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We numerically study the nonlocal solitons in dual-periodic parity-time (PT) symmetric optical
lattices built into a nonlocal self-focusing medium. We state the existence, stability, and propagation
dynamics of such PT gap solitons in detail. Simulated results show that there exist stable gap
solitons. The energy flow density and the stable region of the PT gap solitons in both the propagation
constant and the degree of nonlocality are also examined.
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Self-action of light in periodic photonic crystals with
periodic modulation of the refractive index generates rich
optical phenomena [1]. The photonic crystals can pro-
vide efficient control of the transmission and localization
of light, and they open the ways to tailor the diffraction
and the route of the electromagnetic waves [2]. Quite
a lot of nonlinear optical phenomena in nonlinear pho-
tonic crystals have been reported, including the localized
self-trapped modes in the form of gap solitons [3] which
was also studied in other materials, layered microstruc-
tures, fiber Bragg gratings, Bose-Einstein condenstates,
waveguide arrays, and optically induced lattices. Peri-
odic domain structure has wide applications not only for
second-harmonic generation, sum-frequency generation,
difference-frequency generation, and optical parametric
oscillators but also for new fields such as generation of
squeezed light for optical communication and informa-
tion processing and optical solitons [4]. A novel structure
introduced by by Liu et al., a dual-periodic structure,
in which two optical parametric interactions are coupled
into a single superlattice crystal [5]. Compared with
other structures, this one provides clearer physical sight.
In addition, they designed and fabricated such a dual-
periodic domain-reversal structure in a LiTaO3 crystal,
and the experimental result was presented at the same
time. Nonlocal effects come to play an important role
as the characteristic correlation radius of the medium’s
response function becomes comparable to the transverse
width of the wave packet [6]. Nonlocal nonlinear response
may drastically modify the conditions necessary for the
existence of gap solitons [1].

Recently, the solitons in synthetic optical media with
parity-time (PT) symmetries have caught much atten-
tion [7–13, 15–17, 20–29]. Musslimani and the coopera-
tor firstly discovered that a novel class of nonlinear self-
trapped modes exist in optical PT synthetic lattices [7]
and PT periodic structures exhibit unique characteristics
stemming from the nonorthogonality of the associated
Floquet-Bloch modes [8]. The behavior of a PT optical
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coupled system judiciously involving a complex index po-
tential was observed in the experiment in 2010 [9, 10]. It
was also stated the analytical solutions to a class of non-
linear Schrödinger equations with PT-like potentials [11],
the stable dissipative defect modes in both focusing and
defocusing media where periodic optical lattices were im-
printed in the cubic nonlinear media with strong two-
photon absorption [12], and the defect solitons in parity-
time periodic potentials [13, 14]. We also reported the
gray solitons in PT symmetric potentials [15] and the
gap solitons in PT complex periodic optical lattices with
the real part of superlattices [16]. However, thus far all
studies focus on the local nonlinear media with the PT
symmetry potentials, and the solitons supported by the
nonlocal nonlinear media with the PT symmetry optical
lattices are hardly reported.

In this paper, the gap solitons in the dual-periodic
PT symmetric optical lattices built into a nonlocal self-
focusing medium are studied. We state the existence,
stability, and propagation dynamics of such PT gap soli-
tons in detail. Simulated results show that there exist
stable gap solitons. In addition, we find that the degree
of nonlocality can influence the soliton power, and the
region where the stable PT gap solitons can exist. The
results may make us find a new class of PT-synthetic ma-
terials with unexpected properties. Based on the dual-
periodic PT symmetric optical lattices, we can also find
the applications of the the multi-cycle structure on the
PT spatial optical solitons. In Ref. [14], Hu et al. also
introduced a PT symmetric optical lattices with nonlo-
cal nonlinearity. However, the super-lattice is designed
to study the influences of the introduction of a perturba-
tion in PT symmetric periodic potential on spatial soli-
tons in their paper. Importantly, the physical mecha-
nisms of the formation of the gap solitons are different.
In our paper, the formation of the gap solitons is de-
termined by the interaction of the penetration of wave
energy between the adjacent waveguides and waveguides
nonlinearity [30]. When discrete diffraction effect and
self-focusing effect cancel out each other, the gap soli-
tons can be generated. While the physical mechanism of
defect solitons in the paper of Hu is the interaction of
the attractive and repulsive forces caused by the discrete
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diffraction effects and lattice defects and self-focusing ef-
fect. In addition, the influences of the perturbation of the
PT periodic symmetric potential and the depth of defect
on the existence and stability of the PT spatial optical
solitons were studied in detail. They did not focus on the
influence of degrees of nonlocality on the PT solitons in
Hu’s article. So, the key conclusions between two articles
are different.
In optics, spatial diffraction and temporal dispersion

