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Abstract

We calculate corrections of order α3(Zα)EF to hyperfine splitting in muonium generated by

the gauge invariant set of diagrams with polarization insertions in the light by light scattering

diagrams. This nonrecoil contribution turns out to be −2.63 Hz. The total contribution of all

known corrections of order α3(Zα)EF is equal to −4.28 Hz.
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I. INTRODUCTION

The hyperfine splitting in muonium is one of the intervals best studied both experimen-

tally and theoretically. Theoretical expression for the hyperfine splitting can be calculated

in the QED framework in the form of a perturbation theory expansion in α, Zα, me/mµ.

Current theoretical uncertainty of this expansion is estimated to be about 70-100 Hz, respec-

tive relative error does not exceed 2.3 × 10−8 (see discussions in [1–3]). The experimental

error of the best measurements [4, 5] of the muonium HFS is in the interval 16-51 Hz. A

new higher accuracy measurement of muonium HFS is now planned at J-PARC, Japan [6].

Combining muonium HFS theory and experiment one can determine the value of α2(mµ/me)

with the uncertainty that is dominated by 2.3×10−8 relative uncertainty of the HFS theory

[3]. This is currently the best way to determine the precise value of the electron-muon mass

ratio. Further reduction of the uncertainty of this mass ratio requires improvement of the

HFS splitting theory. Main sources of the theoretical uncertainty are due to still unknown

three-loop purely radiative contributions, three-loop radiative-recoil contribution, and non-

logarithmic recoil contributions (see detailed discussion in [2, 3]). We consider reduction of

the theoretical error of HFS splitting in muonium to about 10 Hz as the current goal of the

HFS theory.

As a step in this direction we calculate below a three-loop contribution to HFS generated

by the light by light scattering diagrams in Figs. 1 and 2 with insertions of one loop

polarization in the upper and lower photon lines, respectively.

� �4� + 2�kq
FIG. 1.

II. CALCULATIONS

We start with the light by light scattering contribution to HFS that was calculated long

time ago [7]. It is generated by the diagrams in Fig. 3, where we have not shown explicitly
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FIG. 2.

three more diagrams with the crossed photon lines. In our calculations below we will follow

the general approach developed in [7] and start with the light by light scattering contribution

in Fig. 3 (see [7])

∆E =
α2(Zα)

π
EF

3

64π2

∫

d4k

π2i

〈γα/kγβ〉

k4

(

1

k2 + 2k0
+

1

k2 − 2k0

)
∫

d3q

4π

〈γµ/qγν〉

q4
Sαβµν , (1)

where kµ is the four-momentum carried by the upper photon lines, qµ = (0, q) is the spacelike

four-momentum carried by the lower photon lines, Sαβµν is the light by light scattering

tensor, and all momenta are measured in the electron mass units. The Fermi energy is

defined as

EF =
8

3
(Zα)4(1 + aµ)

me

mµ

(

mr

me

)3

mec
2, (2)

where aµ is the muon anomalous magnetic moment. The angle brackets in Eq. (1) denote

the projection of the γ-matrix structures on the HFS interval (difference between the states

with the total spin one and zero).� +� +�
FIG. 3.

With account for three more diagrams with crossed photon lines not shown explicitly in

Fig. 3 contributions to HFS of the first two diagrams coincide and we can represent the

light by light block as a sum of two contributions corresponding to the first two (ladder)

diagrams in Fig. 3 and corresponding to the crossed (last) diagram in Fig. 3
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Sαβµν =

∫

d4p

π2i

(

2Lαβµν + Cαβµν
)

, (3)

where (we return to dimensionful momenta here)

Lαβµν = Tr

[

γµ
1

/p− /q −m
γν

1

/p−m
γβ

1

/p− /k −m
γα

1

/p−m

]

, (4)

Cαβµν = Tr

[

γµ
1

/p− /q −m
γβ

1

/p− /q − /k −m
γν

1

/p− /k −m
γα

1

/p−m

]

. (5)

Calculating traces we obtain

Lαβµν =
{

8D2
1g

µαgνβ + 16D1g
µα

[

pνqβ + kνpβ + kνqβ − pνpβ
]

− 8D1g
µαgνβ

× [(p · q) + (p · k) + (k · q)] + 32gµα
[

(k · q)pνpβ − (p · q)kνpβ − (p · k)pνqβ
]

