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We present a theory of coherent propagation and energy/power transfer in low dimension array
of coupled nonlinear waveguides. It is demonstrated that in the array with non-equal cores (e.g.
with the central core) the stable steady-state coherent multi-core propagation is possible only in the
nonlinear regime - with a power controlled phase matching. The developed theory of energy/power
transfer in nonlinear discrete systems is rather generic and has a range of potential applications
including both high power fibre lasers and ultra-high-capacity optical communication systems.

PACS numbers: 42.65.-k, 42.81.-i, 42.65.Wi, 42.55.Wd, 05.45.-a

Nonlinear dynamics in discrete systems is an interdis-
ciplinary research field that has links to a large number of
areas of science and technology. A broad interest to stud-
ies of nonlinear discrete systems is based on their generic
nature - a variety of different physical systems can be
effectively described by the same mathematical model.
Nonlinear discrete systems occur in a variety of phenom-
ena in condensed matter, nonlinear optics, biology and
other fields: from energy transport in molecular chains
and protein molecules to light propagation in waveguide
arrays (it is not possible to properly cite all important
works in the field, see e.g. [1–15, 17–21] for particu-
lar examples relevant to the systems studied here). In
this Letter we present a theory of coherent evolution and
energy exchange in specific albeit generic low-dimension
nonlinear discrete systems, using as a particular exam-
ple practically important application - light propagation
in multi-core fibre. We demonstrate novel features of co-
herent light transmission in such multi-core systems, that
are different from properties previously studied in the in-
finite nonlinear discrete lattices [1, 6–15, 17], symmetric
dimers [5] and directional couplers [2, 3, 20, 21].

Mathematical analysis of nonlinear dynamics in multi-
core fibres and, in a more general mathematical formula-
tion, the nonlinear evolution of the electromagnetic field
in a small-number of interacting waveguides is directly
relevant to the design of a new generation of fibre laser
and telecommunication systems. Exponentially increas-
ing demand for communication system capacity and the
projected exhaustion of current infrastructure (”capac-
ity crunch” [22]) is the driving force for introduction
for spatial-division multiplexing using multi-core fibres.
Multi-core fibre (MCF) technology enables the necessary
scale-up in capacity per-fibre through spatial multiplex-
ing where individual cores serve as independent channels
[23]. The new important challenge here is space utiliza-
tion efficiency and optimisation of capacity per unit area
measured in [bit/s/m2]. Interactions between the cores
can be theoretically made small at the expense of space
using large core separation. However, this decreases the
spatial density of capacity. More efficient space utiliza-

tion is achieved in the homogeneous MCF [24] (with more
dense core spacing) making positive use of the the prox-
imity of the cores to produce controlled linear core cou-
pling. In the coherent optical communication most of
the linear transmission effects can be undone at the re-
ceiver by digital signal processing. However, the coupling
might be affected by nonlinear effects imposing limits on
enhancing performance through increase of signal power
(required to improve signal-to-noise ratio). The nonlin-
earity affects energy coupling between the cores that can
result in information losses. It is important, therefore, to
determine the fundamental threshold for the destructive
energy transfer effects.
Similar mathematical problems arise in the field of

powerful fibre lasers [25, 26]. The single mode fibre can
transport only the power below certain threshold value
determined by the nonlinear effects. The use of multi-
core fibers is a promising way for the coherent combining
to create high brightness sources. However, nonlinear in-
teraction can destroy the mutual coherence. It is impor-
tant, therefore, to know the limits imposed by the nonlin-
ear interaction on maximum power transmitted through
the MCF without loss of the final beam quality.
In this Letter we demonstrate that in arrays with non-

equal cores (the most simple albeit general case is N-1
peripheral cores surrounding the central core; here N is
not very large due to the geometrical and manufactur-
ing restrictions) the phase matching and stable coherent
propagation is possible only due to nonlinear effects for a
certain power split between cores. We solve the stability
problem of steady-state propagation and derive analyti-
cal conditions of the linear instability and energy trans-
fer. This instability is an extreme discrete limit of the
classical modulation instability in the continuous media
and fibers arrays [12, 17, 27–29].
The basic model considered here is a low dimension

version of the discrete nonlinear Schrödinger equation:

i
∂Ak

∂z
+

N
∑

m=0

CkmAm+2γk|Ak|2Ak = 0; k = 0, ..., N (1)

Here Ak is a field in the k-th core, with A0 (when ap-
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FIG. 1: The schematic depiction of the multi-core fibre.

