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The coincidence rate in two detectors that register signal and idler photons in parametric down
conversion (PDC) is calculated using a quantum description of the radiation field that extends the
semiclassical theory to the resonance regime. The signal is given by a sum over paths, each involving
a pair of sites (molecules) and six radiation field modes. It may not be factorized into amplitudes
representing one-site, three-mode paths. All effects of multiple vacuum modes are accounted for by
theses paths without adding a Langevin noise source. The molecular information is given by a time
ordered superoperator Green’s function rather than the susceptibility χ(2) used in the semiclassical
theory.

I. INTRODUCTION

The generation and manipulation of entangled light
is of fundamental interest in quantum science, quantum
computation and engineering. Nearly a century after
the celebrated EPR paper [1], there remain a number of
open questions regarding the creation of entangled light.
Parametric down conversion (PDC) [2, 3] is an important
source of entangled photons that found numerous practi-
cal applications such as quantum information technology
[4, 5], metrology [6], holography [7], communication [8]
and lithography [9–11].

The standard calculation of PDC assumes that all rel-
evant field frequencies are off resonant with matter. It is
then possible to adiabatically eliminate all matter degrees
of freedom and describe the process by an effective Hamil-
tonian for the field that contains a nonlinear cubic cou-
pling of three modes. All matter information is embedded
into a coefficient that is proportional to χ(2) [12] that is
defined by the semiclassical theory of radiation-matter
coupling. Langevin quantum noise is added to represent
vacuum fluctuations caused by other field modes [13–15]
and account for photon statistics.

We present a microscopic theory of type I PDC that
addresses entanglement generation in a transparent way.
First, it holds both on and off resonance. The resonant
case is especially important for potential spectroscopic
applications [16], where unique information about en-
tangled matter [17] can be revealed. Other examples
are excitons in molecular aggregates and photosynthetic
complexes or biological imaging [18]. Second, it prop-
erly takes into account the quantum nature of the gener-
ated modes through a generalized susceptibility that has
a very different behavior near resonance than the semi-
classical χ(2). χ(2) is derived for two classical fields and
a single quantum field. While this is true for the reverse
process (sum frequency generation) it does not apply for
PDC, which couples a single classical and two quantum
modes. Third, macroscopic propagation effects are not
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FIG. 1. (Color online) Schematic of the PDC experiment -
(a), the three level model system used in our simulations -
(b).

required for the basic generation of the signal. Fourth,
we include gated detection [19] that yields the finite tem-
poral and spectral resolution of the coincident photons
limited by a Wigner spectrogram. For either time or fre-
quency resolved measurement of the generated field, the
signal can be expressed as a modulus square of the tran-
sition amplitude that depends on three field modes. This
is not the case for photon counting.

The nature of entangled light can be revealed by pho-
ton correlation measurements that are governed by en-
ergy, momentum and/or angular momentum conserva-
tion. In PDC, a nonlinear medium is pumped by elec-
tromagnetic field of frequency ωp and some of the pump
photons are converted into pairs of (signal and idler) pho-
tons with frequencies ωs and ωi, respectively (see Fig. 1a)
satisfying ωp = ωs + ωi.

In the semiclassical approach the process is described
by an effective interaction Hamiltonian for the field
modes

Hint(t) = i~
∑
j

∫
dωs
2π

dωi
2π

dωp
2π

χ
(2)
+−−(ωs, ωi, ωp)

× â(s)†â(i)†β(p)ei∆k(r−rj)e−i(ωp−ωs−ωi)t] +H.c., (1)

where â†(s) and â(i)† are creation operators for signal
and idler modes, β(p) is the expectation value of the
classical pump field, ∆k = kp − ks − ki, j runs over
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molecules, χ
(2)
+−−, (normally denoted χ(2)(−ωs;−ωi, ωp))

is the second-order nonlinear susceptibility

χ
(2)
+−−(ωs = ωp − ωi, ωi, ωp) =

(
i

~

)2 ∫ ∞
0

∫ ∞
0

dt2dt1×

eiωi(t2+t1)+iωpt1〈[[V (t2 + t1), V (t1)], V (0)]〉+ (i↔ p).
(2)

We have introduced superoperator notation that pro-
vides a convenient bookkeeping of time ordered Green’s
functions. With every ordinary operator A we asso-
ciate two superoperators defined by their action on an
ordinary operator X as AL = AX acting from left,
AR = XA (right). We further define the symmetric
and antisymmetric combinations A+ = 1√

2
(AL + AR),

A− = 1√
2
(AL − AR). Thus, the “ + −−′′ indices in Eq.