are known to obey equations that are formally equivalent
to that of Schrödinger in quantum mechanics. Here, we
pay our attention to the optical beam propagation in PT-
symmetric complex potentials. In fact, such PT optical
potentials can be realized through a judicious inclusion of
index guiding and gain/loss regions [7, 8]. If the complex
refractive index distribution n(x) = n0 + nR(x) + ini(x)
where n0 represents the background refractive index,
nR(x) + ini(x) represent the PT symmetric optical lat-
tices and satisfy the conditions nR(x) = nR(−x) and
ni(x) = −ni(−x), and x is the normalized transverse
coordinate [7, 8]. Under these conditions, in a nonlocal
self-focusing medium with PT symmetric optical lattice,
the one-dimensional optical wave propagation can be de-
scribed by the normalized nonlinear Schrödinger (NLS)-
like equation

i
∂q

∂z
+

∂2q

∂x2
+Rq + q

∫ +∞

−∞

g(x− λ)|q(λ)|2dλ = 0, (1)

where q is the complex dimensionless light field ampli-
tude, z is the normalized longitudinal coordinate, and g
is the nonlocal response function. R = V (x) + iW (x) is
the PT symmetric optical lattice, and V (x) and W (x)
are its real and imaginary components, respectively. We
further search for a stationary soliton solution of Eq. (1)
in the form of q(x, z) = u(x)eibz , where u is a complex
function and b is the propagation constant of spatial soli-
tons [18]. Thus, Eq. (1) can be changed into

∂2u

∂x2
+Ru− bu+ u

∫ +∞

−∞

g(x− λ)|u(λ)|2dλ = 0. (2)

Here, the nonlocality of the materials is supposed
to be ruled with an exponential response function
g(x) = 1/(2d1/2) exp(−|x|/d1/2) (as in liquid crystals),
where d is the degree of the nonlocality. We as-
sume a PT symmetric optical lattices in which V (x) =
V0{cos[2π cos(x)] + 1}/2 and W (x) = W0 sin(2x), and
V0 and W0 are the amplitudes of the real and imaginary
parts. Here, V (x) is a non-uniform distribution dual-
periodic optical lattice which matches the conditions of
PT potential. It can influence the band structure so that
PT solitons have different features from the PT solitons
in the uniform lattices. Although the PT symmetric op-
tical lattice has crossed the phase transition point, the
solitons still exist because the amplitude of the refrac-
tive index distribution can be altered by the beam itself
through the optical nonlocal nonlinearity. The parity-
time symmetry will remain broken if it cannot be nonlo-
cal nonlinearly restored [7].
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FIG. 1. (Color online) (a) PT complex periodic optical lat-
tices when V0 = 1, W0 = 0.30. The solid blue and dashed
red curves represent the real part and the imaginary part
of the optical lattices, respectively. (b) The band structures
corresponding to (a). All quantities are plotted in arbitrary
dimensionless units.

The linear version of Eq.(2) is

∂2u

∂x2
+Ru− bu = 0, (3)

where b now represents the propagation constant in the
PT symmetric optical lattices. The Bloch theorem tells
us that the eigenfunctions of Eq.(3) are in the form of
u = Fkexp(ikx), where k is the Bloch wave number,
and Fk is a periodic function of x with the same pe-
riod as the lattices R. Substituting the Bloch solution
into Eq.(3), we can get the eigenvalue equation and then
obtain the band structure using the plane wave expan-
sion method [7, 15]. The PT symmetric optical lattice is
shown in Fig. 1 (a). We find that the purely real bands
are possible in the range 0 ≤ W0 ≤ 0.30, and the region
of the semi-infinite gap is b ≥ 0.62 when W0 = 0.30 in
Fig. 1(b) [7].
Based on the band-gap structure, we get the soliton so-

lutions by solving Eq.(2) numerically using the modified
squared-operator method [19]. We find a family of lo-
calized solutions with real eigenvalues located within the
semi-infinite gap (b ≥ 0.62). The typical cases of these
gap solitons are shown in Fig. 2, where it is depicted in (a)
the field of the stable gap soliton at d = 0.5 and b = 2. To
shed more light on the properties of the stable solitons,
we study the parameter S = (i/2)(uu∗

x − u∗ux) associ-
ated with the transverse power flow density or Poynting
vector across the beam [7]. The transverse power flow
density S is shown in Fig. 2(c), where one can find that
S is not positive everywhere and across the lattice [7].
To check the stability of the solitons with the method

of linear stability analysis, we assume q(x, z) = u(x)eibz+
ǫ[F (x)eiδz + G∗(x)eiδ

∗z ]eibz, where ǫ ≪ 1, F and G are
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FIG. 2. (Color online) (a) The Field and (b) intensity of the
soliton with b = 2 at d = 0.5. The solid red curves and the
dashed black curves represent the real part and the imagi-
nary part, respectively. (c) Transverse power flow of the soli-
tons shown in (a). The potential parameters are V0 = 1 and
W0 = 0.3. All quantities are plotted in arbitrary dimension-
less units.
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FIG. 3. (Color online) (a) Im(δ) versus b. Points marked
with circle correspond to the cases shown in (c) and (d). (b)
P versus b. Simulated propagation of the solitons with 5%
random noise for (c) b = 1.40 and (d) b = 2, respectively.
The other parameters are V0 = 1, W0 = 0.3 and d = 0.5. All
quantities are plotted in arbitrary dimensionless units.

