states |0i〉L and |1i〉L are the computational basis
states for qubit i, and σyi is the Pauli operator in the y di-
rection for the ith qubit. If we can implement these gates
with arbitrary φ1, φ2, φ3, we can implement all unitary
transformations [34]. The three operators correspond to
a rotation in the z direction, a rotation in the y direc-
tion, and a conditional phase rotation when qubits j and
k are in the state |10〉L. In this section, we show how to
holonomically realize these three gates.

A. One Qubit Phase Gate

We first consider how to perform a simple one qubit
phase gate: |1〉L → eiφ1 |1〉L. To simplify the model, we
only consider the energy levels we are interested in. The
total pulse sequence and resonant coupling diagram is
shown in Fig. 3. The Hamiltonian of this system, in the
interaction picture and rotating wave approximation, is

H1(t) =
∑

i

Ωi1(t)
(
σ(i)
se +H.c

)

+
∑

i

Ωia(t)
(
σ(i)
a+e +H.c

)
,

(1)

where the σ
(i)
jk = |ji〉〈ki| are transition operators from

state |k〉 to |j〉 for atom i, and ~ = 1. Here, the two
lasers are assumed to be phase matched, and their Rabi
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FIG. 3: (Color Online.) Left: Level structure and laser cou-
pling diagram for a single atom. Right: The equivalent cou-
pling diagram for an ensemble of atoms in second quantized
representation.

frequencies are real numbers. For simplicity, assuming
the laser beams illuminate each atom with same intensity,
we can rewrite the Hamiltonian in the second quantized
representation:

H1(t) =Ω1(t)Ê†Ŝ +Ω∗
1(t)Ŝ†Ê

+Ωa(t)Ê†Â+ +Ω∗
a(t)Â†

+Ê ,
(2)

and set Ω1 = Ωsin θ and Ωa = −Ωcos θeiϕ. The pa-
rameters θ and ϕ are functions of time, and the absolute
magnitude Ω is a constant that must be large enough to
satisfy the adiabatic condition. Ê , Ŝ, Â+ are bosonic op-
erators defined in last section corresponding to the single
atom states |e〉, |s〉, |a+〉, respectively.
We can treat the system as three coupled harmonic

oscillators. We are only interested in singly excited
states; the Hamiltonian discussed above is closed in
that basis, which for simplicity we represent as {|e〉 =
|N − 1, 1, 0, 0〉gesa, |1〉L = |s〉 = |N − 1, 0, 1, 0〉gesa,
|a+〉 = |N − 1, 0, 0, 1〉gesa}. The coupling diagram of the
ensemble of atoms is equivalent to a simple three-state
coupling diagram for a single atom, as shown in Fig. 3.
Representing the Hamiltonian in matrix form in this

basis, we have

H1(t) =




0 Ω sin θ −Ωcos θeiϕ

Ω sin θ 0 0
−Ωcos θe−iϕ 0 0


 . (3)

The zero-energy eigenspace of the Hamiltonian is non-
degenerate. The dark state is

|D(t)〉 = cos θ|1〉L + sin θe−iϕ|a+〉. (4)

Note that the Hamiltonian is decoupled from the state
|0〉L = |N, 0, 0, 0〉grsa.
Assume the initial state is |ψ(−∞)〉 = |D(−∞)〉 =

|1〉L (which means θ(−∞) = 0 at the very beginning).
Also, assume that initially ϕ = 0. Now, turn on two
laser beams, using the standard formula to calculate the
geometric phase, where the parameters make a cyclic evo-
lution with the starting and ending point θ = 0, ϕ = 0:

φ1 = i

∮
dR〈D(t)|∇R|D(t)〉, (5)
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FIG. 4: (Color online.) (a) The evolution of the relative phase
between state |1〉L and state |0〉L for three different values of
Ω, to realize a π/16 gate. Note that after the cyclic evolution,
we get an additional pure geometric phase, which fits the
theoretical value quite well for Ω larger than 200MHz. (b)
The population change of state |1〉L during the process. We
can see that only if Ω is large enough to satisfy the adiabatic
condition can we get high accuracy of the gate. Two short
laser pulses are determined by θ(t) = π

3
exp((t−1)2/0.15) and

ϕ(t) = π
3
exp((t− 1.5917)2/0.15) (the unit of t is µs).

where R(t) = (θ(t), ϕ(t)). We have

〈D(t)|∇R|D(t)〉 = −i sin2(θ)ϕ̂

and

φ1 =

∮
sin2(θ)dϕ.

According to Green’s theorem, this geometric phase is
exactly the enclosed solid angle:

φ1 =

∫∫

∂S

sin θdθdϕ =

∫∫

∂S

dΩ.

A pulse sequence consisting of two stimulated Raman
adiabatic passage (STIRAP) pulses with relatively large
width (to guarantee that the process is adiabatic) can be
used for this purpose.
A numerical simulation of resonance coupling to real-

ize a π/16 gate (φ1 = π/8) is shown in Fig. 4. Since
in the laboratory the Rabi frequency Ω can be as high
as 200 MHz, the adiabatic process could be finished in
several microseconds, which is much shorter than the de-
coherence time of the hyperfine ground states. We can
exchange the population of |1〉L and |a+〉 back and forth
without losing any information, and we can get a geo-
metric phase with high accuracy if Ω is large enough.
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In the previous method of using ensembles of atoms or
molecules to realize quantum information processing, a
major shortcoming is that it is very hard to uniformly il-
luminate all the atoms, thus limiting the accuracy of the
gate operation. But in our proposal, each atoms interacts
individually with Ω1 and Ωa, and the geometric phase is
independent of the absolute value of Ω. If the spatial
distribution of the electric fields of the two laser beams
match each other, say Ω̃1(r) = Ẽ1(r)des = Ẽa(r)dea+ =

Ω̃a(r) for every point in space r, the effect of non-uniform
illumination can be naturally eliminated. This is an ad-
vantage of adiabatic control.

B. Y-Rotation Gate

Now we show how to achieve the gate U = eiφ2σy .
This gate is much more complicated to realize than the
one-qubit phase gate. It is difficult to couple the state
|0〉L to |1〉L, since directly coupling them by applying
a laser beam to the ensemble of atoms would result in
unwanted higher collective excitations. In Ref. [14], a
scheme taking advantage of the dipole-dipole interaction
of Rydberg states between atoms was used to realize this
gate. Here we propose a geometric gate by following three
steps:

1. Adiabatically pump the ground state |0〉L to a
highly excited Rydberg state |r〉, using the dipole-
dipole interaction to assure that only a single col-
lective excitation is achieved.

2. Adiabatically control the coupling between the sin-
gle excitation states |r〉, |s〉, and |a+〉 to geometri-
cally realize the gate.

3. Reverse step 1 to transfer |r〉 back to |0〉L.

To carry out step 1, consider Rydberg states of a hy-
drogen atom within a manifold of fixed principle quan-
tum number n with degeneracy n2. This degeneracy can
be removed by applying a constant electric field E along
a certain axis (linear Stark effect), such as the z axis.
For electric fields below the Ingris-Teller limit, the mix-
ing of adjacent n manifolds can be ignored, and energy
levels are split according to ∆Enqm = 3nqeaBE/2 with
parabolic and magnetic quantum numbers q and m, re-
spectively. Here, q can take values n − 1 − |m|, n − 3 −
|m|, ...,−(n − 1 − |m|), e is the electron charge, and aB
the Bohr radius. These states have dipole moments of
µ = 3nqeaBez/2.
Consider two atoms k and l seperated by a distance

R. The dipole-dipole interaction between them is

V kldip(R) =
1

4πǫ0

[
µ̂k · µ̂l
|R|3 − 3

(µ̂k ·R)(µ̂l ·R)

|R|5
]
, (6)

where µ̂k and µ̂l are dipole moment operators for atoms k
and l. Suppose the electric field is sufficiently large that
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FIG. 5: (Color online.) The level diagram with the couplings
to realize the Ri

y(φ) gate. We apply an electric field to the
ensemble of atoms, and pick appropriate Stark eigenstates of
rubidium to be the register states |r〉 = |r〉70,0, |f〉 = |r〉72,0
and the intermediate Rydberg state |m〉 = |r〉60,0 as shown
the Appendix. States |g〉, |a+〉 and |s〉 are the in the same
manifold of the internal ground state. In the first step, two
conjugate laser beams Ωp1 and Ωp2 are used to adiabatically
pump a single excitation from |g〉 to |r〉. In the second step,
three laser beams Ω0, Ω1, Ωa are used to adiabatically re-
alize the Ri

y(φ) gate. The excitation from |g〉 to |r〉 is then
adiabatically reversed.

the energy splitting between two adjacent Stark states is
much larger than the dipole-dipole interaction.
For two atoms initialized in Stark eigenstates, the di-

agonal terms of V kldip(R) provide an energy shift, while
the nondiagonal terms couple adjacent m manifolds with
each other, (m,m) → (m ± 1,m ∓ 1). The off-diagonal
transition can cause decoherence, and is suppressed by
an appropriate choice of initial Stark eigenstate [7]. (For
hydrogen, the state is |r〉n = |n, q = n− 1,m = 0〉.) For
a fixed distance R = Rez, the dipole-dipole interaction
of two atoms k and l in the states |rk〉n1

and |rl〉n2
is

ukln1n2
(R) = n1

〈rk|n2
〈rl|V kldip(R)|rk〉n1

|rl〉n2

= − 9a2Be
2

R38πǫ0
[n1n2(n1 − 1)(n2 − 1)].