(2) signify two commutators followed by an anti com-
mutator. The bottom line of the semiclassical approach
is that PDC is represented by 3-point matter-field in-

teraction via the second order susceptibility χ
(2)
+−− that

couples the signal, idler and pump modes. However, it
has been realized, that other field modes are needed to
yield the correct photon statistics. Electromagnetic field
fluctuations are then added as quantum noise (Langevin
forces) [13].

II. MICROSCOPIC SUPEROPERATOR
APPROACH TO PDC

Here we present a fully microscopic calculation of the
coincidence count rate in type I PDC [20]. We show
that PDC is governed by a quantity that resembles but
is different from (2). In contrast with the semiclassi-
cal approach, PDC emerges as a 6-mode two-molecule
rather than 3-mode matter-field interaction process and
is represented by convolution of two quantum suscepti-

bilities χ
(2)
LL−(ωs, ωi, ωp) and χ

(2)∗
LL−(ω′s, ω

′
i, ω
′
p) that repre-

sent a pair of molecules in the sample interacting with
many vacuum modes of the signal (s, s′) and the idler
(i, i′). Field fluctuations are included self consistently at
the microscopic level. Furthermore the relevant nonlin-
ear susceptibility is different from the semiclassical one

χ
(2)
+−− and is given by

χ
(2)
LL−(ωs = ωp − ωi, ωi, ωp) =

(
i

~

)∫ ∞
0

∫ ∞
0

dt2dt1×

eiωi(t2+t1)+iωpt1〈[V (t2 + t1)V (t1), V (0)]〉+ (i↔ s). (3)

Eq. (3) has a single commutator and is symmetric to a
permutation of ωi and ωs = ωp − ωi, as it should. Eq.
(2) has two commutators and lacks this symmetry.

Our calculation of the coincidence rate of signal and
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FIG. 2. (Color online) Loop diagrams for the coincidence
count rate of signal and idler photons generated in type I
PDC (Eq. (5)). The left and right diagrams represent a
pair of molecules. Curvy blue (straight red) arrows represent
field-matter interaction with the sample (detectors). There
are four possible permutations (s/i and s′/i′). This leads to
four terms when Eq. (8) is substituted into Eq. (7).

idler photons starts with the definition [14]

Rc(ω̄s, t̄s; ω̄i, t̄i) =∫ ∞
−∞

dts

∫ ∞
−∞

dti〈E†(i)tf (ti)E
†(s)
tf (ts)E

(s)
tf (ts)E

(i)
tf (ti)〉, (4)

where the angular brackets in the correlation function
denote 〈...〉 ≡ tr(...ρ) where ρ is the field plus matter
density operator. Here Etf is time-and-frequency gated
electric field measured by detector, that will be clarified
in Section IIB. The gate is characterized by mean fre-
quency ω̄ν and time t̄ν , (ν = s, i).

A. Bare coincidence rate

We first calculate the “bare” correlation function [19]

(no gating) 〈E†(i)(t′i)E†(s)(t′s + τs)E
(s′)(t′s)E

(i′)(t′i − τi)〉
which represents four spectral modes arriving at the de-
tectors, where modes s, s′, i, i′ are defined by their fre-
quencies ωs, ω

′
i, ωi = ωp − ωs, ω

′
s = ω′p − ω′i. This is

given by a time ordered product of Green’s functions of
superoperators in the interaction picture

〈T E†(i)R (t′i)E
†(s)
R (t′s + τs)E

(s′)
L (t′s)E

(i′)
L (t′i − τi)

× e− i
~
∫∞
−∞
√

2H′−(τ)dτρ(−∞)〉. (5)
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FIG. 3. (Color online) Absolute value of semiclassical suscep-

tibility |χ(2)
+−−(−(ωp−ωi),−ωi, ωp)| (arb. units) (9) - (a), and

quantum the susceptibility |χ(2)
LL−(−(ωp − ωi),−ωi, ωp)| (8) -

(b) vs pump ωp and idler frequency ωi. We used the standard
KTP parameters outlined in the text. Left column: real - (c),

imaginary part - (e) and absolute value - (g) of χ
(2)
+−− - red line

and χ
(2)
LL− - blue line for off resonant pump ωp−ωgf = 10γgf .

Right column: (d),(f),(h) - same as (c),(e),(g) but for resonant
pump ωp ' ωgf .

The radiation-matter coupling superoperator is

H
′

−(t) =
∑

x=s,i,p

[
E
†(ν)
L (t)VL(t)− E†(ν)

R (t)VR(t)
]

+H.c.