+16(p · k)(p · q)gµαgνβ − 32pµpαkνqβ
} 1

D1D2D3D4

,

(6)

and

Cαβµν =
{

8D1g
µα

[

−3kνqβ + kνpβ + pνqβ
]

− 8D2g
µαkνpβ − 8D3g

µαpνqβ

+16(k · q)gµαpνpβ − 16(k · q)gµαkνpβ − 16(k · q)gµαpνqβ + 16p · (k + q)gµαkνqβ
}

×
1

D1D2D3D4
,

(7)

where

D1 = p2−m2, D2 = (p−q)2−m2, D3 = (p−k)2−m2, D4 = (p−q−k)2−m2. (8)

After calculation of the integrals in Eq. (3) we obtain the light by light scattering block

in the form

Sαβµν = 2Lαβµν + Cαβµν , (9)

where
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Lαβµν =

∫

d4p

π2i
Lαβµν = 8

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dξ

{

−
2y(1− y)

Ω(1, y, 1, ξ)
(k · q)gµαgνβ

+
2y2(1− y)z

Ω(1, y, z, ξ)
(k · q)gµαgνβ −

2y(2− y + y2z)

Ω(1, y, z, 1)
gµαkνqβ +

y

Ω(1, y, z, 1)

×
[

k2(1− y) + q2yz + (k · q)(2− y + yz)
]

gµαgνβ + y2(1− z)

×

[

(

−
3

Ω(1, y, z, 1)
+

2

Ω2(1, y, z, 1)

[

k2(1− y)2 + q2y2z2
]

)

[

(k · q)gµαgνβ − 2gµαkνqβ
]

+
2(1− y)yz

Ω2(1, y, z, 1)

[

k2q2 + (k · q)2
]

gµαgνβ −
4(1− y)yz

Ω2(1, y, z, 1)
(k · q)gµαkνqβ

]}

,

(10)

Cαβµν =

∫

d4p

π2i
Cαβµν = 8

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

{

[

x(1 + x)

Ω(x, y, 1, 1)
+

x(1 − x)

Ω(x, y, 0, 1)

+
x(1− x)

Ω(x, 1, z, 1)

]

gµαkνqβ −
x2y

Ω(x, y, z, 1)
(k · q)gµαgνβ +

2x2y

Ω2(x, y, z, 1)

×
[

k2(1− xy) + q2(1− x+ xyz) + (k · q)(1− xy)(1− x+ xyz)
]

gµαkνqβ

}

,

(11)

Ω(x, y, z, ξ) = m2−k2xy(1−xy)−q2x(1−yz)(1−x+xyz)−2k ·qxy[1−x−z(1−xy)]ξ, (12)

and gµν = (1,−1,−1,−1).

The γ-matrix structures in Eq. (1) are antisymmetric in (α, β) and (µ, ν), and we have

thrown away all symmetric in (α, β) and (µ, ν) terms in Eq. (10) and Eq. (11). We have also

combined terms that coincide after antisymmetrization, and deleted even in k and q terms

that disappear anyway after substitution in the odd in these momenta integral in Eq. (1).

As a result we automatically subtracted symmetric in k and q logarithmically divergent

contribution in Sαβµν , and the result in Eq. (9) is finite and gauge invariant.

Next we substitute the light by light scattering tensor in Eq. (1), and introduce two

new Feynman parameters t and u to combine the upper photon propagators, the electron

propagator, and the denominator Ω(x, y, z, ξ) in the integral representations in Eq. (10) and

Eq. (11) of the light by light scattering tensor

(1− u)
[

(1− t)k2 + t(k2 − 2mk0)
]

+ u

[

Ω(x, y, z, ξ)

−xy(1− xy)

]

= (k −Q)2 −∆, (13)
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where Q = qd+ τ , ∆ = g(−q2 + a2), τ = m(1− u)t, and

d = ξu

[

z −
1− x

1− xy

]

, g =
u(1− yz)(1− x+ xyz)

y(1− xy)
− d2, a2 =

1

g

[

τ 2 +
m2u

xy(1− xy)

]

.