For n1 and n2 sufficiently large, u(R) ∝ n2
1n

2
2. For alkali

atoms such as rubidium, the situation is more compli-
cated, but this kind of analysis still works. In the Ap-
pendix, we discuss how to pick a state which has charac-
teristics similar to |r〉n for rubidium. We will make use
of this energy shift later.
Consider the diagram shown in Fig. 5. For step 1, there

should be a single excitation in state |r〉 after pumping
if the initial state is |0〉L, and no excitation in state |r〉 if
the initial state is |1〉L. To achieve this goal, we introduce
two other Rydberg states |m〉 and |f〉, and adiabatically
transfer the amplitude of |1〉L to |f〉 by coupling |s〉 and
|f〉 to some intermediate state. Note that this pumping
process can also be realized adiabatically. This process
would also be used when we do measurement; more de-
tails will be given in the measurement section.
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The Hamiltonian of the cloud of atoms as described in
the left side of Fig. 5 in the rotating wave approximation
is:

Hp(t) =
∑

i

(Ωp1(t)σ
(i)
gm +H.c)

+
∑

i

(Ωp2(t)σ
(i)
mr +H.c)

+
∑

k>l

(
uklmm(Rkl)|mk〉|ml〉〈mk|〈ml|

+ uklrr(Rkl)|rk〉|rl〉〈rk|〈rl|)
+ uklff(Rkl)|fk〉|fl〉〈fk|〈fl|
+ uklrm(Rkl)|rk〉|ml〉〈rk|〈ml|
+ uklfm(Rkl)|fk〉|ml〉〈fk|〈ml|

+ uklfr(Rkl)|fk〉|rl〉〈fk|〈rl|
)
.

(7)

The two-body interaction term here is due to the energy
shift of the states. Just as in the case of the phase gate,
we represent the Hamiltonian in second quantized form.
Again, assuming the laser fields are uniformly coupled to
each atom, and using the standard second quantization
procedure to deal with the two-body interaction, we ap-
ply the minimum energy shift for all pairs of atoms (as
the worst case) and obtain

Heff
p (t) ≈Ωp1(t)

√
N(M̂† + M̂)

+ Ωp2(t)(R̂M̂† + R̂†M̂)

+ ummM̂†M̂†M̂M̂+ urrR̂†R̂†R̂R̂
+ uff F̂†F̂†F̂F̂ + urmR̂†R̂M̂†M̂
+ ufmF̂†F̂M̂†M̂+ ufrF̂†F̂R̂†R̂,

(8)

where urr, umm, uff , urm, ufm and ufr are chosen to be
the minimum energy shifts from the dipole-dipole inter-
action.
In the case of low excitation, in the Bogoliubov ap-

proximation we can regard the operators G,G† on state
|g〉 as the C-number

√
N , where N is the total number

of the atoms in the cloud. When the system is initially in
|0〉L (and hence |f〉 is not excited), the equivalent state
coupling diagram for this pumping process is shown in
Fig. 6(a). Unlike the phase gate, we see that this Hamil-
tonian is no longer closed in a small subspace of states
because Ωp1 will continuously pump atoms of the ensem-
ble from the ground state to the excited states. How-
ever, because of the large energy shift, the rate to excite
|N−2, 1, 0, 1〉grsm and |N−2, 1, 1, 0〉grsm is strongly sup-
pressed. Physically, this means there cannot be an atom
excited to the Rydberg state |r〉 while another atom be
excited to state |i〉 or |m〉. Only a single excitation to
the register state can be achieved (|0〉L → |r〉) during
this adiabatic process.
If the system is initially in the state |1〉L (and hence

there is a single excitation in |f〉), both |r〉 and |m〉 can-
not be excited due to the energy shift caused by the

rm
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FIG. 6: (Color online.) The equivalent coupling diagram of
the ensembles of atoms in cases of collective excitation for the
case (a) system is initially in |0〉L and (b) system is initially
in |1〉L.
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FIG. 7: (Color online.) Adiabatic Pumping process. Note
that at the end there is only a single excitation in the
register state |r〉 when initially in |0〉L, and no excitation
when initially in |1〉L. Here, we set µrm = 400MHz and
µmm = 300MHz. Since we take the minimum energy shift
as our simulation parameter, the actual performance should
be better (i.e., the process could be finished in a shorter pe-
riod of time).

dipole-dipole interaction, as shown in Fig. 6(b). A nu-
merical simulation of the pumping process for the mini-
mum energy shift is shown in Fig. 7.
After the pumping process, and the adiabatic transfer

of the population of |f〉 back to |1〉L, we can then realize
the Riy(φ) gate on the ensemble of atoms by applying
three controlling laser beams. The coupling diagram is
shown in the right side of Fig. 5. The Hamiltonian of step
2 can be obtained directly in second-quantized form:

H2(t) =Ω0(t)(ÊR̂† + Ê†R̂) + Ω1(t)(Ê Ŝ† + Ê†Ŝ)
+ Ωa(t)(ÊÂ†

+ + Ê†Â+).
(9)
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FIG. 8: (Color online.) (a): The pulse shape of the control lasers of Ω0, Ω1 and Ωa respectively. (b), (c), (d): The evolution of
the populations of |s〉, |e〉, |r〉. We see that when Ω is larger than 200MHz, the adiabatic condition is satisfied, the gate works
with very high accuracy (close to the theoretical value), and the population of the short-lived state |e〉 tends to zero.

We can directly apply the technique of geometric trans-
formations to realize this gate, as introduced in Ref. [21]
for four-level systems. Here, we choose Ω0 = Ωsin θ cosϕ,
Ω1 = Ωsin θ sinϕ, Ωa = Ωcos θ. This time, the Hamil-
tonian is closed in the basis {|e〉, |0〉L = |r〉, |1〉L =
|s〉, |a+〉}:

H2(t) = Ω




0 sin θ cosϕ sin θ sinϕ cos θ
sin θ cosϕ 0 0 0
sin θ sinϕ 0 0 0

cos θ 0 0 0


 .

(10)
The eigenspace corresponding to the zero-energy eigen-
value (dark space) is spanned by basis vectors {|D1〉, and
|D2〉}, where

|D1〉 = sinϕ|0〉L − cosϕ|1〉L,

|D2〉 = cos θ(cosϕ|0〉L + sinϕ|1〉L)− sin θ|a+〉.

We can use the formula for the degenerate subspace
under the cyclic evolution of θ, ϕ. Suppose |ψ(t)〉 =
C1(t)|D1〉+ C2(t)|D2〉. We have the equation

[
Ċ1

Ċ2

]
=

[
D11(t) D12(t)
D21(t) D22(t)

] [
C1

C2

]
, (11)

where Dij(t) = 〈Di|Ḋj〉. Let’s define

dA2(t) =

[
D11(t) D12(t)
D21(t) D22(t)

]
dt

=

[
0 − cos θϕ̇

cos θϕ̇ 0

]
dt,

(12)

and also the unitary matrix

U = P exp(i

∮

C

dA2(t)). (13)

After the cyclic evolution,

|D1(T )〉 = U11|D1(0)〉+ U21|D2(0)〉,
|D2(T )〉 = U12|D1(0)〉+ U22|D2(0)〉.

(14)

At the beginning, if we set θ(0) = 0 and ϕ(0) = π
2 , we

will have |D1(0)〉 = |0〉L and |D2(0) = |1〉L. We can use
the Dyson expansion to get the unitary matrix U . This
gives us:

U11 = 1− φ22
2

+
φ42
24

− φ62
720

... = cosφ2,

U12 = φ2 −
φ32
6

+
φ52
120

... = sinφ2,

U21 = −φ2 +
φ32
6

− φ52
120

... = − sinφ2,

U22 = 1− φ22
2

+
φ42
24

− φ62
720

... = cosφ2,

(15)
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where

φ2 =

∮

C

cos θdϕ

is a pure geometric phase. Thus we get the unitary trans-
formation we want. Step 3 is simply the reverse of step
1, to return us to our original basis.
A simulation to realize φ2 = π/4 was done for a cer-

tain pulse shape of the coupling laser beams, where the
qubit was initially prepared in the state |0〉L, as shown
in Fig. 8(a). We show the evolution of the populations
of states |s〉, |e〉 and |r〉 in Fig. 8(b), (c), and (d), re-
spectively. If Ω is large enough (≥ 200 MHz, which is
practical in current experiments), we could implement
the gate operation in 1µs with extremely high accuracy.
Thus, the total procedure takes less than 5µs to com-
plete, while the lifetime of |r〉 is approximately equal to
the lifetime of |r〉 [11], which is estimated to be 300-400µs
in a cryogenic environment [35].
We simplified the calculation and simulation by as-

suming that all atoms are uniformly illuminated in the
laser beam. However, just like the argument made in the
previous section, the geometric phase is independent for
large Ω, if the spatial distribution of the electric fields
of the three laser beams match each other at each point
in space. Thus, we can in principal eliminate the error
introduced by nonuniform illumination.