(6)

V †(V ) is matter raising (lowering) operator so that
VL(t) = µgf |g〉〈f |e−(iωgf+γgf )t + µeg|g〉〈e|e−(iωeg+γeg)t +

µfe|e〉〈f |e−(iωfe+γfe)t, where µij , γij , γij , and ωij are
corresponding dipole moment, line width and transition
frequency of the transition i↔ j, (i, j = g, e, f).

In type I PDC the sample is composed of N identi-
cal molecules initially in their ground state. They inter-
act with one classical pump mode and emit two sponta-
neously generated quantum modes with the same polar-
ization into two collinear cones. The initial state of the
optical field is given by |0〉s|0〉i|β〉p. A classical pump
field promotes the molecule from its ground state |g〉 to
the doubly excited state |f〉 (see Fig 1B).

Due to the quantum nature of the signal and the idler
fields, the interaction of each of these fields with matter

must be at least second order to yield a non vanishing
trace in Eq. (5). Therefore, the perturbative expansion
of the integral in the exponent of Eq. (5) will contain ten
field-matter interactions; six with the sample molecules
(two with each of the signal, idler field and pump fields)
and the last four are with the detectors. Note that there
can be no interactions during the intervals τs and τi. In
that case the field correlation function will vanish since
â|0〉 = 0. Thus, the leading contribution to Eq. (5)
comes from the four diagrams shown in Fig. 2 (for rules
see [20]). The coherent part of the signal represented
by interaction of two spontaneously generated quantum
and one classical modes is proportional to the number
of pairs of sites in the sample ∼ N(N − 1), which dom-
inates the other, incoherent, ∼ N response for large N .
Details of the calculation of the correlation function (5)
are presented in Appendix A. We obtain for the “bare”
coincidence rate

R(B)
c (ωs, ω

′
i, ωp, ω

′
p) = N(N − 1)

(
2π~
V

)4

×

E∗(p)(ωp)E(p)(ω′p)D(ωs)D(ωp − ωs)D(ω′i)D(ω′p − ω′i)×
χ

(2)
LL−[−(ω′p − ω′i),−ω′i, ω′p]χ(2)∗

LL−[−ωs,−(ωp − ωs), ωp],
(7)

where E(p)(ω) ≡ E(p)(ω)β(p) is a classical field amplitude,

E(p)(ω) is the pump pulse envelope and D(ω) = ωD̃(ω)

where D̃(ω) = V ω2/π2c3 is the density of radiation
modes. For our level scheme (Fig. 1b) the nonlinear

susceptibility χ
(2)
LL− (see Eq. (3)) is given by

2−1/2χ
(2)
LL−[−(ω′p − ω′i),−ω′i, ω′p] =

1

~
µ∗gfµfeµeg

ω′p − ωgf + iγgf
×

1

ω′p − ω′i − ωeg + iγeg)
+ (ω′i ↔ ω′p − ω′i). (8)

Eq. (7) represents a 6-mode (ωp, ωi, ωs, ω
′
p, ω
′
i, ω
′
s)

field-matter correlation function factorized into two gen-
eralized susceptibilities each representing the interaction
of two quantum and one classical mode with a differ-
ent molecule. Because of two constraints ωp = ωs + ωi,
ω′p = ω′s + ω′i that originate from time translation in-
variance on each of the two molecules that generate the
nonlinear response, Eq. (7) only depends on four field
modes. Each molecule creates a coherence in the field
between states with zero and one photon. By combining
the susceptibilities from a pair of molecules we obtain a
photon occupation number that can be detected. Thus,
the detection process must be described in the joint space
of the two molecules and involves the interference of four
quantum pathways (two with bra and two with ket) with
different time orderings. Note that this pathway infor-
mation is not explicit in the Langevin approach.

For comparison, if all three fields (signal, idler and
pump) are classical, the number of material-field inter-
actions is reduced to three - one for each field. Then
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FIG. 4. (Color online) Loop diagrams for the interaction of
three classical pump, signal and idler fields. Left and right
loop diagrams correspond to the first and second term in Eq.
(9), respectively. Each loop has two possible permutations
of i/s corresponding to the time ordering between idler and
signal photons.

the leading contribution to the field correlation function
shown in Fig. 4 yields the semiclassical nonlinear suscep-

tibility χ
(2)
+−−

2−3/2χ
(2)
+−−[−(ω′p − ω′i),−ω′i, ω′p] =

1

~2
〈g|T VLG(ω′p − ω′i)VLG(ω′p)V

†
L |g〉+

1

~2
〈g|T VLG†(ω′i)VLG(ω′p)V

†
L |g〉 =

1

~2

µ∗gfµfeµeg
ωp − ωgf + iγgf

×[
1

ωp − ω′i − ωeg + iγeg
+

1

ω′i − ωeg − iγeg

]
+ (ω′i ↔ ωp − ω′i),

(9)

where G(ω) = 1/(ω − H0−/~ + iγ) is the retarded Li-
ouville Green’s function, and γ is lifetime broadening.

