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In this paper, we derive and study two versions of the shdgepaquation (SPE) in (2 1)-dimensions.
Using Maxwell's equations as a starting point, and suit&emers-Kronig formulas for the permittivity and
permeability of the medium, which are relevant, e.g., to-heinded metamaterials and dielectric slab waveg-
uides, we employ a multiple scales technique to obtain tlesaat models. General properties of the resulting
(2 + 1)-dimensional SPEs, including fundamental conservdtars, as well as the Lagrangian and Hamilto-
nian structure and numerical simulations for one- and timeedsional initial data, are presented. Ultrashort
1D breathers appear to be fairly robust, while rather gérex@adimensional localized initial conditions are
transformed into quasi-one-dimensional dispersing waves.

PACS numbers: 42.65.Tg, 42.65.Re, 05.45.Yv

I. INTRODUCTION the SPE has not been considered or analyzed so far in 2D.

In this work, we derive and study twoftgrent versions of
the SPE in (2+ 1)-dimensions, namely the SPE-I and SPE-
II. In particular, starting from Maxwell’'s equations, ang-a
suming general Kramers-Kronig or Sellmeier formulas fer th
permittivity and permeability (see, e.g., Ref. [22]), wee s
multi-scale expansion method to obtain the SPE-I and SPE-II
models. Then, we study the general properties of each model,
present the Hamiltonian, Lagrangian and momenta, and also
obtain zero-mass constraints that are used in the simnsatio
(and, specifically, in the preparation of the initial datspxt,
we explore the dynamics of ultrashort pulses in 2D, emplpyin
as initial conditions, either the breather solution of tineler-

Ultrashort pulses, having a duration of a few optical cy-
cles, have been the subject of intense study over the last;yea
this is due to the fact that they find many applications in
various contexts, ranging from light-matter interactiolmar-
monic generation, attosecond physics, nonlinear optitd, a
others [1]. A theme of particular interest related to ulas
pulses, is their evolution in nonlinear media characterizg
an intensity-dependent refractive index. In that respaog-
els describing ultrashort pulses in nonlinear media, asasel
their systematic study, have attracted much attentiongsge

Refs. [2-9]. Prominent examples are the modified Kortewegl- : ; ; . ;
. . ) ._°lying 1D SPE or a waveform localized in 2D; our purpose is
de Vries (mKdV) equation [3], the sine-Gordon (sG) equationy, investigate if ultrashort pulses are prone to transvieta-

E’ 6],hcombinedfmrl]<dv-sG (la(quatlions [7h_9] am(()jr_lg Oth.ersa'gilities (induced by the presence offdlaction in our models)
ote that most of these works refer to the one-dimensiona} 4 5i5q identify purely 2D structures that can be supported

.(1D) setting; in thetwo-dimens_ional (2D) one, pertinemst by the SPE-I and SPE-II. We find that the 1D breathers are
les are related to few-cycle solitons described by the géner stable in the 2D setting, while 2D initial data are gradually

ized Ka}domtsev—Petviashvi.IIi (KP) equation [10] and cpda transformed into quasi-1D waveforms, reminiscent of the 1D
dynamics of ultrashort spatiotemporal pulses [11]. solutions