C. Two-Qubit Controlled Phase Gate

Now, we are ready to construct the controlled phase
gate. Recently, an adiabatic SWAP operation between
states of two clouds of atoms in a cavity QED system
was experimentally achieved [36]. Here, we extend this
method to geometrically realize the controlled phase gate,
which together with the earlier one-qubit gates gives a
universal set of quantum gates. The basic idea is to
couple two qubits (that is, clouds of atoms) by virtu-
ally emitting and absorbing a cavity photon; and after
an adiabatic evolution, the second qubit obtains an ex-
tra relative phase when the first qubit is in |0〉L. The
coupling diagram of the scheme is shown in Fig. 9.
Suppose the length of the cavity is about 200µm, which

means, it could contain about 10 qubits. Consider two
different clouds of atoms in the cavity. For a single atom
in each cloud, pick a manifold of states of p. When an
electric field is applied to these two cloud of atoms, the
manifold splits into |r+〉 and |r−〉. For atom cloud 1, we
set a constant electrical field Ez1 and a constant magnetic
field Bz1 in the z direction. The Stark Effect splits the
manifold p, and the Zeeman effect changes the energy of
|g〉 and |s〉.
Assume the energy difference between |g〉 and |s〉 to be

δ. Set the appropriate non-zero value of Ez1 and Bz1 so
that |r+〉 is resonantly coupled to |g〉 and |s〉 by a cavity
mode a and a control laser Ω1 respectively. For atom
cloud 2, Ez2 is set so that |r+〉 is resonantly coupled to

.
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FIG. 9: (Color online.) The schematic setup to realize the
conditional phase gate, and the relevant atomic levels of the
two clouds of atoms.

|g〉 and |s〉 by the same cavity mode a and control laser
Ω2, and |r−〉 is resonantly coupled to |s〉 and |a−〉 by the
cavity mode and a control laser Ω3. Note that for Rb87,
the hyperfine structure energy split of the ground state
manifold is ∆/2π=6.835GHz, and the energy difference
of |r+〉 and |r−〉 should set to be equal to ∆ for atom
cloud 2 for the purpose of resonant coupling, while the
frequencies of Ω1, Ω2 and Ω3 should be ωcav−δ, ωcav−∆
and ωcav + ∆, respectively, where ωcav is the frequency
of cavity mode.

Since the cavity mode is inhomogeneously distributed,
the thermal motion (even at extremely low temperature)
of atoms, causes the coupling rate between atoms and
cavity photons to vary greatly from one to another (by
roughly a factor of 2) and thus makes the system diffi-
cult to control accurately. To overcome these difficulties,
instead of directly applying the laser beam to the clouds
of atoms, we use the idea of external laser driving control
[37] as shown in schematic setup in Fig. 9. Three classi-
cal laser fields E1(t), E2(t) and E3(t) are incident on one
mirror of the cavity to drive the transition |r+〉 → |s〉 for
cloud 1, and |r+〉 → |a+〉 and |r−〉 → |a−〉 for cloud 2,
through another cavity mode a′. We assume for simplic-
ity that a and a′ have the same spatial mode structure
χ(r) with the same frequency ωcav, so they can be differ-
ent only in polarization.

The driving fields E1(t), E2(t) and E3(t) are resonant
with frequencies ωcav−δ, ωcav−∆ and ωcav+∆. So they
are far off-resonant to the cavity mode. E1(t), E2(t) and
E3(t) control the time evolution of the Rabi frequencies
Ω1, Ω2 and Ω3. To see this, consider the input-output
equation for the cavity mode a′ [38]:

da′(t)

dt
= −i[a(t), Hsys]−

κ

2
a′(t) +

√
κa′in(t), (16)
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where a′in(t) is the field operator for the input driving
pulse coupling to the mode a′, with

〈a′in(t)〉 = E1(t) + E2(t) + E3(t),

and

[a′in(t), a
′†
in(t

′)] = δ(t− t′).

Since a′ is driven by strong classical pulses, we can treat
the mode as classical and thus assume that the interac-
tion between a′ and the atoms will not change the state
of the cavity mode a′. Eq. (16) therefore can be modified
to be

da′(t)

dt
=− iωcava

′(t)− κ

2
a′(t)

+
√
κ(E1(t) + E2(t) + E3(t)).

(17)

First, we suppose there is only one classical pulse E1(t) =
〈a′in(t)〉 = ε1(t)e

−i(ωcav−δ)t, where ε1(t) is the slowly
varying amplitude of E1(t). Then, we can write the mean
value of a′ as

〈a′(t)〉 = α(t)e−i(ωcav−δ)t,

which has the solution

α(t) =

∫ t

0

ε1(τ) exp(−iδ − κ/2)(t− τ)dτ

≈ ε1(t)− e(−iδ−κ/2)tε1(0)

iδ + κ/2

(18)

when the characteristic time T1 of ε1(t) satisfies δT1 ≫ 1.
Assume that ε1(t) gradually increases from zero with

ε1(0) = 0. Then α(t) ∝ ε1(t). By choosing an appropri-
ate phase of ε1(t), we set α(t) to be real. If we input E2(t)
or E3(t), the solution will have a similar form. Now, con-
sider the case when three classical pulses are incident on
the cavity mirror. Eq. (16) is a linear equation, so, when
the three input pulse have different resonant frequencies,
the solution should be a superposition of the solutions
for three single pulses. Thus, we can represent 〈a′(t)〉 as

〈a′(t)〉 = α1(t)e
−i(ωcav−δ)t + α2(t)e

−i(ωcav−∆)t

+α3(t)e
−i(ωcav+∆)t.

This gives Rabi frequencies Ωi(r, t) = diαi(t)χ(r) for i =
1, 2, 3, where di is a coefficient mainly determined by the
dipole moment for the corresponding transition.
The frequencies of the three components of a′ differ sig-

nificantly, so we can regard them as three separate pulses.
In addition, the energy structure of atoms in cloud 1 is
different from those in cloud 2, so Ω1 will not interact
with the atoms in cloud 2. Similarly, Ω2 and Ω3 will not
interact with atoms in cloud 1. All other clouds in the
cavity are far off-resonant from both the cavity mode and
the control lasers, and thus can be safely excluded by our

gate operation. Now, we can represent the Hamiltonian
for the situation of Fig. 9 in the interaction picture:

H3(t) =
∑

j1

Ω1(rj1 , t)σ
(j1)
sr+ +

∑

j1

g+(rj1)a
†σ(j1)
gr+

+
∑

j2

(Ω2(rj2 , t)σ
(j2)
a+r+ + Ω3(rj2 , t)σ

(j2)
a−r−)

+
∑

j2

(g+(rj2)a
†σ(j2)
gr+ + g−(rj2)a

†σ(j2)
sr− )

+ H.c.

(19)

where a and a† are annihilation and creation operators of
cavity mode a, and g+(r) and g−(r) are coupling rates of
cavity mode a to the transition |g〉 → |r+〉 in cloud 1 and
|s〉 → |r−〉 in cloud 2. We can represent g+(r)(g−(r)) =
g̃+χ(r)(g̃−χ(r)), where g̃+ and g̃− are constants. So we
can rewrite the Hamiltonian as:

H3(t) =
∑

j1

χ(rj1)(d1α1(t)σ
(j1)
sr+ + g̃+a

†σ(j1)
gr+ )

+
∑

j2

χ(rj2)(d2α2(t)σ
(j2)
a+r+ + d3α3(t)σ

(j2)
a−r−

+ g̃+a
†σ(j2)
gr+ + g̃−a

†σ(j2)
sr− ) + H.c.,

(20)

We will see soon that the dark state of such a Hamil-
tonian should be independent of χ(r), and the adiabatic
evolution of the system is determined only by the mini-
mum value of χ(rj) for all j, say χm. So, the Hamiltonian
can effectively be represented as:

Heff
3 (t) =

∑

j1

(Ω1(t)σ
(j1)
sr+ + g+a

†σ(j1)
gr+ )

+
∑

j2

(Ω2(t)σ
(j2)
a+r+ +Ω3(t)σ

(j2)
a−r−)

+
∑

j2

(g+a
†σ(j2)
gr+ + g−a

†σ(j2)
sr− ) + H.c.,

(21)

where Ωi(t) = diαi(t)χm for i = 1, 2, 3 and g+(g−) =
g̃+χm(g̃−χm). As in the previous cases, we transform
the Hamiltonian to second quantized representation. For
two clouds of atoms in the Bogoliubov approximation,
we get the new Hamiltonian

Heff
3 (t) ≈ Ω1(t)(Ŝ†)1(R̂+)1 +Ω2(t)(Â†

+)2(R̂+)2

+Ω3(t)(Â†
−)2(R̂−)2 + g+

√
Na†(R̂+)1

+ g+
√
Na†(R̂+)2 + g−a

†(Ŝ†)2(R̂−)2 +H.c.,

(22)

where Ŝ, R̂−, R̂+, Â−, and Â+ are the bosonic annihi-
lation operators of the single atom states |s〉, |r−〉, |r+〉,
|a−〉, and |a+〉, respectively. We set

Ω1(t) =Ω1 sin θe
−iϕ1 ,

Ω2(t) =Ω2 cos θe
−iϕ2 ,

Ω3(t) =Ω3 cos θe
−iϕ3 .
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FIG. 10: (Color online.) The evolution of the phase φ3 of
|10〉L. The pulse shapes of θ(t) and ϕ(t) are also given.

We also define g1 = g+
√
N , g2 = g+

√
N and g3 = g− for

convenience.
As in the previous sections, for each cloud of atoms we

have a set of basis states:

|0〉L = |N, 0, 0, 0, 0, 0〉gr+r−a+a−s,
|1〉L = |N − 1, 0, 0, 0, 0, 1〉gr+r−a+a−s,
|r+〉 = |N − 1, 1, 0, 0, 0, 0〉gr+r−a+a−s,
|r−〉 = |N − 1, 0, 1, 0, 0, 0〉gr+r−a+a−s,
|a+〉 = |N − 1, 0, 0, 1, 0, 0〉gr+r−a+a−s,
|a−〉 = |N − 1, 0, 0, 0, 1, 0〉gr+r−a+a−s.