plied) corresponding to the central core, Ckm = Cmk is
the coupling coefficient between modes m and k; Ckk =
βk are wave numbers in different cores that are not as-
sumed to be the same. The phase matching and stable
mutually coherent continuous wave (CW) propagation in
arrays with non-equal cores (e.g. cases 3 and 4 in Fig.
1) is provided by the certain nonlinear phase shifts that
we will determine below. The Eq. (1) governs all the
designs shown in Fig.1:

(1) : Cmk = C1; (2) : Ck,k+1 = C1, Ck,k+2 = C2;

(3, 4) : Ck,k±1 = C1(k 6= 0), Ck,0 = C0;

Note that in general, e.g. for systems with the distinc-
tive central core, nonlinear coefficients in different cores
might be different. Consider first instability in the cases
(1, 2) in Fig.1. Let Ak = (

√
Pk + ak + ibk)e

iqz , ak, bk ≪√
Pk where Pk = P0. Cumbersome, but direct calcu-

lations of the dispersion relation for q show that for
the case with three cores the instability occurs when

P0 > P
(3)
th = 3C1/(4γ). In the case of four cores (2)

the instability threshold is: P0 > P
(4)
th = (C1 +C2)/(2γ).

When propagation constants are different or in the case
of multiple peripheral cores surrounding a central one
even the existence of steady state solution is nontrivial
and we look at it in more detail. In the main order, dy-
namics in systems with similar peripheral cores can be
reduced (assuming Ak = A1, k = 1, ..., N ) to analysis of
an effective two-core model that is a symmetric limit of
multi-core systems:

i
∂U0

∂z
= −U1 −

2Nγ0
γ1

|U0|2U0 =
∂H

∂U∗
0

, (2)

i
∂U1

∂z
= −κU1 − U0 − 2|U1|2U1 =

∂H

∂U∗
1

, (3)

Here we introduced normalized variables:

A0,1 =
√

P0,1 U0,1e
iβ0Lz; z′ = z/L; L =

1

C0

√
N

, (4)

P0 = NP1 = N3/2C0/γ1, κ =
(β1 − β0) + 2C1

C0

√
N

. (5)

The system (2, 3) is a Hamiltonian one (as well as (1))
with the following conserved quantities: total (normal-
ized) power Pt and the Hamiltonian H :

Pt = N(|U0|2 + |U1|2), (6)

H = −κ|U1|2 − (U∗

0U1 +U∗

1U0)− |U1|4 −
Nγ0
γ1

|U0|4. (7)

We would like to stress that despite simple appearance,
even the stationary, steady state solution of the system
(2, 3) is non-trivial anymore (compared e.g. to the sym-
metric dimer [5]). To provide for coherent light evolution
in multiple cores, difference in propagation constants has
to be compensated by the nonlinear phase shifts:

{U0, U1} = {A,B} × eiλz ,Γ =
B

A
, (8)

|A|2 =
Pt

N(1 + Γ2)
, λ = Γ+

2γ0Pt

γ1(1 + Γ2)
. (9)

Γ4 −
(

κ+
2Pt

N

)

Γ3 −
(

κ− 2γ0Pt

γ1

)

Γ− 1 = 0. (10)

The steady state solutions and their stability for more
general situation including gain and attenuation have
been considered numerically in [16]. In a dissipative sys-
tem only numerical evaluation for some specific parame-
ters is possible and the the emphasis in [16] was on for-
mation of localized structures. Here we are interested
mainly in energy/power transfer between the cores. The
relatively simple mathematical result (8 - 10) leads to
quite nontrivial physical consequences. Namely, steady
state dynamics in such system is possible only with a
certain imbalance (given by factor Γ2) between powers
propagating in different cores. The physics is rather
transparent - this power split is due to nonlinear phase
shift contribution to the phase matching condition re-
quired for coherent propagation in multiple cores. Sur-
prisingly, there are several power distributions (between
central and peripheral cores) that can provide for a co-
herent steady state propagation of light. The amount of
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FIG. 2: Four values of Γ corresponding to different power
splits between cores as functions of total input power; here
γ0/γ1 = 0.5 and κ = 1. Blue long dashed, green solid and
red dash-dotted branches are stable while the black short-
dashed one is unstable. Here different curves for each branch
correspond to N varying from 3 to 12 (from the bottom to
the top). For red short dashed curve only odd N are shown.