(14)

After the Wick rotation and integration over k and q (we return to dimensionless momenta

here) we obtain an expression for the light by light contribution to HFS

∆E = 2∆EL +∆EC ≡ (2∆ǫL +∆ǫC)
α2(Zα)

π
EF , (15)

where

∆ǫL(C) =
∑

i

∆ǫ
(i)
L(C). (16)

The integrals ∆ǫ
(i)
L(C) arise in calculations of the ladder and crossed diagram contributions

and have the general form

∆ǫ
(i)
L(C) =

∫ ∞

0

dq

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dt

∫ 1

0

du

∫ 1

0

dξJ
(i)
L(C). (17)

The integrands J
(i)
L and J

(i)
C are collected in Tables I and II, respectively. Notice that not

all Feynman parameters arise in all integrands in Tables I and II. Some parameters just do

not arise in particular integrals, or take a fixed value, for example, x = 1 in the ladder light

by light scattering diagram diagram, see Eq. (10). As a result the expressions for ∆ in the

Tables are simpler than the general expression below Eq. (13).

The third columns in Tables I and II contain separate integrals ∆ǫ
(i)
L and ∆ǫ

(i)
C , and

respective sums in the last lines. The sum of the ladder and crossed diagram contributions

in Eq. (15) nicely reproduces the old result [7, 8]

∆E = −0.472 514 (1)
α2(Zα)

π
EF , (18)

for light by light scattering contribution to HFS.

Let us calculate contributions to HFS generated by the diagrams with polarization inser-

tions in Figs. 1 and 2. We use the well known integral representation for the polarization

operator (see, e.g., [2])
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TABLE I. First Set of Ladder Light by Light Integralsa

i J
(i)
L ∆ǫ

(i)
L ∆ǫ

vp(i)
L

1 − 8
π2 (1− t)(1− u)2

(

1
2∆ + q2d2

∆2

)

|z=1
-0.6255. . . -0.914. . .

2 8
π2 yz(1− t)(1− u)2

(

1
2∆ + q2d2

∆2

)

0.1498. . . 0.215. . .

3 4
π2

2−y+y2z
1−y

(1− t)(1 − u)2
(

1
∆ − τ2

∆2

)

|ξ=1
3.2252. . . 6.403. . .

4 4
π2

(1−u)d
∆ |ξ=1

0.0697. . . 0.085. . .

5 4
π2 q

2 yz
1−y

(1−t)(1−u)2d
∆2 |ξ=1

0.1628. . . 0.364. . .

6 4
π2

2−y+yz
1−y

(1− t)(1− u)2
(

1
2∆ + q2d2

∆2

)

|ξ=1
2.0905. . . 3.927. . .

7 − 12
π2

y(1−z)
1−y

(1− t)(1− u)2
(

3
2∆ + q2d2−τ2

∆2

)

|ξ=1
-3.8178. . . -8.070. . .

8 − 8
π2 (1− z)u(1− u)

(

3
2∆ + q2d2−τ2

∆2

)

|ξ=1
-0.3303. . . -0.669. . .

9 −8q2

π2

y2z2(1−z)
(1−y)2

(1− t)u(1− u)2
(

3
2∆2 + 2(q2d2−τ2)

∆3

)

|ξ=1
-0.4842. . . -1.078. . .

10 −8q2

π2

yz(1−z)
1−y

u(1−u)d
∆2 |ξ=1

-0.0193. . . -0.036. . .

11 −8q2

π2

yz(1−z)
1−y

(1− t)u(1− u)2d
(

3
2∆2 + 2q2d2

∆3

)

|ξ=1
-0.0105. . . -0.019. . .

12 −8q2

π2

yz(1−z)
1−y

(1− t)u(1− u)2d
(

1
∆2 − 2τ2

∆3

)

|ξ=1
-0.0058. . . -0.010. . .

∑

i 0.4045. . . 0.195. . .

a In this table

d = ξuz, τ = (1− u)t, g =
uz(1− yz)

1− y
− d2, a2 =

1

g

[

τ2 +
u

y(1− y)

]

, ∆ = g(q2 + a2).

Π(q2) =
α

π

∫ 1

0

dvv2
(

1−
v2

3

)

q2

q2(1− v2) + 4
, (19)

where the dimensionless momentum q is Euclidean.

Momentum q in the integrands in Tables I and II is also Euclidean and to account for

the polarization operator insertions in both lower photon lines in Fig. 1 it is sufficient to

insert the factor 2Π(q2) in the integrands in Tables I and II. Similarly to Eq. (15) respective

contributions to HFS can be written as

∆Ed = 2∆Evp
L +∆Evp

C ≡ (2∆ǫvpL +∆ǫvpC )
α3(Zα)

π2
EF , (20)
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TABLE II. First Set of Crossed Light by Light Integralsa

i J
(i)
C ∆ǫ

(i)
C ∆ǫ

vp(i)
C

1 − 2
π2

1+x
y(1−xy)(1− t)(1− u)2

(

1
∆ − τ2

∆2

)

|z=1
-1.6733. . . -3.294. . .