The Hamiltonian is closed in a subspace of Hilbert space
that can be divided into the direct sum of two closed
subspaces:

H = (H1 ⊗H2
+)⊕ (H1 ⊗H2

−). (23)

Here, H1⊗H2
+ is spanned by basis vectors {|100〉, |r+00〉,

|001〉, |0r+0〉, |0a+0〉}, and H1⊗H2
− is spanned by basis

vectors {|110〉, |r+10〉, |011〉, |0r−0〉, |0a−0〉}. The first
two degrees of freedom represent cloud 1 and cloud 2, and
the last degree of freedom of the state is the Fock state
of the cavity photons. Since the Hamiltonian doesn’t
couple these two subspaces, and has the same form in
each subspace, we can just consider a single subspace,
e.g., H1 ⊗ H2

+. The Hamiltonian can be represented in
this subspace as

Heff
3 (t) =



0 0 g1 0 Ω1 sin θ
0 0 g1 Ω2 cos θe

iϕ2 0
g1 g1 0 0 0
0 Ω2 cos θe

−iϕ2 0 0 0
Ω1 sin θ 0 0 0 0


 ,

(24)

where we have set ϕ1 = 0. A dark state exists for this
system, since one eigenstate has eigenvalue 0:

|D(t)〉 =
g1
Ω1

cos θ
√

g2
1

Ω2
1

cos2 θ +
g2
2

Ω2
2

sin2 θ + cos2 θ sin2 θ
|100〉

+
e−iϕ2 g2

Ω2
sin θ

√
g2
1

Ω2
1

cos2 θ +
g2
2

Ω2
2

sin2 θ + cos2 θ sin2 θ
|0a+0〉

− cos θ sin θ√
g2
1

Ω2
1

cos2 θ +
g2
2

Ω2
2

sin2 θ + cos2 θ sin2 θ
|001〉.

(25)

Just like the case of the phase gate, if the system is ini-
tially prepared in the dark state, after a cycle of adiabatic
evolution a pure geometric phase can be obtained. In this
case, if the initial state is |10〉L, we get a phase shift

φ3 = i

∮
dR〈D(t)|∇R|D(t)〉

=

∮
dϕ2

g22
Ω2

2

sin2 θ

g2
2

Ω2
2

sin2 θ +
g2
1

Ω2
1

cos2 θ + cos2 θ sin2 θ
.

(26)

Note that this phase is not affected by the spatially in-
homogeneous distribution of the cavity mode.
We also get a geometric phase for the subspace H1 ⊗

H2
−. However, we can set choose our path to set this

phase to 0 independently of φ3. So, if we initially pre-
pared the state |10〉L we get a geometric phase of φ3 after
the gate manipulations, and if the initial state is |11〉L
the geometric phase is 0. The states |00〉L and |01〉L are
not affected by this Hamiltonian, and hence also acquire
no phase. The net effect is a two-qubit quantum gate,

|00〉L → |00〉L,
|01〉L → |01〉L,
|10〉L → eiφ3 |10〉L,
|11〉L → |11〉L,

which is exactly the controlled phase gate we would like
to implement.
As we can see in Eq. (25), the two clouds of atoms inter-

act with each other by virtually absorbing and emitting a
photon in cavity mode a, so leakage of cavity photons is
the most important source of decoherence in our scheme.
Analytically, the average photon number in the cavity
during the process is

nph+ =
cos2 θ sin2 θ

g2
1

Ω2
1

cos2 θ +
g2
2

Ω2
2

sin2 θ + cos2 θ sin2 θ
, (27)

when the system is initially prepared in |10〉L, and

nph− =
cos2 θ sin2 θ

g2
1

Ω2
1

cos2 θ +
g2
3

Ω2
3

sin2 θ + cos2 θ sin2 θ
, (28)
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FIG. 11: (Color online.) The average number of photons in the cavity during gate operation as a function of time and Ω1 for
g1 = 660MHz. (a) system initially prepared in |10〉L and (b) system initially prepared in |11〉L.

when the system is initially prepared in |11〉L, respec-
tively. If the initial state is |00〉L or |01〉L there are no
photons in the cavity.
Let’s consider the concrete example of a conditional

phase gate with φ3 = π/16. We set the parameters to
be g+ = 20MHz, g3 = g− = 10MHz, and the number of
atoms in each cloud to be N = 103. Then we have g1 =
660MHz, Ω1 = 40MHz, Ω2 = 50MHz and Ω3 = 300MHz.
We choose

θ(t) =
π

4
exp[−(t− 1.7)2/0.5],

ϕ2(t) =
π

4
exp[−(t− 2.115)2/0.5],

(where time is expressed in µs). A numerical simulation
(not including cavity loss) is shown in Fig. 10 where the
initial state is 1

4 |00〉L + 1
4 |01〉L + 1

4 |10〉L + 1
4 |11〉L. The

whole process is very fast and can be finished in 4µs,
with extremely high accuracy approaching the theoretical
value calculated in Eq. (26).
Fig. 11 shows the average number of cavity photons

nph+ and nph− during the process as a function of time
and Ω1 (not including cavity loss). The photon number
is less than 0.001 in general, which means that the prob-
ability of a photon loss in the cavity is bounded above
by 0.001 for the parameters given previously. We see
that when the state of system is initially in |11〉L, the
average number of photons in the cavity is larger than in
|10〉L, |00〉L and |01〉L. (Indeed, for the last two states
the photon number is strictly zero.)

IV. MEASUREMENT

In fault-tolerant quantum computation, one must do
syndrome measurement periodically [2, 42, 43], and the
measurement results should be correct with high proba-
bility. It is also necessary to read out results at the end of

a computation. Accurate measurement is therefore nec-
essary. In this section, we propose a protocol to measure
an atomic ensemble qubit in the computational basis.
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FIG. 12: (Color online.) The schematic setup to realize a
projective measurement on a single qubit. Here, state |d〉 is
a temporary state with a short lifetime. Transitions between
|d〉 and |s〉 are not allowed. The state |d〉 can be chosen for
example, to be |F = 1,mF = −1〉 of the manifold 5P1/2.

Collecting the fluorescence from an atom is the most
natural way to realize a measurement. For a single atom
(or ion), many fluorescence photons are needed to make
the measurement reliable, so a “cycling” transition from
the computational state (|0〉L or |1〉L) to an unstable ex-
cited state is generally used. In our case, however, there
is an added complication. The computational states in-
clude superpositions of a single excitation over all the
atoms of the cloud. The distance between atoms in the
cloud can be several times larger than the wavelength of
a photon emitted from the cloud, and this might make
it possible (in principle) to distinguish which atom emit-
ted the photon. This in turn could cause decoherence
by collapsing the symmetric superposition, and take the
system state outside the computational space. So we
need a method to perform a reliable measurement while
avoiding this problem.
As shown in Fig. 12, the procedure can be realized in
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three steps:

1. Adiabatically transport the population of |1〉L to
|f〉. (The procedure is similar to that used in real-
izing the gate Ry(φ).)

2. Dynamically pump the atom cloud from the ground
state to state |m〉 with a π pulse Ω0, and subse-
quently apply another π pulse Ω1 between the state
|m〉 and |r〉, finally, apply a third π pulse Ω2 be-
tween state |r〉 and |d〉. Cycle this transition hun-
dreds of times and collect the spontaneously emit-
ted photons from the atom cloud.

3. Reverse step 1 to transfer the population of |f〉 back
to |1〉L to prepare for next operation.

If the qubit is initially in |0〉L, step 1 has no effect. The
state of the cloud will transfer to |m〉 and then to |r〉 and
|d〉 after three π pulses (the energy between |r〉 and |d〉
is the same as that of |r〉 and |e〉, therefore, no additional
laser frequency is required for the measurement process.);
the atom cloud will quickly decay to the ground state and
emit a photon. By repeating this cycle many times, the
probability of detecting the photons can be made quite
high.
If the qubit is initially in |1〉L, step 1 will produce a

single excitation in |f〉, and by the dipole-dipole block-
ade effect the transition from the ground state to |m〉 will
be blocked. Therefore we will not observe any emitted
photons. Thus we observe fluorescence only if the qubit
is initially in the state |0〉L, and this procedure is a pro-
jective measurement. Note that non-uniform coupling is
not a problem here since at the end of the procedure the
state will be either |0〉L or |1〉L.
The time for a single π laser pulse (and the accompa-

nying state transition) should be roughly 10-20ns when
Rabi frequency of the pumping laser is hundreds of MHz.
Assuming a life time of about 10ns for |d〉, each cycle of
measurement can be finished in 30-40ns. After the cy-
cling transitions, we must transfer the population of |f〉
back to |1〉L, so we need the total measurement time to
be less than the lifetime of |f〉 (estimated to be about
400µs). This gives an upper limit on the total number
of cycles we can make during the process. If we want to
limit the error to a reasonable level, we can perform at
most a few hundred transition cycles. This should be ad-
equate if the photodetector has sufficiently high efficiency
and large enough solid angle of detection.

V. DECOHERENCE

A. Mechanisms

We will now consider the limitations imposed by deco-
herence on gate operation. For our system on atom chips
to work, several main sources of noise have to be consid-
ered and kept under control, we treat them one at a time

below. As a summary, Table I lists different decoher-
ence channels, their mechanisms, their effects, and their
typical rates on the atom chip system we are interested
in.