power that has to be coupled to each core for steady state
evolution given by solutions of (10) depends on four pa-
rameters: (i) N , (ii) input power Pin (or total power Pt),
(iii) linear phase mismatch κ, and (iv) the ratio between
the nonlinear coefficients γ0/γ1. To get idea of solution
structure consider practically important case Pt >> 1.
In this case from (10) we will get four families of solu-
tions. In the Γ1 = 2Pt/N and Γ3 = γ1/(2 γ0 Pt) most
of the energy propagates in the ring or central core, cor-
respondingly. For Γ2,4 = ±

√

γ1N/γ0 the ratio of energy
in ring and central core is independent of propagating
power. Negative Γ means out-of phase fields in the cen-
tral and peripheral cores. Figure 3 shows an excellent
applicability of analytical results.
Consider now stability of steady state solutions of (8-

10) - analogue of the modulation instability for low di-
mension discrete system. The small amplitude distur-
bance is taken in a standard form {U0, U1} = {A + a +
ib, B + c + id} × eiλz , for perturbations proportional to
exp[pz] the growth rate of instability is:

p2 + 2 = − 1

Γ

(

1

Γ
− 4B2

)

− Γ

(

Γ− 4Nγ0A
2

γ1

)

. (11)

In the limit Pt >> 1 only mode Γ2 is instable. Insta-
bility results in periodic oscillations of energy between
cores with amplitude of modulations depending on total
power, i.e. the relative modulation depth decreases with
growing input power. The most important consequences
of the instability is that it makes control of power dy-
namics hardly possible. For system with more than three
cores the instability, in general, produces stochastic mod-
ulation breaking the mutual coherence in the cores. The
energy exchange oscillations can be produced not only as
a result of the instability, but also as a result of initial

FIG. 3: Dependence of the four solutions of Eq. (10) (shown
by squares) on N. Here Pt = 40, γ0/γ1 = 1 and κ = 1.
Solid lines are for the analytical solutions valid in the limit
Pt ≫ 1. Blue circles curve: Γ1 = 2Pt/N ; black squares line:

Γ2 =
√

γ1N/γ0; green triangles line: Γ3 = γ1/(2 γ0 Pt); and

red inverse triangle line: Γ4 = −

√

γ1N/γ0.

FIG. 4: Y-axis (left): The comparison of numerically calcu-
lated threshold for energy/power transfer (red markers) and
the analytical formula (12) (solid line). Y-axis (right): numer-
ically calculated period of the power oscillations (gray mark-
ers) and analytical approximation: 3.23+2.04/N2 (solid line).
Insets: energy/power transfer with distance. The complete
transfer occurs only at certain distances.

conditions (in case of arbitrary input powers).

The Hamiltonian structure of the equations and the
additional conserved quantity greatly restricts dynamics
in the considered low dimension dynamic system impos-
ing constraints on the evolution of the waves and the en-
ergy exchange between cores. For instance, considering
evolution of initial powers equally distributed between all
cores |U0|2 = Pin/N, |U1|2 = Pin, using the connections
between the fields imposed by dH/dz = 0 it is easy to



4

show that the complete energy transfer from the outer
cores to the central one is possible only for one specific
value of input power (and at specific propagation length):

Pin = P th
in =

κ+ 2N−1/2

γ0(N + 2)/γ1 − 1
. (12)

The observed effect - localization of all initially evenly
distributed power into the central core can be considered
as an ultimate discrete version of the self-focusing of light.
Figure 4 shows comparison of the analytical result

(12) and numerically calculated threshold of an energy
transfer given by ∆0U = (N |U0|2 − |U1|2)/Pt (Pt =
(N + 1)Pin). Here γ0 = γ1;C0 = C1, β0 = β1. The
period of the energy exchanges decays with N as N−2.
Note that the presented theory can be easily general-

ized to pulse propagation and nonlinear temporal dynam-
ics having numerous applications. In the recent impor-
tant work [30] it has been studied the efficiency of non-
linear matching of optical fibers through a fundamental
soliton coupling from one fiber into another opening a
range of engineering applications, e.g. optimized Raman
red-shift and supercontinuum generation.

To conclude, in this Letter we have presented a the-
ory of energy/power transfer in low dimension arrays
of coupled nonlinear waveguides. The developed theory
is rather generic and has a range of potential applica-
tions. Without loss of generality, particular emphasis in
the analysis is made on multi-core fibre technology, im-
portant in the fields of both high power fibre lasers and
ultra-high-capacity optical communication systems. We
have derived for the array with non-equal cores the non-
linear phase matching conditions that provide for stable
coherent steady-state propagation in multiple cores. We
solved the stability problem and found an exact analyti-
cal condition of complete energy transfer from peripheral
to the central core - ultimate discrete analogy of the self-
focusing effect.
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