2 − 2
π2

1−x
y(1−xy)(1− t)(1− u)2

(

1
∆ − τ2

∆2

)

|z=0
-0.2729. . . -0.405. . .

3 − 2
π2 (1− t)(1− u)2

(

1
∆ − τ2

∆2

)

|y=1
-0.3665. . . -0.818. . .

4 − 2
π2

x
1−xy

(1− t)(1− u)2
(

1
∆ + 2q2d2

∆2

)

-0.2997. . . -0.431. . .

5 − 4
π2

u(1−u)
y(1−xy)

(

− 1
∆ + τ2

∆2

)

0.3460. . . 0.387. . .

6 4
π2

1−x+xyz
y(1−xy)2 (1− t)u(1− u)2

(

q2

∆2 − 2q2τ2

∆3

)

0.9869. . . 2.943. . .

7 4
π2

1−x+xyz
y(1−xy) (1− t)u(1− u)2d

(

q2

∆2 − 2q2τ2

∆3

)

-0.0020. . . -0.004. . .

∑

i -1.2816. . . -1.623. . .

a In this table

d = u

[

z −
1− x

1− xy

]

, τ = (1− u)t, g =
u(1− yz)(1− x+ xyz)

y(1− y)
− d2,

a2 =
1

g

[

τ2 +
u

xy(1 − xy)

]

, ∆ = g(q2 + a2).

where

∆ǫvp
L(C) =

∑

i

∆ǫ
vp(i)
L(C). (21)

The fourth columns in Tables I and II contain the integrals ∆ǫ
vp(i)
L and ∆ǫ

vp(i)
C , and their

sums in the last row. Collecting these contributions we obtain the total contribution to HFS

generated by the diagrams in Fig. 1

∆Ed = −1.2326(5)
α3(Zα)

π2
EF . (22)

Calculation of the contributions to HFS generated by the diagrams in Fig. 2 follows the

same general route as for the diagrams with polarization insertions in the lower photons. We

again parameterize contribution to HFS generated the light by light scattering diagrams in

Fig. 3 exactly like in Eq. (15). However, now it is convenient first to integrate analytically

over momentum q in the integrals in Eq. (17). As a result the separate contributions to HFS
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acquire the form

∆ǫ
(i)
L(C) =

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dt

∫ 1

0

du

∫ 1

0

dξK
(i)
L(C). (23)

The integrands K
(i)
L and K

(i)
C are collected in Tables III and IV.

TABLE III. Second Set of Ladder Light by Light Integralsa

i K
(i)
L ∆ǫ

(i)
L ∆ǫ

vp(i)
L

1 − 2
π
(1− t)(1 − u)2

(

1
ag

+ d2

ag2

)

|z=1
-0.6255. . . -0.4631. . .

2 2
π
yz(1 − t)(1 − u)2

(

1
ag

+ d2

ag2

)

0.1498. . . 0.1044. . .

3 1
π
2−y+y2z

1−y
(1− t)(1− u)2

(

2
ag

− τ2

a3g2

)

|ξ=1
3.2252. . . 2.9251. . .

4 2
π
(1−u)d

ag |ξ=1
0.0697. . . 0.1083. . .

5 1
π

yz
1−y

(1−t)(1−u)2d
ag2 |ξ=1

0.1628. . . 0.1273. . .

6 1
π
2−y+yz
1−y

(1− t)(1 − u)2
(

1
ag

+ d2

ag2

)

|ξ=1
2.0905. . . 1.6319. . .

7 − 3
π
y(1−z)
1−y

(1− t)(1− u)2
(

3
ag

+ d2

ag2
− τ2

a3g2

)

|ξ=1
-3.8178. . . -3.3474. . .

8 − 2
π
(1− z)u(1 − u)

(

3
ag

+ d2

ag2
− τ2

a3g2

)

|ξ=1
-0.3303. . . -0.5174. . .

9 − 1
π
y2z2(1−z)
(1−y)2

(1− t)u(1− u)2
(

3
ag2

+ 3d2

ag3
− τ2

a3g3

)

|ξ=1
-0.4842. . . -0.4946. . .

10 − 2
π

yz(1−z)
1−y

u(1−u)d
ag2 |ξ=1

-0.0193. . . -0.0307. . .