1. Spontaneous Emission

Like all ion trap and neutral atom schemes in quan-
tum computation, our proposal suffers from spontaneous
emission when atoms are in excited states. In our scheme,
the excited states (other than logical states) are never
populated in the ideal case. However, in any real process
(finite time, finite energy gap), the state of the system
will precess around the dark state, instead of following it
exactly in a perfect adiabatic way. This means that some
population will reach the leaky excited states (including
Rydberg states). We can calculate the population of such
unwanted states during the adiabatic process and impose
the condition:

∑

k

∫ T

0

γkPk(t)dt≪ 1, (29)

where T is the duration of the gate, Pk(t) is the popula-
tion of the kth excited state of the atom, and γk is the
corresponding decay rate of that state.
On the other hand, the condition for adiabatic process

can be stated as:

ΩgT ≫ 1. (30)

Here, Eg = ~Ωg estimates the difference between the
dark state energy and the energy of the closest eigen-
state. Suppose the kth excited state is an intermediate
state used in our gate operation (|e〉 for the phase gate
and the y-rotation gate, |r+〉 or |r−〉 for the controlled
phase gate). We have maxt{Pk(t)} ≈ 1/ΩgT . Then the
condition on γk must be:

γkT

(ΩgT )2
≪ 1. (31)

2. Cavity Loss

Cavity loss may affect the controlled phase gate, which
is realized based on the dark state in Eq. (25) through
virtual emission and absorption of cavity photons. We
note that even in the ideal adiabatic case, the state has
nonzero projection onto the 1-photon cavity state, and so
a lossy cavity will tend to destroy such a state. For the
influence of the cavity loss rate to be small, the condition

κ

∫ Tcp

0

〈D(t)|a†a|D(t)〉dt ≪ 1, (32)

must be satisfied, where 〈D(t)|a†a|D(t)〉 is the popu-
lation of the cavity mode during the adiabatic evolu-
tion, and Tcp is the duration of the controlled phase



13

gate. Since the integral above is always smaller than
κTcpmaxt{〈D(t)|a†a|D(t)〉}, the inequality in our case
can be replaced by

κTcpmax
t

{nph-(t)} = κTcp
Ω2

1Ω
2
3

4 (g21Ω
2
3 + g23Ω

2
1)

≪ 1. (33)

Combined with Eq. (31), this inequality bounds the pro-
cess time. Since our scheme has large g1, it has a good
ability to tolerate cavity loss, while still allowing a long
process time to overcome the spontaneous emission for
the controlled phase gate.

3. Trap Loss

It is crucial in our scheme to be able to store the atoms
inside the trap as long as possible. However, there are
several possible sources of noise to drive the atoms out of
the trap, as shown in Ref. [23]. These noise sources can
be divided into two groups:

1. Noise-induced spin-flip. Our logical states are en-
coded in two weak-field-seeking hyperfine states. If
the state of an atom is flipped to the strong-field-
seeking state, the magnetic potential is no longer a
trap for that atom. Such spin-flips may be caused
by fluctuations produced by thermally excited cur-
rents in the metallic substrate, or simply by tech-
nical noise in the wire currents.

2. Heating. The energy exchange increases both the
system’s mean energy and its energy spread, and
can excite atoms to a high energy vibrational mode.
Since the trap cannot be made infinitely deep,
atoms may escape from the trap.

We assume that the loss rate is not too high when the
temperature is low, and that the noise from substrate and
wire currents is well controlled. If the system is in the
ground state |g〉, the loss of atoms will not cause decoher-
ence at all. Only if the system is in a collective excited
state does trap loss mean information is lost to the en-
vironment. For simplicity in the following discussion, we
assume the loss rate of internal state |k〉 to be Γk. We
see that loss of atoms is similar to spontaneous emission
when the loss rate is low. Both effects can be treated
as an amplitude damping channel. This observation will
help us to analyze its effect by numerical simulation.

4. Stray Electric Fields

Stray electric fields are produced by the adsorbing of
rubidium atom onto the substrate of the chip and mir-
rors of the cavity, and other uncontrollable mechanisms.
In our case, we can treat such an electric field as a spa-
tially random distributed field that causes extra detuning
while there is optical coupling between different energy

levels. To analyze this noise, we suppose the system we
are interested in has Hamiltonian Hsys, and that the to-
tal Hamiltonian including the stray electric fields can be
written

Htot = Hsys +
∑

i

(
∑

k

∆k
st(xi)|k〉〈k|

)
(34)

in the interaction picture. Here, ∆k
st(xi) is the extra

detuning of the affected excited state |k〉 of atom i at
position xi relative to the center of the trap. Suppose
the trap can be modeled as a harmonic oscillator. We
have

xi =

√
1

2mν
(bi + b†i ),

where ν is the frequency of the trap, and bi (b
†
i ) is the low-

ering (raising) operator for atom i in the trap. Consider-
ing the limit where ∆k

st(xi) changes slowly and smoothly
spatially near by the trap, we can expand it around the
center of the trap:

∆k
st(xi) ≈ ∆k

st(0) + ∆k′
st(0)xi.

If the temperature is low enough, i.e, kT ≪ ~ν, most

atom stay in the ground state, so bi (b
†
i ) can be approx-

imated as bi ≈ |0〉i〈1| (b†i ≈ |1i〉〈0i|), with |0i〉 and |1i〉
the ground state and first excited state of the atom i, re-
spectively. Techniques similar to those in Section II can
be applied here to put the Hamiltonian in the second
quantizated representation:

Htot = Hsys +
∑

k

(
∆k
st(0)K̂†K̂ + ∆̃k′

st(0)K̂†K̂(B̂† + B̂)
)
,

(35)

for some random numbers ∆k
st(0) and ∆̃k′

st(0)

(∆k′
st(0)/

√
2mν). Here, we define

K̂ =
1√
N

∑

i

|gi〉〈ki|

for different excited states |k〉, and

B̂ =
1√
N

∑

i

|0i〉〈1i|.

Eq. (35) will be used in a numerical analysis of the effect
of stray electric fields later.

B. Numerical Analysis

We performed numerical simulations of the univer-
sal set of quantum gates described in previous sections.
These simulation confirm what we stated in the previous
section. The robustness of gates against noise is mea-
sured by the fidelity of the gate, i [2]:

Fi = min
|ψ〉

√
〈ψ|U †

i L(|ψ〉〈ψ|)Ui|ψ〉, (36)
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Decoherence Channel Mechanism Effect Typical Rate

Spontaneous emission Excited states decay 1kHz—

to ground state. 100MHz

Cavity loss Destroy the dark state 10kHz—

through photon leakage. 100MHz

Noise in the wire currents Flip the spin state through Trap loss. 1Hz—

fluctuation of magnetic potential. 1kHz

Thermally excited currents Flip the spin state through Trap loss. 1Hz—

fluctuation of magnetic potential. 1kHz

Heating Excite atoms to high Trap loss. 1Hz—

energy vibrational mode. 1kHz

Stray electrical field Generate random phase. Dephasing. 1MHz—1GHz

TABLE I: Decoherence mechanism for the atom chip system. Some of the typical values are based on [23] and [12].

where Ui is the desired gate operation and the superop-
erator L is determined by the master equation:

d

dt
ρ = −i [Hsys, ρ] +

∑

j

(
LjρL

†
j −

1

2
L†
jLjρ−

1

2
ρL†

jLj

)

≡ Lρ,
(37)

in the Markov approximation. Here, the {Lj} are the
Lindblad operators representing the interaction with the
environment. In many cases, no analytical solution of
such master equation is known and even a numerical so-
lution can be hard. We solve this equation by unraveling
the density operator evolution into quantum trajectories
[39]. The unraveling of the master equation implemented
are given by the quantum state diffusion (QSD) equation
[40] :

|dψ〉 =− iHtotdt

+
∑

j

(
〈L†

j〉ψLj −
1

2
L†
jLj −

1

2
〈L†

j〉ψ〈Lj〉ψ
)
|ψ〉dt

+
∑

j

(
Lj − 〈L†

j〉ψ
)
|ψ〉dξj .

(38)

Here, angular brackets denote quantum expectations
〈Lj〉ψ = 〈ψ|Lj |ψ〉, and Htot is given by Eq. (35), which
is a Hamiltonian with random parameters for each tra-
jectory. The dξj are independent complex Gaussian dif-
ferential random variables satisfying the conditions

E[dξj ] = E[dξidξj ] = 0, and E[dξ∗i dξj ] = δijdt,

where E denotes the ensemble mean. The density opera-
tor ρ is given by the mean over the projectors onto thee
quantum states of the ensemble:

ρ = E[|ψ〉〈ψ|].

In this paper, we present fidelity calculations for the given
set of universal gates, considering several channels of de-
coherence which are important in experiments. The sim-
ulation was realized with the “Quantum State Diffusion”
C++ library [39] using a fourth-order Runge-Kutta inte-
grator [41] and a pseudo random number generator to
solve the master equation using quantum trajectories.
For each trajectory, ∆k

st(0) and ∆̃k′
st(0) are Gaussian dis-

tributed random variables, i.e., ∆k
st(0) ∼ N (µk, σ

2
k) and

∆̃k′
st(0) ∼ N (µ′

k, σ
′2
k ).

1. Phase Gate

For the phase gate, spontaneous emission and trap loss,
can affect the gate operation. The spontaneous emission
rate γe from the state excited state |e〉 can destroy the
superposition of hyperfine ground states when γe is large,
though if we adiabatically transfer the state, the popu-
lation of |e〉 is very small. As discussed in Ref. [11], the
rate of spontaneous emission of the ensemble of atoms
should be the same as of single atoms. The loss rates
of atoms from the trap Γe, Γs, Γa for different energy
level must also be included. As mentioned earlier, loss
of atoms and spontaneous emission have the same effect
so that they should share the same form of Lindblad op-
erator. For simplicity of analysis, we conservatively set
Γ = max(Γe,Γa), γ = γe + Γe, and choose the Lind-

blad operators to be: L1 =
√
2γÊ , L2 =

√
2ΓŜ, and

L3 =
√
2ΓÂ.