the perturbation eigenfunctions, and δ is the growth rate
of the perturbation [7]. By linearizing Eq.(1), we gain

δF = ∂2F
∂x2 + (V + iW )F + nF − bF + u∆n, (4)

δG = −∂2G
∂x2 + (−V + iW )G− nG+ bG− u∗∆n, (5)

where n =
∫ +∞

−∞
g(x−λ)|u(λ)|2dλ, and ∆n =

∫ +∞

−∞
g(x−

λ)[G(λ)u(λ) + F (λ)u∗(λ)]dλ. The gap solitons are lin-

early unstable when δ has an imaginary component, on
the contrary, they are stable when δ is real. In Fig. 3
(a), there is a stability window in b, where Im(δ), the
imaginary component of δ, is zero. The power of solitons

is defined as P =
∫ +∞

−∞
|u|2dx, and P is a monotonically-

increasing function of the propagation constant b, as is
shown in Fig. 3(b). To examine further the robustness
of these PT lattice self-strapped modes, we also simulate
the propagation of beams under different conditions, as
presented in Fig. 3 (c) and (d), which support the above
conclusion about the stability of nonlocal gap solitons as
well.
We next investigate the nonlocality effects on solitons

properties with V0 = 1, W0 = 0.3 and b = 5. The two
cases of these gap solitons are shown in Fig. 4, where
it is depicted in (a) and (b) the field of the stable gap
soliton at d = 2 and d = 5. Evidently, the real part
amplitudes of the solitons are influenced by the degree of
the nonlocality d and the imaginary part amplitudes of
the solitons are not. The intensity of the solitons also are
weakly affected by d because the width of the convolution
results is proportional to d when the width of the solitons
intensity is a constant, see Fig. 4 (c).
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FIG. 4. (Color online) (a) and (b) The Fields of the solitons
with d = 2 and d = 5, respectively. (c) The intensity of the
solitons. The dotted blue curve and the dot-dashed magenta
curves represent (a) and (b), respectively. The other param-
eters are V0 = 1, W0 = 0.3 and b = 5. All quantities are
plotted in arbitrary dimensionless units.

In Fig. 5 (a), there is a stability window in d, where
Im(δ), the imaginary component of δ, is zero. So, there
exists a stable region of the degree of the nonlocality d
for the gap solitons. As depicted in Fig. 3 (a), the prop-
agation constant b of soiltons exists in a region when the
solitons are stable in optical lattices, and large and small
b leads to the instability based on the band-gap struc-
tures. Because the propagation constant b has relations
with the nonlinear effect affected by the degree of the
nonlocality d, the degree of the nonlocality d should also
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FIG. 5. (Color online) (a) Im(δ) versus d. (b) P versus d.
Points marked with circle correspond to the cases shown in
(c) and (d). Simulated propagation of the solitons with 5%
random noise for (c) d = 1 and (d) d = 3, respectively. The
other parameters are V0 = 1, W0 = 0.3 and b = 5. All
quantities are plotted in arbitrary dimensionless units.
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FIG. 6. (Color online) (a) Im(δ) versus b at d = 0.5. (b) P

versus b at d = 0.5. (c) Im(δ) versus d at b = 10. (d) P versus
d at b = 10. The other parameters are V0 = 1, W0 = 0.3. All
quantities are plotted in arbitrary dimensionless units.

exist in a region, and large and small d leads to the insta-
bility of the solitons. To examine further the robustness
of these PT lattice self-strapped modes, we simulate the
propagation of beams under different conditions, as pre-
sented in Fig. 5(c) and (d) with d = 1 and d = 3, which
support the above conclusion about the stability of non-
local gap soiltons as well.
Finally, we exchange the position of the dual-periodic

parity-time symmetric optical lattices with V0 = 1,
W0 = 0.3, V (x) = V0{cos[2π sin(x)] + 1}/2 and W (x) =
W0 sin(2x). The band-gap structure is as the same as
above. The simulated results show that the region and
numerical value of b for the stable solitons is bigger at
d = 0.5 when the period of the middle waveguide is
smaller in Fig. 6(a). The curve of power versus b is a
monotonically-increasing function from Fig. 6(b). Here,
the reason is that the solitons can be formed by stronger
nonlinear effect, so b corresponding to the nonlinear ef-
fect shows the phenomena. Moreover, with the results of
b of contrast, the region and numerical value of d for the
stable solitons is smaller at d = 0.5, see Fig. 6(c) and (d).
In conclusion, we investigate the gap solitons in the

dual-periodic PT symmetric optical lattices built into a
nonlocal self-focusing medium. The existence, stability,
and propagation dynamics of such PT gap solitons are
stated in detail. Simulated results show that there exist
stable gap solitons, and the degree of nonlocality can
influence the soliton power and the region where stable
PT gap solitons can exist.
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