Another model describing ultrashort pulse dynamics is the Our presentation is structured as follows. In Sec. I, we
so-calledshort-pulse equation (SPE), which was first derived derive the SPE-I and SPE-Il models. Sections Ill and IV are
in the context of nonlinear fiber optics [12] and later in the devoted to the general properties and numerical study of SPE
context of nonlinear metamaterials [13]. From the physical and SPE-II, respectively. Finally, in Sec. V, we summarize
point of view, the interest in the SPE model arises from theand discuss our conclusions.
fact that its few-cycle pulse solutions have been shown to
compare more favorably to the ones of the original Maxwell's
equations, as compared to pertinent solutions of the mare tr
ditional nonlinear Schrodinger (NLS) model [12, 14]. Fur- . DERIVATION OF 2D SHORT-PULSE EQUATIONS
thermore, this model is also interesting from a mathemiatica
point of view, due to the existence of an infinite hierarchy of We consider the propagation GfE, (transverse-electric
conserved quantities [15], its connection to the sG modg| an field propagating along the-axis) electromagnetic (EM)
thus, to its complete integrability [16]. The SPE admits-var waves in a planar metamaterial or optical waveguide stractu
ious types of solutions, including singular soliton saug —  In particular, we consider the case where the electric argd ma
the so called loop solitons [17] — as well as other non-siagul netic field components take the for(x, z t) = YEy(X, z t)
solutions, such as peakons, breather- and periodic-type-wa andH(x,zt) = XHx(x, zt) + ZH,(x, z t), whereX, ¥, Z are
forms [13, 17-19]. Note that, recently, wave-breaking phethe unit vectors along the, y, z directions, respectively, and
nomena [20], as well as the global well-posedness questiowe have assumed no variations (i.e., a homogeneous medium)
[21] of the SPE were also investigated. The above volume ofvith respect to the variablg Under these assumptions, we
work refers to the 1D setting; to the best of our knowledgemay use Maxwell’'s equations — namely, Ampére’s and Fara-



day’s laws — take, respectively, the following form: Specifically, in the context of nonlinear left-handed medam
9H. oM. oD terials,a1 = 1,02 = w3, f1 = 1-F andB, = Fwf, Wherewy,
Tz X (1)  F andwresdenote, respectively, the plasma frequency, the fill-

ox oz ot ing factor, and the magnetic permeability resonance frequie
OBy _ 9By o8y _ 98, @ [13]. On the other hand, in the context of nonlinear optical
0z o’ X ot slab waveguidesy; = €2, a, = €, g1 = 1 andg, = 0,
Here Dy is they-component of the displacement vecr= wheree” ande® are relative dielectric constants (wiff’

9Dy. Furthermore, we assume that the magnetic inductioleing measured in units of squared angular frequency) ob-
vectorB is connected with the magnetic field intensitypy ~ tained by matching the full form of the permittivity with the
means of the constitutive relatidh = ji(w)H, wherei{w) is  firstof Egs. (6) over a specific wavelength range in the iefdar
the linear magnetic permeability (hereafter, we disend f ~ regime [12].

to denote any functiorii in the time- and frequency-domain, ~ Next, we express Eq. (5) in the frequency domain and sub-
respectively). Additionally, we assume that the considere Stitute Egs. (6), keeping terms up to ord¥w ) (i.e., assum-
structure exhibits a weak cubic (Kerr-type) nonlinearity i ingthatai8z/w* < 1); then, expressing the resulting equation
its dielectric response. In other wordBy = e * Ey, + Py, back in time domain, and measuring time, space, and field
wheree is the permittivity,« denotes the convolution integral intensity E* in units of I/ yaz, ¢/ VaiazB1 andlk|™* respec-

f(t) + g(t) = f:; f(r)g(t — 7)dr of any functionsf (t) andg(t), tively, we reduce Eq. (5) in the following dimensionlessior

while the nonlinear polarizatioRy, is of the form, V2E - 62E - o — s.(BE® + y9?E%) = 0. @)
+00
P = eof aNL(t— T, t =72, t — 73) In the above equatiors, = sign(), while the other constants
N are given by:
X Ey(Tl) Ey(Tz) Ey(Tg)dTldngTg. (3)
. . . : 1 B P2 1
Here, g is the dielectric constant of vacuum agg, is the a=—+—, fB= y=—, (8)

nonlinear electric susceptibility of the medium. In theecas @ af 1@2P1 “
of small-amplitude ultra-short pulse propagation, the non- Note that in the context of nonlinear metamateriats 1+ =
linear response can safely be considered tontantaneous, 1 + FwZ/[(1 - F)w3] andy = 1, while in the context of

namely, nonlinear optical slab waveguides= y = 1/er(o) andg = 0.