We first simulate the case where there is no stray elec-
tric field. The simulation uses the initial state |ψ〉 = |1〉L,
which minimize the fidelity. The result of the calcula-
tion is shown in Fig. 13 for different values of γ and Γ.
(Each point is based on 100 trajectories, so this is not
a highly precise calculation.) When Γ is in the range
between 10Hz and 100Hz, the fidelity doesn’t change
dramatically and can be as high as 0.9999 when γ is
less than 1MHz. Next, we consider the effect of noisy
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FIG. 13: (Color online.) Fidelity of a phase gate with φ1 =
π/8 as a function of γ for different values of Γ not including
stray fields.
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FIG. 14: (Color online.) Fidelity of a phase gate with φ1 =
π/8 for different values of γ with Γ = 10Hz considering the
stray field effect.

stray electric fields by solving Eq. (35) for state |e〉 with
∆e
st and ∆̃e′

st. Again, for simplicity we conservatively
assume µ = max(µe, µ

′
e) and σ = max(σe, σ

′
e), with

∆e
st(0) ∼ N (µ, σ2) and ∆̃e′

st(0) ∼ N (µ, σ2). The simu-
lation result shown in Fig. 14 is based on 100 trajectories
for each point. The noisy electric field has almost no ef-
fect on the gate operation until it is about an order of
magnitude larger than the Rabi-frequency Ω we applied
on the atoms.

2. Y-Rotation Gate

For the y-rotation gate, we need to consider additional
pumping processes as well as the adiabatic process to
get the geometric phase. To simplify the calculation, we
consider the fidelities defined in Eq. (36) for each process
and multiply them together:

F = Fp1 · Fp2 · Fp1 · Fpg · Fp2 , (39)

where Fp1 is fidelity of adiabatic transfer from state |1〉L
to state |f〉, Fp2 is the fidelity of the adiabatic pumping
process from |0〉L to |r〉, and Fpg is the fidelity of the
non-Abelian geometric process.
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FIG. 15: (Color online.) Fidelity of a phase gate with φ2 =
π/4 for different values of γ, η and Ω for Γ = 100Hz without
considering the stray field.

According to Fig. 5, we need to consider both the
loss from Rydberg states and from intermediate states.
Just as for the phase gate, the parameters are chosen to
be: Γ = max(Γe,Γa+ ,Γs,Γm,Γr,Γf ), γ = max(γe, γd) ,
η = max(γm+Γ, γr+Γ, γf +Γ) and the Lindblad opera-

tors to be: L1 =
√
2ηM̂, L2 =

√
2ηR̂, L3 =

√
2ηF̂ , L4 =√

2γÊ , L5 =
√
2γD̂, L6 =

√
2ΓŜ, and L7 =

√
2ΓÂ+ ac-

cording to the corresponding loss channels. We first sim-
ulate the case where there is no additional noisy stray
electric field. The simulation result is shown in Fig. 15
for Γ = 100Hz. The fidelity is beyond 0.99 when γ is
less than 1MHz, η is 1kHz, and Ω = 1000MHz. When
γ is small, the error rate is dominated by η. When γ is
high, the error rate is dominated by γ. The larger the
Ω is, the smaller is the population of the intermediate
state. Thus satisfying the condition (31) greatly reduces
the error. The main reason why this gate can not achieve
fidelity as high as 0.999 is due to the imperfect adiabatic
pumping process p2. However, our calculation is based
on taking the minimum value of the dipole-dipole inter-
action over all pairs of atoms in the cloud, more accurate
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FIG. 16: (Color online.) Fidelity of a phase gate with φ2 =
π/4 for different values of γ and Ω considering the stray field
with η = 1kHz and Γ = 100Hz.

simulation model of the dipole-dipole interaction would
give better result.

In this case, the noisy stray field has different ways to
affect our systems for different processes. According to
Eq. (35), we have |k1〉 = |d〉 for process p1, |k2〉 = |m〉 for
process p2, and |k3〉 = |e〉 for process pg. The parame-
ters are chosen to be µ = max(µe, µ

′
e, µm, µ

′
m, µd, µ

′
d) and

σ = max(σe, σ
′
e, σm, σ

′
m, σd, σ

′
d), with ∆k

st(0) ∼ N (µ, σ2)

and ∆̃k′
st(0) ∼ N (µ, σ2) for k = d,m, e. The simula-

tion results of the effect of noisy stray fields is shown in
Fig. 16, with Γ = 100Hz, η = 1kHz and 100 trajectories
for each point. The robust against the noisy electric field
is not as good as the other two gates (we will see the case
for the controlled-phase gate next) because of p2. When
the average amplitude of the noisy field is comparable to
the amplitude of the Rabi frequency of the laser used in
adiabatic pumping (which in this case, is 20MHz), some
extra Raman transition-like processes will occur to ex-
cite the ensemble to higher excited states even though
the strong dipole-dipole interaction between atoms for-
bids these excitations. If µ can be reduced as low as a
few MHz, we can safely neglect the effect of noisy electric
fields.

3. Controlled Phase Gate

For the controlled phase gate, besides the spontaneous
emission and trap loss we analyzed for the single qubit
gates, cavity loss also plays an important role. In our
analysis, as shown in Fig. 9, the parameters are cho-
sen conservatively to be: Γ = max(Γe,Γa− ,Γa+ ,Γs),
γ = max(γr− + Γr− , γr+ + Γr+) and we set the Lind-

blad operators to be L1 =
√
2γ(R̂+)1, L2 =

√
2γ(R̂+)2,

L3 =
√
2Γ(Ŝ)1, L4 =

√
2Γ(Â+)2, L5 =

√
2γ(Ŝ†)1(R̂+)1,

L6 =
√
2Γ(Ŝ†)2(Â+)2, L7 =

√
2γ(R̂−)2, L8 =√

2γ(Ŝ†)2(R̂−)2, L9 =
√
2γ(Â†

−)2(R̂−)2, L10 =√
2Γ(Ŝ)2, L11 =

√
2Γ(Â−)2 and L12 =

√
2κacav accord-

ing to the corresponding channels.
We first simulate the case where there is only cavity

loss. As stated previously, the initial state |11〉L emits
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FIG. 17: (Color online.) Fidelity of the controlled phase gate
with φ3 = π/16 for different values of κ and g1 without any
other decoherence channels included.
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FIG. 18: (Color online.) Fidelity of the controlled phase gate
with φ3 = π/16 for different values of κ and g1 including the
stray field effect, with Γ = 100Hz and γ = 2.5kHz.

more photons than the other three basis states during
the gate operation. Hence, we take |ψ〉 = |11〉L as the
worst case.
The result of the numerical calculation in shown in

Fig. 17, based on 100 trajectories for each point. From
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Eq. (26), we see that φ3 is approximately independent of
g1 and g2 when they are large enough, so we can compare
the fidelity for different value of g1 for the same operation.
Fig. 17 shows the gate fidelity for different values of κ and
g1. The larger the value of g1 for this case, the easier
condition (32) is to satisfy and the higher fidelity we get.
The fidelity can exceed 0.9999 when κ is less than 500kHz
for g1 = 2000MHz, and exceed 0.999 when κ is less than
500kHz for g1 = 660MHz, and when κ is less than 1MHz
for g1 = 1000MHz. For a FP cavity larger than 100µm,
values of κ under 1MHz are quite achievable, and even for
large values of κ, the fidelity is still acceptable for some
schemes of fault tolerant quantum computation. When
g1 = 330MHz, the performance is bad for large value of
κ.
Finally, we analyze the stray electric field effect on |r−〉

(|r+〉) with ∆
r−
st (∆

r+
st ) and ∆̃

r−′
st (∆̃

r+′
st ). The simulation

result in shown in Fig. 18 with Γ = 100Hz and γ =
2.5kHz. It’s worth noting that the random electric field
does not affect the gate operation until it is an order
of magnitude larger than the effective cavity coupling
strength g1. For a smaller value of g1, such as 100MHz
here, when κ is large, the photon no longer be able to stay
in the cavity for long enough to do the gate operation, In
that regime the gate construction breaks down. However,
when large stray fields exist in that regime, the detuning
they induce further reduces the number of photons in the
cavity, and give an even better fidelity.

VI. CONCLUSIONS

In this paper we have proposed a scheme to achieve
quantum computation using geometric manipulation of
ensembles of atoms in a cavity QED system. Adiabatic
optical control can be used to obtain a geometric phase
gate and controlled phase gate. Combining optical ex-
citation with a dipole-dipole blockade between Rydberg
states allows us to geometrically realize the Ry(φ2) gate.
Thus a universal set of quantum gates can be realized
geometrically.
We analyzed this scheme for ensembles of neutral ru-

bidium atoms, magnetically trapped in planoconcave mi-
crocavities on an atom chip. Numerical simulations show
that a single qubit gate can be performed in several mi-
croseconds with very low probability of gate error if the
Rabi-frequency of coupling laser is larger than the av-
erage amplitude of stray electric fields and the rate of
spontaneous emission. For the controlled phase gate, the
operation is done by virtually emitting and absorbing a
photon from the cavity mode, and can be completed in
one single step operation, in a short time (about 4µs) for
a controlled π/32, gate with very high fidelity even in
a noisy environment thanks to the strong effective cou-
pling efficiency between cavity photon and atoms. An
advantage of geometric manipulation is that by adiabatic
parameter control, we can avoid certain kinds of errors,
especially those caused by inhomogeneous distribution of

the laser beam and cavity modes. The values of the fields
can depend on atom position, but their ratio can be fixed
and controllable. The basic idea is to find an appropri-
ate adiabatic process, so that the relevant dynamics are
either independent of, or depend only on the ratio of, the
two coupling rates.