χ
(2)
LL− possesses a permutation symmetry with respect to
s↔ i (both have L index). In contrast the semiclassical

calculation via χ
(2)
++− is non symmetric with respect to

s↔ i ( one + and one − indexes), which results in coin-
cidence count rate that depends upon whether the signal
or idler detector clicks first [21].

B. Detected coincidence rate

We shall calculate the coincidence rate registered by
two detectors - Ds and Di, whose inputs are located

at r
(s)
G for a signal and at r

(i)
G for an idler. Both de-

tectors consist of a time gate F
(x)
t centered at t̄x fol-

lowed by a frequency gate F
(x)
f centered at ω̄x where

x = s, i indicates signal or idler. First, the time
gate transforms the electric field of the mode x given

by E(x)(r
(x)
G , t) =

∑
j E

(x)
j (r

(x)
G , t) with E

(x)
j (r

(x)
G , t) =

E(x)(r
(x)
G , ωxj )e−iωxj

t as follows:

E
(x)
f (r

(x)
G , t) = F

(x)
t (t, t̄x)E(x)(r

(x)
G , t). (10)

(a) (b) (c) 

Δωs (MHz) Δωs (MHz) Δωs (MHz) 

Δt
s (

µs
) 

FIG. 5. (Color online) Gating spectrogram (22) for γs =
Γs =0.1MHz - (a), 1MHz - (b), 10MHz - (c).

Then, the frequency gate is applied E
(x)
f (r

(x)
G , ω) =

Ff (ω, ω̄x)E
(x)
t (r

(x)
G , ω) where E(x)(ω) =∫∞

−∞ dteiωtE(x)(t). We thus obtain the time-and-

frequency-gated field Etf (t). We assume that the time
gate is applied first. Therefore, the combined detected
field at the position rD can be written as

E
(x)
tf (r

(x)
D , t) =∫ ∞

−∞
dt′F (x)

f (t− t′, ω̄x)F
(x)
t (t′, t̄x)E(x)(r

(x)
G , t′), (11)

where E(x)(t) ≡∑j

√
2π~ωxj

/V âxj
e−ωxj

t (V is a mode

quantization volume). For simplicity we omit the posi-
tion dependence in the fields assuming that propagation

between r
(x)
G and r

(x)
D is included in the spectral gate

function.
The measured coincidence rate of photons coming from

signal and idler fields is given by Eq. (4). In order to
provide a clean bookkeeping for all interactions we de-
scribe the bare signal in terms of Liouville space “left”
and “right” superoperators [19]

R̃(B)
c (ωs, t

′
sω
′
i, t
′
i) =

∑
s,s′

∑
i,i′

∫ ∞
0

dτs

∫ ∞
0

dτie
−iωsτs−iω′iτi×

〈E†(i)R (ti)E
†(s)
R (t′s + τs)E

(s′)
L (t′s)E

(i′)
L (t′i − τi)e−

i
~
∫∞
−∞
√

2H′−(τ)dτ 〉,
(12)

where
∑
s →

∫
dω̃sD̃(ω̃s) with density of radiation modes

D̃(ω) = V ω2/π2c3 is understood. We further introduce
the Wigner spectrogram for the gate [23]

W̃ (ω′s, t
′
s;ω
′
i, t
′
i; ω̄s, t̄s; ω̄i, t̄i) =

W (s)(ω′s, t
′
s; ω̄s, t̄s)W

(i)(ω′i, t
′
i; ω̄i, t̄i), (13)

where

W (s)(ω′s, t
′
s; ω̄s, t̄s) =∫ ∞

−∞

dωs
(2π)2

|Ff (ωs, ω̄s)|2W (s)
t (t′s, ωs − ω′s, t̄s), (14)
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W (i)(ω′i, t
′
i; ω̄i, t̄i) =∫ ∞

−∞

dωi
(2π)2

|Ff (ωi, ω̄i)|2W (i)
t (t′i, ωi − ω′i, t̄i) (15)

with

W
(s)
t (t′s, ωs, t̄s) =

∫ ∞
−∞

dτse
iωτsF

(s)∗
t (t′s + τs, t̄s)F

(s)
t (t′s, t̄s),

(16)

W
(i)
t (t′i, ωi, t̄i) =

∫ ∞
−∞

dτie
iωτiF

(i)∗
t (t′i, t̄i)F

(i)
t (t′i − τi, t̄i).