ANt =Tt = To,t = T3) = kS(t — T1)S(t — T2)5(t — 73), (4) We now consider propagation of ultrashort pulses, of width
&, where 0< ¢ < 1 is a formal small parameter, which will

wherex is the Kerr cofficient given by« = +E;?, with Ecbe-  also set the field amplitude (see below). Then, we employ the
ing a characteristic electric field value; generally, badisess  method of multiple scales to derive from Eq. (7) twdfeient
of focusing ¢ > 0) and defocusing«(< 0) dielectrics are pos-  versions of short pulse equations iny{2)-dimensions. In that
sible. Notice that Egs. (3) and (4) imply tia. = eoxEj and,  regard, we introduce the following asymptotic expansian fo
thus,Dy = € * Ey + eoxEJ. Substituting the considered form the unknown fielcE:
of the constitutive relations into Eqgs. (1)-(2), we deribe t )
following equation for they-component of the electric field E = eEa(T, Xn, Zn) + &°Eo(T, X0, Zn) + ..., )

:&Z?E'WE@) which, for convenience, will be denoted here- where the function&, depend on the spatial variabl¥sand
yE: Z,(n=1,2,...), as well as on the fast time variabile Defin-

V2E — 9%(e # p * E) — eokd?(u + E®) = 0, (5) ingZ,as:

whereV? = 42 + 92 is the Laplacian in thex 2)-plane. Z,=¢£"z (10)
Equation (5) is the (2 1)-dimensional generalization of the ) o
1D Klein-Gordon type model derived in the context of nonlin- We consider two dferent definitions foX, andT, namely:

ear fiber optics [12, 23] (in this cage = const) and nonlinear t—z

metamaterials [13, 24] (in this cagk,i # 0). Below, we will Xo = &"x,  T= — (11)
analyze the latter (more general) case, and assume that both N
permittivity and permeability are frequency dependent. In X, = &', T2t (x+29)/o 2, (12)
particular, considering general Kramers-Kronig or Seibme €

formulas (see, e.g., Ref. [22J), we assume that the _fre(wenthereo_ = +1. Then, substituting Eqgs. (9), (10) and (11)
dependence of = é(w) andyi = ji(w) can be approximated i, Eq. (7), we derive at ordef() the following (2+ 1)-

by the relations dimensional SPE for the unknown fiefd:
. @z - B2 2 2 2
e(w)zeo(al——z), u(w)zuo(ﬁl— 2), (6) OE1 B 07 3y
w w ZazlaT aXJZ. + aEq + SQ/aTz(El) =0. (13)

wherea;, a, f1 andB, are some constants. The above ap-
proximations can be applied to the contexts of nonlinear lef Equation (13) will be called hereafter SPE-I. Similarlybsu
handed metamaterials and nonlinear optical slab waveguidestituting Egs. (9), (10) and (12) in Eq. (7), we derive [agatin



orderO(g)] another (2+ 1)-dimensional version of the SPE, The above equation implies that
namely:

) i Eo_oE
62E1 aZEl 52 Ez(wt, X, Z) = —I—Z(M + S(,_)E3) , forw# 0O, (22)
o + +aE1+8y=—=(E)) =0, (14)

0Z10T  0X10T oT?
which will be called hereafter SPE-II. We note that variasfts Exx—eE=0, for w=0. (23)
these models have been considered in the past in the context . ) ) R
of ultrashort propagation in nonlinear dielectrics [2, dhd In our numerical simulations below, we will séi(w =
more recently in relevant studies [9], as well as in the cante 0:%.2) = 0, so that Eq. (23) is satisfied. Thus, in this case, the
of collapse in two-level media [11]. Fourier transform of the fiel& leads to the following “zero-

mass constraint”:

lll. THE SPE-I: GENERAL PROPERTIES AND f E(t,x,2dt=0 for anyx, z (24)
NUMERICAL STUDY -