The ensemble of atoms effectively enlarges the coupling
rate g by

√
N , which greatly suppresses the likelihood of

cavity photons and increases the fidelity of the opera-
tion. We analyzed the scheme for N = 103 atoms in each
cloud. The parameters that we have assumed in our nu-
merical simulations are all achievable by current exper-
iments. This, together with the possibility of coupling
stationary qubits (for computation) with flying qubits
(for communication) makes this scheme look particularly
promising for near-term quantum protocols.
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APPENDIX

In this appendix, we discuss how to choose appropriate
Stark eigenstates of alkali atoms for our purpose. Since
alkali atoms have spectra similar to hydrogen, we first
analyze the effect of the dipole-dipole interaction on Ryd-
berg stark eigenstates for hydrogen. After that, we allow
for the difference between alkali atoms and hydrogen, and
discuss a method of calculating their energy structure.
Using this method, we will choose appropriate Rydberg
Stark eigenstates of rubidium as an example. (Please
note that the fine structure of the p and d states of ru-
bidium have observable effects on the spectrum. How-
ever, for simplicity, we do not take this into account.)
The method of calculation is described in detail in Ref.
[44]. Note that all quantities below are in atomic units
for simplicity.

We first consider Stark states of a single hydrogen
atom. The magnetic quantum number m is a good quan-
tum number. From perturbation theory, the first order
approximation of Stark eignstates are parabolic states
|n, n1, n2,m〉 [44] with energies

En,n1,n2,m = − 1

2n2
+

3

2
E(n1 − n2)n.

Here, n is the principal quantum number, E is the elec-
tric field in the z direction, and n1, n2 are non-negative
integers satisfying the equality n = n1+n2+ |m|+1. For
m = 0, allowed values of n1−n2 are n−1, n−3, ...,−n+1
and for m = 1, they are n − 2, n − 4, ...,−n + 2. In
the following discussion, we use the quantum number
q = n1 − n2 instead of n1 and n2 for simplicity.
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We expand the Stark parabolic states |n,m, q〉 in the
spherical basis |n, l,m〉 as [44]:

|n,m, q〉 =
n−1∑

l=0

|n, l,m〉〈n, l,m|n,m, q〉. (40)

The coefficients can be written in terms of Wigner 3J
symbols [44]:

c(n, l,m, q) ≡〈n, l,m|n,m, q〉 = (−1)(1−n+m+q)/2+l

×
√
2l + 1

(
n−1
2

n−1
2 l

m+q
2

m−q
2 −m

)
.

(41)

For example, if n = 2, m = 0, q = 1, we have
c(2, 0, 0, 1) =

√
2/2 and c(2, 1, 0, 1) = −

√
2/2. So,

|2, 0, 1〉 = (
√
2/2)|2, 0, 0〉 − (

√
2/2)|2, 1, 0〉. We will fre-

quently use these parabolic states instead of spherical
states in the following analysis.
The dipole-dipole interaction Vdip is proportional to

r̂1 · r̂2, where

r̂1 = r1(
x1
r1

ex +
y1
r1

ey +
y1
r1

ez)⊗ I,

r̂2 = I ⊗ r2(
x2
r2

ex +
y2
r2

ey +
y2
r2

ez),

are coordinate operators for atoms 1 and atom 2. Re-
placing x, y, z with spherical coordinates r, θ, φ,

x = r sin θ cosφ,

y = r sin θ sinφ,

z = r cos θ.

(42)

gives us

Vdip ∝ r̂1 · r̂2
=r1(

x1
r1

ex +
y1
r1

ey +
y1
r1

ez) · r2(
x2
r2

ex +
y2
r2

ey +
y2
r2

ez)

=r1

√
4π

3
(
ex + iey√

2
Y 1
1,−1 +

iey − ex√
2

Y 1
1,1 + Y 1

1,0ez)·

r2

√
4π

3
(
ex + iey√

2
Y 2
1,−1 +

iey − ex√
2

Y 2
1,1 + Y 2

1,0ez)

=
4π

3
r1r2(−Y 1

1,−1Y
2
1,1 − Y 1

1,1Y
2
1,−1 + Y 1

1,0Y
2
1,0),

(43)

where Y il,m is a spherical harmonic function for atom
i. Generally speaking, for two atoms in the given ini-
tial Stark eigenstate, the diagonal terms of the dipole-
dipole interaction give an energy shift, while its non-
diagonal terms couple adjacent m manifolds with each
other: (m,m) to (m ± 1,m ∓ 1). The Stark states that
are most useful for our scheme are those that maximize
the energy shift while suppressing the transition between

different m manifolds (which might introduce decoher-
ence channels). So it is sufficient for us to know the
value of the matrix elements

〈n,m|〈n,m, q|Vdip|n′,m+ 1〉|n′,m− 1〉,
〈n,m|〈n,m, q|Vdip|n′,m− 1〉|n′,m+ 1〉, (44)

and

〈n,m, q|〈n,m, q|Vdip|n′,m, q〉|n′,m, q〉. (45)

For hydrogen, we will only consider matrix elements
with the same n for simplicity. Even so, it is too com-
plicated (and unnecessary) to find the general analyti-
cal form of these elements. Instead, we numerically do
the integration to determine which states fulfill our re-
quirements. By symmetry, the transition strengths of
(m,m) → (m + 1,m − 1) and (m,m) → (m − 1,m + 1)
are the same, so we just give the first value. The cal-
culation results for some matrix elements are shown in
Table II as an example.
We have made several simplifications in this table.

First, we didn’t calculate the transition strengths be-
tween different n manifolds, because they are several
times smaller than their counterparts in the same n man-
ifold. Second, we didn’t calculate the case when two
atoms are initially prepared in different Stark eigenstates,
especially in two different manifolds, which actually we
have proposed to realize both the gate eφ2σy and qubit
measurement. Nevertheless, this table gives enough in-
formation about the characteristics of the state we are
looking for. First, the transition strength must be much
smaller than the energy shift inside the same n manifold.
Second, those transitions between initial and final states
with a difference in parabolic number q larger than one
must be greatly suppressed. If we prepare an atom in
the outermost state |n,m = 0, q = n− 1〉, we obtain the
largest energy shift with the smallest transition strength
to the (m + 1,m − 1) state compared with other Stark
eigenstates in the same manifold.
In our proposed gate, since the Rydberg states of two

atoms may not be in the same manifold, a natural so-
lution to fulfill our requirements is to choose the state
|Ψ〉 = |n,m = 0, q = n − 1〉|n′,m = 0, q = n′ − 1〉 for
manifolds n and n′. Note that the energy shift term in
the Hamiltonian is a product of operators on two differ-
ent atoms, so the analysis of two atoms in same manifold
can be directly applied to show that the maximum en-
ergy shift is obtained if the two atoms are prepared in
the state |Ψ〉. This gives an energy shift of

〈Ψ|Vdip|Ψ〉 ∝ n(n− 1)n′(n′ − 1).

Next, we consider the case of non-hydrogen alkali
atoms. Physically, the main difference between alkali
atoms and hydrogen atoms is that the former have a fi-
nite sized ionic core that results in avoided crossings in
the Stark spectrum. So, the Hamiltonian can be written
as

H = −∇2

2
− 1

r
+ Vd(r) + Ez. (46)
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Matrix element: |m, q〉 → |m′, q′〉 n =5 n = 10 n = 15 n = 20 n = 25
|0, n− 1〉|0, n− 1〉 → |1, n− 2〉| − 1, n− 2〉 112.5 1012.5 3543.75 8550 16875
|0, n− 1〉|0, n− 1〉 → |0, n− 1〉|0, n− 1〉 900 18225 99225 324900 810000
|0, n− 1〉|0, n− 1〉 → |1, n− 4〉| − 1, n− 4〉 0 0 0 0 0
|0, n− 3〉|0, n− 3〉 → |1, n− 2〉| − 1, n− 4〉 137.78 1350 4829.32 11769 23362.4
|0, n− 3〉|0, n− 3〉 → |1, n− 4〉| − 1, n− 2〉 137.78 1350 4829.32 11769 23362.4
|0, n− 3〉|0, n− 3〉 → |1, n− 4〉| − 1, n− 4〉 168.75 1800 6581.25 16200 32343.7
|0, n− 3〉|0, n− 3〉 → |1, n− 2〉| − 1, n− 2〉 112.5 1012.5 3543.75 8550 16875
|0, n− 3〉|0, n− 3〉 → |0, n− 3〉|0, n− 3〉 225.01 11025 72900 260100 680625
|1, n− 2〉|1, n− 2〉 → |2, n− 3〉|0, n− 3〉 137.78 1350 4829.32 11769 23362.4
|1, n− 2〉|1, n− 2〉 → |1, n− 2〉|1, n− 2〉 506.25 14400 85556 291600 743906
|1, n− 4〉|1, n− 4〉 → |2, n− 3〉|0, n− 5〉 137.78 1350 4829.32 11769 23362.4
|1, n− 4〉|1, n− 4〉 → |2, n− 5〉|0, n− 3〉 168.75 2062.16 7744.14 19281.9 38742.1
|1, n− 4〉|1, n− 4〉 → |2, n− 5〉|0, n− 5〉 168.75 2062.16 7744.14 19281.9 38742.1
|1, n− 4〉|1, n− 4〉 → |2, n− 3〉|0, n− 3〉 137.78 1350 4829.32 11769 23362.4
|1, n− 4〉|1, n− 4〉 → |1, n− 4〉|1, n− 4〉 56.25 8100 61256.3 230400 620156

TABLE II: The matrix element of operator Vdip in atomic units.