(17)

Taking into account Eq. (A18) we redefine the bare sig-
nal according to Eq. (7). We further modify the gating
spectrogram that controls the temporal and spectral res-
olution of the measurement [23]

W (ωs, ω
′
i, ωp, ω

′
p; ω̄s, ω̄i)

=

∫ ∞
−∞

dtsW
(s)(ωs, t

′
s; ω̄s, t̄s)e

i(ωs+ω′i−ω′p)t′s

×
∫ ∞
−∞

dt′iW
(i)(ω′i, t

′
i; ω̄i, t̄i)e

−i(ωs+ω′i−ωp)t′i (18)

Taking Eqs. (4), (7) and (18) into account yields

Rc(ω̄s, t̄s; ω̄i, t̄i) =

∫ ∞
−∞

dωsdω
′
idωpdω

′
pR

(B)
c (ωs, ω

′
i, ωp, ω

′
p)

×W (ωs, ω
′
i, ωp, ω

′
p; ω̄s, t̄s, ω̄i, t̄i). (19)

The spectrogram represents the combination of a spectral
gate centered at ω̄x followed by a time gate centered at
t̄x (x = s, i).

In our simulations the spectral gate was taken to be the
Fabry-Perot etalon [24], and the time gate is exponential:

F
(x)
f (ωx, ω̄x) =

γx
γx − i(ωx − ω̄x)

, (20)

F
(x)
t (tx, t̄x) = e−Γx(tx−t̄x). (21)

The Wigner spectrogram for this gate is then given by

W (s)(∆ωs; ∆ts) =
1

2π

e−Γs∆ts

∆ωs

γs
+ i
(

1− Γs

γs

)×
 e−Γs∆ts

∆ωs

γs
− i
(

1 + Γs

γs

) +
e(i∆ωs−γs)∆ts

∆ωs

Γs
+ i
(

1 + Γs

γs

)
 , (22)

where ∆ωs = ω′s − ω̄s and ∆ts = t′s − t̄s. Clearly, the
Wigner spectrogram (22) couples the time and frequency
resolution which are now correlated via the Fourier un-
certainty. Thus, increasing (decreasing) γs and Γs en-
hance (suppress) the frequency uncertainty and suppress
(enhance) the time uncertainty (see Fig. 5).
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FIG. 6. (Color online) Left column: two dimensional coin-
cidence counting rate (log scale in arb. units) calculated us-
ing quantum theory Eq. (19) assuming a single monochro-
matic pump with frequency ωp. Idler detector resonant with
intermediate level ω̄i = ωeg = 282THz - panel (a), while
ωeg − ω̄i = 2GHz for (b). Right column: same as left but for
a pump made out of two monochromatic beams with frequen-
cies ωp − ω′p = 2 · 10−6ωp.

III. EXPERIMENTAL SIMULATIONS

Fig. 3 compares both susceptibilities calculated for a
typical KTP crystal (PPKTP) represented by a degen-
erate three-level system with λeg = 2λgf = 1064nm [22].
The experimental lifetime broadening of the single and
two-photon resonances is 16MHz and 40 MHz, respec-
tively [22]. Fig. 3c,e,g show that far from resonances
(ωi 6= ωeg, ωp 6= ωgf ) the semiclassical and quantum
susceptibilities coincide and depend weakly on the fre-
quencies ωp and ωi. This is the regime covered by the
semiclassical theory, where the susceptibility is assumed
to be a constant. Similar agreement between classical and
quantum susceptibilities can be observed if the pump is
resonant with two-photon transition ωp ' ωgf but the
idler is off resonance ωi 6= ωeg - Fig. 3d,f,h. However,
close to resonance - Fig. 3a,b the two susceptibilities

are very different. The semiclassical susceptibility χ
(2)
+−−

vanishes at resonance, where the quantum susceptibility

χ
(2)
LL− reaches its maximum.
To put the present ideas into more practical perspec-

tive we show in Fig. 6 the coincidence count rate for a
monochromatic pump ωp and mean signal detector fre-
quency ω̄s. The quantum theory yields one strong res-
onant peak at ω̄s = ωp − ωeg and two weak peaks at
ωp = ωgf and ω̄s = ωeg if the idler detector is resonant
with the intermediate state |e〉: ω̄i = ωeg - Fig. 6a. How-
ever, if we tune the idler detector to a different frequency,
for instance ωeg − ω̄i = 2GHz there is an additional peak
at ω̄s = ωp − ω̄i - Fig. 6b. Similarly, when the pump
consists of two monochromatic beams ωp 6= ω′p (panels
C,D) the number of peaks are doubled compare to single
monochromatic pump. Clearly, one can reproduce the
exact same peaks for ω′p as for ωp.