00

. ) ) ___which also holds for the traditional SPE in{11)-dimensions
In this section, we focus on the SPE-I which, for simplicity (see, e.g., the relevant analysis of Ref. [27]).

of notation, is expressed in the form:

3
2Ex - Exx+ B+ S(E%) = 0, (15) B. 1D breather-like structures
wheres = s,y and subscripts denote partial derivatives, vith . . .
being the evolution variable. Below, we will consider geafer _ L€t us now seek one-dimensional (1D) solutions of
properties of this equation and discuss its solutions. Eq. (15), by assuming that the unknown fiéicdepends on
the traveling-wave coordinatésandn, defined as:

2
A. Properties and canonical structure &=z n=t+cx+ C—z, (25)

2

First, we study the Hamiltonian structure of Eq. (15). Forwherec is an arbitrary real constant setting the velocities of
this purpose, we integrate Eq. (15) with respect to tirmed,  the traveling wave in thex( t) and , 2) planes. Using the
icn'thdUCing the auxiliary fieldE = ¢;, we express Eq. (15) as above variables, Eq. (15) is reduced to the form:
ollows:

2E;, + aE + S(E3),, = 0, (26)
2012 = dxx+ @ + ) = O. (16)
which is actually the (% 1)-dimensional SPE [12]. As shown
Then, it can be verified that Eg. (16) can be obtained from thén the simulations of Ref. [18], the most robust among the

variational principle, with Lagrangian density: various solutions of the 1D SPE is the breather-like struc-
1 ture (this solution satisfies the zero-mass constraint)t- Na
L= _%¢2 + ZS¢;‘ + iy — §¢>2<' (17)  urally, this purely 1D structure satisfies the full 2D SPE-I,

Eq. (15) and, thus, an interesting question concerns the sta
From this Lagrangian density, we can derive the HamiltanianPility of this solution in the 2D space. A similar question-ap
pears in many physically relevant models and, in many cases,

Sl G eV the answer is that such “planar” solutions are prone to trans
H f f — L] dtdx

5752‘?52 verse instabilities in higher-dimensional settings; aarab-
roo oo teristic examples, we mention the line soliton solutionthef
f f (3¢2 _ §¢f + :_L¢)2() dtdx, (18)  Kadomtsev-Petviashvilli-I (KP-I) equation which decayan
o Jow \20 4T 2 lumps [28, 29], or the dark soliton stripes of the defocusing
NLS equation which decay into vortices [30, 31] in{2)-

as well as the momenta:

dimensions.
too teo g p oot To study the stability of the 1D breather-like solution of
M = f aszﬁbtdth = f f grdtdx,  (19)  Eq. (26) in the framework of the the full 2D SPE-I, we have
AR or PO used the following procedure. We employed the breather so-
My = f %mdtdx = f drpydtdx. (20) lution of the 1D SPE Eq. (26) and also added, as a perturba-
oo Joco Oz _

e J-oo tion, a small noisy signal, of amplitude of 1% of the breather
amplitude. Then, using the resulting structure (cf. topgban
of Fig. 1) as an initial condition, we numerically integrete
Eq. (15) by means of a Galerkin method (and assuming pe-
. 14 . S, L= riodic boundary conditions in our numerical scheme). The
(iw)Ez = 5B — 5 E ~ S(iw)E>. (21)  results (corresponding to parameter valoes 0, s = —1/3,