11 − 3
π
yz(1−z)
1−y

(1− t)u(1− u)2d
(

1
ag2

+ d2

ag3

)

|ξ=1
-0.0105. . . -0.0168. . .

12 − 1
π
yz(1−z)
1−y

(1− t)u(1− u)2d
(

2
ag2

− τ2

a3g3

)

|ξ=1
-0.0058. . . -0.0092. . .

∑

i 0.4045. . . 0.0177. . .

a In this table

d = ξuz, τ = (1− u)t, g =
uz(1− yz)

1− y
− d2, a2 =

1

g

[

τ2 +
u

y(1− y)

]

.

Insertion of the polarization operator in Eq. (19) (with q2 → −k2) in the upper photon

lines of the diagrams in Fig. 2 is described by insertion inside the integrands in Tables III

and IV of the factor

2
(α

π

)

∫ 1

0

dw

∫ 1

0

dv
v2

1− v2

(

1−
v2

3

)

, (24)
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TABLE IV. Second Set of Crossed Light by Light Integralsa

i K
(i)
C ∆ǫ

(i)
C ∆ǫ

vp(i)
C

1 − 1
2π

1+x
y(1−xy)(1− t)(1− u)2

(

2
ag

− τ2

a3g2

)

|z=1
-1.6733. . . -1.5131. . .

2 − 1
2π

1−x
y(1−xy)(1− t)(1− u)2

(

2
ag

− τ2

a3g2

)

|z=0
-0.2729. . . -0.2646. . .

3 − 1
2π (1− t)(1− u)2

(

2
ag

− τ2

a3g2

)

|y=1
-0.3665. . . -0.3084. . .

4 − 1
π

x
1−xy

(1− t)(1 − u)2
(

1
ag

+ d2

ag2

)

-0.2997. . . -0.2088. . .

5 1
π

u(1−u)
y(1−xy)

(

2
ag

− τ2

a3g2

)

0.3460. . . 0.5995. . .

6 1
2π

1−x+xyz
y(1−xy)2 (1− t)u(1− u)2

(

2
ag2

− τ2

a3g3

)

0.9869. . . 0.8396. . .

7 1
2π

1−x+xyz
y(1−xy) (1− t)u(1− u)2d

(

2
ag2

− τ2

a3g3

)

-0.0020. . . -0.0038. . .

∑

i -1.2816. . . -0.8597. . .

a In this table

d = u

[

z −
1− x

1− xy

]

, τ = (1− u)t, g =
u(1− yz)(1− x+ xyz)

y(1− y)
− d2, a2 =

1

g

[

τ2 +
u

xy(1− xy)

]

.

introduction of an additional Feynman parameter w and the substitution

a2 → a2(w) = a2 +
4w(1− t)(1− u)

g(1− v2)
. (25)

The extra Feynman parameter w does not arise (it is effectively equal one) in the vacuum

polarization integrals in the 4th, 8th, and 10th rows in Table III, and in the 5th row in Table

IV. For these integrals the substitution reduces to a2 → a2(1).

Similarly to Eq. (20) we represent the contributions to HFS generated by the diagrams

in Fig. 2 in the form

∆Eu = 2∆Evp
L +∆Evp

C ≡ (2∆ǫvpL +∆ǫvpC )
α3(Zα)

π2
EF , (26)

where

∆ǫvp
L(C) =

∑

i

∆ǫ
vp(i)
L(C). (27)

The fourth columns in Tables III and IV contain the integrals ∆ǫ
vp(i)
L and ∆ǫ

vp(i)
C , and their
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sums in the last line. Collecting these contributions we obtain the total contribution to HFS

generated by the diagrams in Fig. 2

∆Eu = −0.8242(1)
α3(Zα)

π2
EF . (28)

III. CONCLUSIONS

Collecting results in Eq. (22) and Eq. (28) we obtain the total contribution to HFS

generated by the polarization insertions in Figs. 1 and 2

∆Evp = −2.056(1)
α3(Zα)

π2
EF , (29)

or numerically

∆Evp = −2.63 Hz. (30)

Three-loop contribution to HFS containing closed electron loops and factorized one-loop

radiative insertions in the electron line were calculated earlier [9–11]. Combining those

corrections with the result in Eq. (29) we obtain the sum of all gauge invariant three-loop

radiative corrections to HFS calculated thus far

∆Et = −3.338(1)
α3(Zα)

π2
EF , (31)

or numerically

∆Et = −4.28 Hz. (32)

Work on calculation of the remaining three-loop contributions to HFS is now is progress.
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