Shwartz et al. recently reported PDC in diamond,
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FIG. 7. (Color online) Simulated coincidence count rate in
Eq. (19) vs 2ω̄s/ωp. ω̄s and ωp/2 is the mean frequency of
the signal detector and the degenerate photon frequency, re-
spectively. Dots represent the experimental results of Shwartz
et al. [21].

where 18keV pump field generates two X-ray photons
[21]. They have shown that the semiclassical calcula-
tion without Langevin noise agrees with experiment only
far from degeneracy ω̄s � ωp/2 but yields a factor of
two smaller count rate close to degenerate frequency
ω̄s = ωp/2 and strongly depends on which detectors reg-
ister the photon first. To overcome this problem they
added a Langevin noise to take into account other vac-
uum modes. Our calculation (solid line in Fig. 7) re-
produces experiment (dots) in the entire frequency range
without adding noise. The noise comes from the summa-
tion over ωs, ω

′
s, ωi and ω′i. In simulations we assumed

ωeg = 280eV , ωp = ω′p = 18keV, and fixed the idler de-
tector position at ω̄i = 9keV, which corresponds to off
resonant parameter regime. Therefore, the result is inde-
pendent of the frequency variations of the susceptibility.
Fig. 7 rather illustrates the photon detection treated in
the joined space of two sites.

IV. CONCLUSIONS

In summary, a microscopic theory of the photon count-
ing in PDC that applied to resonant as well as off res-
onant frequencies reveals that it is given by a sum over

6-mode paths that involves a pair of molecules in the
sample. Two constraints ωp = ωs + ωi, ω

′
p = ω′s + ω′i

reduce the number of independent frequency modes to
four. The correct photon statistics due to the presence
of multiple signal and idler vacuum modes is reproduced.
The time and frequency resolution of the measurement
is controlled by the gate parameters.
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Appendix A: Calculation of the bare coincidence
rate

Since initially both signal and idler modes are in the
vacuum state |0〉〈0| and the final state is |1〉〈1|, the in-
teraction of each of these fields with matter that yields a
non vanishing trace must be at least second order. There-
fore, the perturbative expansion of the integral in the
exponent of Eq. (5) will contain ten field-matter interac-
tions (six with the sample and four with the detectors).
The number of diagrams is reduced by noting that two
interactions occur with each of the pump, signal, and
idler fields. Another simplification arises since there can
be no interactions during the interval τs and τi, since in
that case the field correlation function will vanish since
â|0〉 = 0. Finally, since the signal and idler fields are
initially in the vacuum state the correct combination of

the fields must be E
(x)
R (t)E

†(x)
L (t′).

The leading contribution to the field correlation func-
tion shown in Fig. 2 is thus given by the time ordered
superoperator correlation function

〈E(t10, ..., t1)〉 = 〈T E†(s10)
R (t10)E

(s9)
L (t9)E

†(i8)
R (t8)E

(i7)
L (t7)E

†(s6)
L (t6)E

(s5)
R (t5)E

†(i4)
L (t4)E

(i3)
R (t3)E

†(p2)
R (t2)E

(p1)
L (t1)〉,

(A1)

where t10 = t′s + τs, t9 = t′s, t8 = t′i, t7 = t′i − τi are the
interaction times with the detection. We can factorize
Eq. (A1) into the product of signal, idler and pump
correlation functions, which yields

〈E(t10, ..., t1)〉 = 〈E(s)(t10, t9, t6, t5)〉〈E(i)(t8, t7, t4, t3)〉
× 〈E(p)(t2, t1)〉, (A2)

where

〈E(s)(t10, t9, t6, t5)〉
= f (s)∗(ω(s)

10 )f (s)(ω
(s)
9 )f (s)∗(ω(s)

6 )f (s)(ω
(s)
5 )

× eiω
(s)
10 t10−iω

(s)
9 t9+iω

(s)
6 t6−iω(s)