Let us next consider the Fourier transform of Eq. (15) with
respect to time, which leads to the equation:
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) ] Having discussed the properties of the 1D breather in the
FIG. 1. (Color online) Top (four) panels: Contour plots sy o getting, we now turn our attention to initial data asso-
ﬁﬁ;’#ezv‘ght/g%?’ggm: Oftg Eert“{gedsm brehatther In me)'g:lg’ ciated with Eq. (26), which are localized in both transverse
T 9 q'_( ). Snapshots Co”esf"i directions,x andt. In that regard, it is convenient to con-
(top left), z = 50 (top right)z = 100 (bottom left), andz = 150 . . o
(bottom right). Bottom panel: The evolution of the breatfeerx = S'Fjef at f'rSt the d_ecomp05|t|di'=_1(x, b= f(t)g(x), and sub-
0. Parameter values ace= 0, s = —1/3, anda = —2. All depicted  Stitute this ansatz in the zero-mass constraint, Eq. (24}s T
quantities are dimensionless. way, f(gr nontrivial solutions, we derive the necessary ¢ond
tion [~ f(t)dt = 0.
Taking into account the above constraint, we now may use
f(t) = (1 - t?) exp(-t?/2) which has the above property, and
also choosg(x) to be of the same functional form, namely:
g(x) = (1 — x2) exp(x?/2). The aim of the latter choice is
to produce a two-dimensional localized waveform. Employ-
anda = -2) are shown in the panels of Fig. 1, in terms of ing these choices, we can now numerically integrate Eq, (15)
different contour plots depicting the profile of the 1D breatherusing the initial condition:
in the (x,t) plane for various values of the propagation dis-
tancez (and also the evolution at= 0 as a function ofZ t)). E(z=0,x1t) = (1-x)(1-t?)expl-(¢ +t9)/2].  (27)
It is clear that the breather is robust, at least ug te 200
(where the simulation ended). We should also mention thiat foThe results of our simulations are presented in Fig. 3, where
these simulations, we have also calculated the evolutitmeof we show the evolution of this initial data. It is clearly ob-
Hamiltonian and momenta [cf. Egs. (18)-(20)]. The resultsserved that, already at small values of the propagation dis-
depicted in Fig. 2, justify the conservation of these qua®i tance g ~ 2), the initially localized structure bends and splits
with a satisfactory (relative) accuracy, of order3or less. at (x,t) = (0, 0), thus forming two “wing-like” structures. The
size (length) of these structures is small at the early stafe
the evolution but, afterwards, their spatial extent is éased,
We finally note that similar results (not shown here) wereas the initial data progressively disperses. This way,ghelt-
also obtained for breathers with i.e., fog: 0 in Eqg. (25); in  ing structures yield, at longer propagation distances lie¢e
such a case, the onlyftirence is that the breather is “tilted”, tom panels of Fig. 3), a quasi-one-dimensional patterngsom
i.e., oblique in the X, t) plane with respect to its direction in what reminiscent of the breather states examined prewiousl
the case = 0 and follows a similar evolution (i.e., it is stable Here we should mention that our simulations end up at rela-
up to end of the simulation time). tively small distancez = 38) in order to avoid interference of



in the following form:

0.8 ~100 0.2
04 . 20 (¢ + ¢2) + @ + S(#): = 0. (29)
- O -
0.2
0 02 The above equation can be obtained from the variational prin
:8}21 100 ciple, with Lagrangian density:
-100 2 100 -100 2 100 @, S .
o L= —§¢ + Z¢t + 0 (P2 + Prx)- (30)
-100 0.1 -100 0.0 . . . .
05 The corresponding Hamiltonian can then be found as:
- 0 - 0 - 0 N 0
+00 +00 aL
100 01 100 e H = Ioo Ioo ((9i¢z¢Z - L) atlx
-100 0 100 -100 0 100 ot e, s,
: : - [ [ (54 36t -coeao @)
100 0.05 0.0° o
I while the momenta read:
- 0 7 N\ 0 - 0 7 N\ 0 M = eroo eroo £¢ s Ueroo eroo ¢2dtdx’
100 -0.0% 100 ‘ —o0 —0o0 a¢2 ' —o0 —0 !
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-100 0 100 -100 0 100 (32)
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MX = f %(ﬁxdth: 0’[ f ¢t¢xdtdx.
—00 —00 yA —00 —00
FIG. 3: (Color online) Contour plots showing profiles of theldi (33)
E, in the (x,t) plane, evolved as per SPE-I, Eq. (15), with localized
initial data [cf. Eq. (27)]. The snapshots, from left to righnd top Next, we consider the Fourier transform of Eq. (28) with

to bottom correspond to= 0, 3, 10, 20, 30, 38. Parameter values are respect td, which leads to the equation:
s=-1/3 anda = -2. All depicted quantities are dimensionless.