Here, Vd(r) is the difference of the potential function be-
tween a hydrogen and an alkali atom, due to the finite-
sized ionic core. We treat Vd(r) as spherically symmetric
and only nonzero near the nucleus. In the case where
quantum defects are relatively small (e.g., n is large), we
can use the hydrogenic parabolic states as our working
basis. For diagonal terms of the Hamiltonian, we have:

〈n,m, q|H |n,m, q〉 = − 1

2n2
+

3

2
qnE

+ 〈n,m, q|Vd(r)|n,m, q〉+O(E2),
(47)

and we represent the non-diagonal terms using hydrogen
spherical states |n, l,m〉:

〈n,m, q|H |n′,m, q′〉 =
n−1∑

l,l′

〈n,m, q|n, l,m〉

× 〈n, l,m|Vd(r)|n′, l′,m〉〈n′, l′,m|n′,m, q′〉.
(48)

Denote the spherically symmetric eigenstates of the
alkali atom as |n, l,m〉al. For large n, we have

− 1

2(n− δl)2
=al〈n, l,m|H |n, l,m〉al

≈〈n, l,m|
(
−∇2

2
− 1

r
+ Vd(r)

)
|n, l,m〉

=− 1

2n2
+ 〈n, l,m|Vd(r)|n, l,m〉.

(49)

where δl is the quantum defect for angular momentum l
of the alkali atom [45], which is different for each element.
For rubidium, if we neglect neglect the fine structure ef-
fect, δ0 ≈ 3.1, δ1 ≈ 2.6, δ2 ≈ 1.3, and δ3 ≈ 0.02. For
l > 3, δl ≈ 0. On the other hand,

− 1

2(n− δl)2
≈ − 1

2n2
− δl
n3
.

So we have:

〈n, l,m|Vd(r)|n, l,m〉 ≈ − δl
n3
. (50)

Per Ref. [44], this expression may be generalized to

〈n, l,m|Vd(r)|n′, l,m〉 = − δl√
n3n′3

. (51)

Here, we take advantage of the spherical symmetry of
Vd(r), so the matrix element vanishes when the l value
on the two sides of the above equation are not the same.
Observe that Eq. (45) can be represented as matrix

multiplication. We define matrices

[Cnm]ql =〈n,m, q|n, l,m〉 = c(n, l,m, q),

[Vnm]lq =〈n, l,m|n,m, q〉 = c(n, l,m, q),

[Dnn′

]ll′ =〈n, l,m|Vd(r)|n′, l′,m〉,
[Snn′m]qq′ =〈n,m, q|H |n′,m, q′〉.

(52)

Then, we have

Snn′m = CnmDnn′Vn′m. (53)

Note that these superscripts label a family of matrics, not
matrix element indices. For the purpose of illustration,
we show a simple example. We write the matrices

C20 =

[
1√
2

1√
2

1√
2

− 1√
2

]
,

V30 =




1√
3

1√
3

1√
3

1√
2

0 − 1√
2

1√
6

−
√

2
3

1√
6


 ,

D23 =

[
− δ0

6
√
6

0 0

0 − δ1
6
√
6

0

]
,



20

0.0000000 0.0000005 0.0000010
-0.0025

-0.0024

-0.0023

-0.0022

-0.0021

-0.0020

 

 

E
ne

rg
y

Electrical Field

15f

18s

16d

17p

18p

17d

FIG. 19: (Color online.) The energy level of rubidium around manifold n = 15, m = 0. The circled states is our candidate
states which have large energy shift.

and multiply them to get

S230 =

[
− δ0

36 − δ1
12

√
6

− δ0
36 − δ0

36 + δ1
12

√
6

− δ0
36 + δ1

12
√
6

− δ0
36 − δ0

36 − δ1
12

√
6

]
.

Matrix Snn′m can be treated as a submatrix (or block)
of the Hamiltonian matrix. Since the Hilbert space is
infinite-dimensional, we need to truncate the Hamilto-
nian matrix. For example, if we need to know eigenval-
ues and eigenstates of manifold n of rubidium, we need
to consider only those manifolds that couple to it.
We now calculate the energy structure of the n = 15

manifold for purposes of illustration. We also need to
consider the adjacent manifolds such as n = 14, n = 16,
n = 17 and n = 18, since states like 16d, 17p, 17d, 18s
and 18p are coupled to the n = 15 manifold. Define the
submatrix of the Hamiltonian Hnn′m as

[Hnn′m]qq′ = [Snn′m]qq′ − δnn′δqq′ (
1

2n2
− 3

2
qnE),

where δnm is the Kronecker delta. The Hamiltonian ma-
trix is approximately represented as:




H14,14,m H14,15,m H14,16,m H14,17,m H14,18,m

H15,14,m H15,15,m H15,16,m H15,17,m H15,18,m

H16,14,m H16,15,m H16,16,m H16,17,m H16,18,m

H17,14,m H17,15,m H17,16,m H17,17,m H17,18,m

H18,14,m H18,15,m H18,16,m H18,17,m H18,18,m


 ,

(54)

which is an 80 × 80 Hermitian matrix. Similar methods
could be applied to much higher excitation states, like
n = 80, that might be more suitable in practice.
By diagonalizing the Hamiltonian matrix, we can ob-

tain the spectrum and the eigenstates. As mentioned
earlier, the state we use should have a large component
of |n,m = 0, q = n−1〉, which means we want the single-
atom eigenstate

|r〉n,m =
∑

q

Cq|n,m, q〉

to have m = 0 with a large coefficient |Cq| for q = n− 1.
Fig. 19 shows the spectrum around the manifold n =

15. The outermost Stark eigenstates |r〉15,0, circled in
the figure in the regime where the Stark eigenvalues are
roughly linear in the electric field (E ≤ 2.5 × 10−7), are
good candidate states, since they should have behavior
similar to the hydrogen state |n,m = 0, q = n− 1〉. Nu-
merical calculation shows that the diagonal term of the
dipole-dipole interaction is about 8× 104 in |r〉15,0|r〉15,0
(compared to 99225 for hydrogen in the previous table),
which is larger than for the other states in the manifold.
To put this in the context of our scheme for quan-

tum computation, consider the case where there are 103

atoms in a volume of (6µm)3. The smallest energy shift
of a pair of atoms inside the cell is for those that are most
distant. Suppose the two most distant atoms are in the
state |r〉15,0|r〉15,0. The energy shift between them should
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be around 1MHz, depending on the spatial distribution
of atoms. In our scheme, where two atoms may also be
in different single-atom states (actually in different man-
ifolds), we could naturally extend our original analysis,
but we expect a similar result.
In practice, we would want to use higher energy Ryd-

berg states; for instance an n = 60 state |m〉 = |r〉60,0 for
the intermediate state and an n = 70 state |r〉 = |r〉70,0
for the register state, to get both longer lifetimes (more
than 300-400µs for n = 70 can be achieved in a cryo-
genic environment [35]) and a stronger dipole-dipole in-
teraction. Since higher energy Rydberg states should be-
have more like the Rydberg states of hydrogen, we can

pick the outermost Stark eigenstates in the linear Stark
area for both atoms, whether or not they have the same
principal quantum number. If the initial state of one
atom is in the outermost state of manifold n = 60, and
the other in either manifold n = 60 or n = 70, then
by Vdip ∝ n(n − 1)n′(n′ − 1) the energy shift should
be roughly 200-300MHz or 300-400MHz, respectively.
The distance of the most closely-spaced pair of atoms
should be about 104a0. This is larger than 2R, where
R = 4900a0 is the radius of atoms in manifold n = 70.
This spacing should satisfy the assumption of our dipole-
dipole interaction model.
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[24] J. Fortágh and C. Zimmermann, Rev. Mod. Phys. 79,

235 (2007).
[25] M. Trupke, J. Metz, A. Beige, E. A. Hinds, J. Mod. Opt.

54, 1639 (2007).
[26] M. Trupke et al., Appl. Phys. Lett. 87, 211106 (2005).
[27] E. Charron et al., Phys. Rev. A 74, 012308 (2006).
[28] P. Treutlein et al., Phys. Rev. Lett. 92 203005 (2004).
[29] M. Fleishhauer, S. F. Yelin, M. D. Lukin, Opt. Comm.

179, 395 (2000).
[30] M. D. Lukin, S. F. Yelin, M. Fleischhauer, Phys. Rev.

Lett. 84, 4232 (2000).
[31] P. Zanardi, M. Rasseti, Phys. Lett. A 264, 94 (1999).
[32] M. V. Berry, Proc. R. Soc. London A. 392, 45 (1984).
[33] F. Wilczek, A. Zee, Phys. Rev. Lett. 52, 2111 (1984).
[34] S. Lloyd, Phys. Rev. Lett. 75, 346 (1995).
[35] M. Saffman and T. G. Walker, Phys. Rev. A 72, 022347

(2005).
[36] J. Simon et al., Nature.Phys. 3, 765 (2007)
[37] L.-M. Duan, A. Kuzimich, H. J. Kimble, Phys. Rev. A.

67, 032305 (2003).
[38] D. F. Walls and G. J. Milburn, Quantum Optics

(Springer-Verlag, 1994).
[39] R. Shack and T. A. Brun, Comp. Phys. Comm. 102, 210

(1997).
[40] N. Gisin and I. C. Percival, J. Phys. A 25, 5677 (1992).
[41] W. H. Press et al., Numerical Recipes in C (Cambridge

University Press, 2002).
[42] D. Gottesman, Ph.D. thesis, Caltech, 1997.
[43] D. Gottesman, Phys. Rev. A 57, 127 (1998).
[44] T. F. Gallagher, Rydberg Atoms (Cambridge University

Press, 1994).
[45] C. J. Foot, Atomic Physics (Oxford University Press,

2005).