5 t5〈0|â†s10R âs9L â
†s6
L âs5R |0〉,

(A3)
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f(ω) =
√

2π~ω/V . Note, that the matrix element in Eq.
(A3) is

〈0|â†s10R âs9L â
†s6
L âs5R |0〉 = 〈0|âs5L â†s10L âs9L â

†s6
L |0〉 = δs5,s10δs9,s6 ,

(A4)
this implies that only certain pairs of modes yield nonzero
correlation functions. Taking into account that the mode

frequencies are given by ω
(s)
10 = ωs, ω

(s)
9 = ωs−Ωs, ω

(8)
8 =

ω′i + Ωi, ω
(i)
7 = ω′i Eq. (A3) yields

〈E(s)(t10, t9, t6, t5)〉 =

|f(ωs)|2|f(ωs − Ωs)|2eiωs(t10−t5)+i(ωs−Ωs)(t6−t9). (A5)

For the idler we similarly get

〈E(i)(t8, t7, t4, t3)〉 =

|f(ω′i + Ωi)|2|f(ω′i)|2e−i(ω
′
i+Ωi)(t3−t8)−iω′i(t7−t4). (A6)

The two-point pump correlation function is given by

〈E(p)(t2, t1)〉 =

=
1

(2π)2

∫ ∞
−∞

dωpdω
′
pE(p)∗(ωp)E(p)(ω′p)e

iωpt2−iω′pt1 ,

(A7)

where the classical field amplitude E(p)(ω) ≡ E(p)(ω)β(p)

with pump pulse represented by the envelope E(p)(ω).
Combining Eqs. (A5), (A6) and (A7), yields the total
field correlation function

〈E(t10, ...t1)〉 =
1

(2π)2

∫ ∞
−∞

dωpdω
′
p|f(ωs)|2|f(ωs − Ωs)|2|f(ω′i + Ωi)|2|f(ω′i)|2

× E(p)∗(ωp)E(p)(ω′p)e
iωs(t10−t5)+i(ωs−Ωs)(t6−t9)e−i(ω

′
i+Ωi)(t3−t8)−iω′i(t7−t4)eiωpt2−iω′pt1 . (A8)

We neglect all propagation effects and assume that the
detectors are located in close proximity to the sample.
The corresponding 6-point correlation function of the
sample molecules is given by

〈V(t6, ..., t1)〉 = 〈T V (s)
L (t6)V

(i)
L (t4)V

†(p)
L (t1)〉1

× 〈T V †(s)R (t5)V
†(i)
R (t3)V

(p)
R (t2)〉2. (A9)

The coherent part of the signal represented by interac-
tion of two spontaneously generated quantum and one
classical modes results in the emission of signal and idler
modes into a cone of solid angle ∆k. Here the phase mis-
match ∆k = kp − ks − ki represent the uncertainty of
the phase which is reciprocal of the characteristic sample
size. This implies that the phase matched two molecule

contribution

N∑
m=1

N−1∑
n=1

ei∆k(r−rm)ei∆k(r−rn) ' N(N − 1) (A10)

dominates the other, incoherent, single molecule ∼ N
response for large N . For comparison, the incoherent
response given by χ(5) has ∼ N - scaling. Here

∆k =− k
(s)
10 + k

(s)
9 − k

(i)
8 + k

(i)
7 − k

(s)
6 + k

(s)
5 + k

(i)
4 − k

(i)
3

− k
(p)
2 + k

(p)
1 . (A11)

We can now calculate the entire correlation function

〈T E†(i)R (ti)E
†(s)
R (ts + τs)E

(s′)
L (ts)E

(i′)
L (ti − τi)e−

i
~
∫∞
−∞
√

2Hint−(τ)dτρ(−∞)〉 =

=
N(N − 1)

(2π)2

(
− i
√

2

~

)6 ∫ ∞
−∞

dωpdω
′
p|f(ωs)|2|f(ωs − Ωs)|2|f(ω′i + Ωi)|2|f(ω′i)|2E(p)∗(ωp)E(p)(ω′p)Ξ, (A12)

where

Ξ =

∫ ∞
−∞

dt6dt5dt4dt3dt2dt1e
iωs(ts+τs−t5)+i(ωs−Ωs)(t6−ts)e−i(ω

′
i+Ωi)(t3−ti)−iω′i(ti−τi−t4)eiωpt2−iω′pt1

× 〈g|T V (s)
L G(t6 − t4)V

(i)
L G(t4 − t1)V

†(p)
L |g〉 · 〈g|T V †(s)R G†(t5 − t3)V

†(i)
R G†(t3 − t2)V

(p)
R |g〉. (A13)