20(iw)(E; + Ey) + B + S(E3)(iw)? = 0. (34)

these expanding quasi-1D structures with the boundaes (r solving the above equation with respecgove find:
call that we use periodic boundary conditions in our nunaric
@ e Siw)

scheme).

We also note in passing that we have tried other localize B 20(iw) 20
initial conditions, which led to qualitatively similar refs: in
all cases, the respective evolutions of the initial localidata R
gradually transformed into quasi-one-dimensional disper E(w=0,x2 =0, forw=# 0. (36)
structures of the above type.

(E3), forw # 0, (35)

d éz(UJ, X,2) = —Ex

The latter equation leads again to the zero-mass condfréint
Eq. (24)] that we found in the case of the SPE-I as well. This
IV. THE SPE-Il: GENERAL PROPERTIES AND condition will also be satisfied in our simulations below.
NUMERICAL STUDY

Let us now consider the SPE-II which we express, for sim- B. 1D breathers and initial data localized in 2D

plicity of notation, in the following form:
3 We consider traveling wave solutions of Eq. (28), in the
20(Ex + Ex) + @E + S(E)u = O, (28)  form E(¢, ), where the coordinatesandy are defined as:

wheres = s, as in the SPE-I. Below we will follow
the presentation of the previous section and discuss gen-
eral properties of this model, such as the correspondingerec is an arbitrary real constant. This way, Eq. (28) is
LagrangiayHamiltonian structure and relevant conservationysnsformed to the equation:

laws as well as some of its prototypical solutions.

&=z n=t+cx-cz (37)

20E;, + aE + S(E3),, = 0, (38)

A. Properties and canonical structure which is actually the 1D SPE model [12]. Since the latter
admits breather solutions, we may follow the procedure de-
As in the case of the SPE-I, we integrate Eq. (28) with re-scribed in the previous section and study numerically tle ev
spect ta and, introducing the fiel& = ¢, we express SPE-II lution of such a 1D solution in the 2D setting of Eq. (28).
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localized) than in the direction (where it is elongated). In
FIG. 4: (Color online) Top (four) panels: Contour plots sfiogpro-  the |§ttef direction, 'Ehe structure a|30_p033§‘559_3 amatibeg
files of the 1D breather solution of Eq. (38) in thet) plane, when  spatial structure which merits further investigation.
evolved as per Eq. (28). Snapshots corresponz 00 (top left),
z = 10 (top right)z = 30 (bottom left), andz = 50 (bottom right).
Bottom panel: The evolution of the breather fo= 0. Para_meter V. DISCUSSION AND CONCLUSIONS
values are:c = 0, s = -1/3, @ = -2, ando = 1. All depicted

quantities are dimensionless. ) . )
In conclusion, we have derived from Maxwell's equations

two (2 + 1)-dimensional short pulse equations, referred to as
) o ) SPE-I and SPE-II. These equations may find applications in
In this case also, the numerical integration of Eq. (28) hagarious physical contexts where the study of ultrashort-ele
shown that this 1D solution is stable in the 2D setting (as Wagromagnetic pulses is important; such contexts include non
also in the framework of the SPE-I). An example (pertainingjinear metamaterials, nonlinear optical waveguide stmest,
to parameter values = 0, s = -1/3,a = -2, ando = 1) nponlinear dielectric media, and others. Since both SPE-I
is shown in Fig. 4. Additionally, the numerical calculatioh  gnd SPE-II actually generalize the {11)-dimensional SPE
the evolut_ion of_ the_HamiI_tonian and momenta [cf. Egs. (31)-[12]’ they can be used to the study of transvers#ratition-
(33)] depicted in Fig. 5, illustrate the conservation ofsie  jndyced) dynamics of ultra-short pulses in such settingg- S
quantities with a relative error of order 10or less. We also  aple assumptions on the nature of the electric and magnetic
note that similar results (not shown here) were also obtkinefie|d and the form of the permittivity and permeability under
for oblique moving breathers, i.e., for# 0 in Eq. (37), asin  whijch the equations can be derived were provided.
the case of SPE-I. We have found and presented various general properties of
Finally, as in the case of SPE-I, we study the evolution ofSPE-I and SPE-II. Particularly, we have identified the La-
localized data in 2D (i.e., in botk andt) in the framework grangian and Hamiltonian structure, and have used invari-
of the SPE-Il. A typical example of the result obtained by ances to infer (from Noether’s theory) the corresponding mo
the numerical integration of Eq. (15) with such localized in menta, as well as the associated zero-mass constraints; the
tial data is shown in Fig. 6 (parameter values are —1/3, latter, have to be satisfied for the solutions of these egusti
a = -2, ando = 1). Itis observed that after a small prop- and, thus, are also associated with the choice of the initial
agation distancez(~ 5) the initially localized waveform be- data used for the numerical integration of SPE-I and SPE-II.
gins to broaden along theaxis, but still remaining localized We have conducted a series of numerical experiments for the
along thex-axis. As a result, a quasi-1D structure is gradually2D SPEs using, as initial conditions, either the 1D breather
formed, which travels faster along thedirection (where itis  solution of the underlying 1D SPEs or a localized (in 2D)



-20 1 -40 breathers propagate (even when they are initially perturbe
10 -30 05 by a small noise) practically undistorted. An important-con
05 5 clusion is that these ultrashort localized structures eingadly
-0 < “ 10 0 insensitive in the presence offtaction or, in other words,
10 0 0 : iy they appear to be robust in the presence of (small) transvers
N 1 perturbations for propagation distances of the order ofaa fe
%o 0 20 %o 0 20 hundred dimensionless units. On the other hand, simukation
~60 ~60 05 employing initial data localized in 2D have shown that, dgri
05 ' evolution, the initial data gradually transforms into gubS
-40 -40 structures (which dier between SPE-I and SPE-II). In fact,
= 20 o = 0 we were not able to find any, purely 2D, nonlinear waveform
. H that can be supported by either the SPE-I or the SPE-II.
_(io o 30 08 00 - 005 The above result§ were obtained in the framework of_ the
X X particular models, i.e., SPE-l and SPE-II, that we derived
and considered in this work. It would be interesting to per-
-50 0.4 -50 0.4 . . . .
o : o form similar stud!es (i.e., transverse (_1ynam|cs of 1D ghiat
i H pulses and localized 2D structures) in the framework of othe
- 0 0 - 0 0 versions of the SPE-I and SPE-II, stemming from the incorpo-
0.2 -0.2 ration of higher-orderféects (as in the 1D case, in the context
50 -04 50 -0.4 of the so-called regularized SPE [23, 32]). On the other hand
10 20 30 40 50 20 40 60 still in the context of SPE-I and SPE-II, it would be relevant

to consider other types of solutions, e.g., loop-type smhst
or periodic waveforms composed by breathers or loops (as in

FIG. 6: (Color online) Contour plots showing profiles of theldi  the spirit of the analysis in the 1D case — see Ref. [18]), and

E, in the (x t) plane, evolved as per SPE-II, Eq. (15), with localized Others. It would also be relevant to compare the properfies o
initial data [cf. Eq. (27)]. The snapshots, from top to bottand ~ the models derived herein with those of other models for ul-

left to right, correspond ta = 0, 3,10, 20,30,40. The domain for trashort pulses including, e.g., [2]-[11]. Finally, gealiing
numerical computation i x t plane is [-20r, 201] x [-207,207],  the present models to (8 1)-dimensions, removing the as-
we are zooming in here in the snapshots to show more detail. Alsumption of spatial homogeneity along tpirection would
depicted quantities are dimensionless. also constitute an interesting theme for future studies.
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