To evaluate Ξ we must take into account all possible time orderings of t1, ...t6. This gives four terms Ξ = Ξa + Ξb +



8

Ξc + Ξd represented by the loop diagrams as marked in Fig. 2

Ξa =eiωsτs+iΩsts+iω′iτi+iΩitiδ(ω′p − ω′i − ωs + Ωs)δ(ωp − ω′i − ωs − Ωi)

×〈g|VLG(ω′p − ω′i)VLG(ω′p)V
†
L |g〉 · 〈g|VLG†(ωp)V †LG†(ωp − ωs)V †L |g〉, (A14)

Ξb =eiωsτs+iΩsts+iω′iτi+iΩitiδ(ω′p − ω′i − ωs + Ωs)δ(ωp − ω′i − ωs − Ωi)

×〈g|VLG(ω′i)VLG(ω′p)V
†
L |g〉 · 〈g|VLG†(ωp)V †LG†(ωp − ωs)V †L |g〉, (A15)

Ξc =eiωsτs+iΩsts+iω′iτi+iΩitiδ(ω′p − ω′i − ωs + Ωs)δ(ωp − ω′i − ωs − Ωi)

×〈g|VLG(ω′p − ω′i)VLG(ω′p)V
†
L |g〉 · 〈g|VLG†(ωp)V †LG†(ωs)V †L |g〉, (A16)

Ξd =eiωsτs+iΩsts+iω′iτi+iΩitiδ(ω′p − ω′i − ωs + Ωs)δ(ωp − ω′i − ωs − Ωi)

×〈g|VLG(ω′i)VLG(ω′p)V
†
L |g〉 · 〈g|VLG†(ωp)V †LG†(ωs)V †L |g〉. (A17)

Combining Eqs. (A14) - (A17) we can connect the signal to the nonlinear susceptibility χ
(2)
LL−,

〈T E†(i)R (ti)E
†(s)
R (ts + τs)E

(s′)
L (ts)E

(i′)
L (ti − τi)e−

i
~
∫∞
−∞
√

2Hint−(τ)dτρ(−∞)〉

= N(N − 1)

(
2π~
V

)4 ∫ ∞
−∞

dωp
2π

dω′p
2π
E(p)∗(ωp)E(p)(ω′p)

× ωsω′i(ωs − Ωs)(ω
′
i + Ωi)δ(ωs + ω′i + Ωi − ωp)δ(ωs − Ωs + ω′i − ω′p)eiωsτs+iΩsts+iω′iτi+iΩiti

× χ(2)
LL−[−(ω′p − ω′i),−ω′i, ω′p] · χ(2)∗

LL−[−(ωp − ωs),−ωs, ωp], (A18)

where

2−1/2χ
(2)
LL−[−(ω′p − ω′i),−ω′i, ω′p]

=
1

~
〈g|T VLG(ω′p − ω′i)VLG(ω′p)V

†
L |g〉+

1

~2
〈g|T VLG(ω′i)VLG(ω′p)V

†
L |g〉

=
1

~
µ∗gfµfeµeg

ω′p − ωgf + iγgf

[
1

ω′i − ωeg + iγeg
+

1

ω′p − ω′i − ωeg + iγeg

]
, (A19)

where µij , γij , γij , and ωij are dipole moment, line
width and transition frequency corresponding to a given

transition i ↔ j,. Note, that χ
(2)
LL− is different from

the semiclassical χ
(2)
+−−. Physically, this is clear, since

χ
(2)
LL− = 1

2 (χ
(2)
+−− + χ

(2)
++−) is symmetric with respect to

permutation of s↔ i, while the classical result of χ
(2)
+−−

is not (ωs is “+” and ωi is “−”). This can be seen by
comparing (A19) and (9).

If the energies of the signal ωs and idler ω′i are far from
the degenerate values ωp/2 and ω′p/2, respectively, then

for ωs � ωp − ωs and ω′i � ω′p − ω′i, then the χ
(2)
+−−

coincides with χ
(2)
LL− (see Ref. [20]). Furthermore, if

signal and idler have only single mode components, then
phase matching yields δ(ωs+ω

′
i−ωp) with ωp = ω′p so that

the result is governed by |χ(2)
LL−[−(ωp − ω′i),−ω′i, ωp]|2

(Ref. [20]).

To gain deeper physical insight we note, that Eq.
(A18) is expressed as a convolution of two generalized

nonlinear susceptibilities χ
(2)
LL− calculated in the joined

field-matter space of two molecules. This description is
similar to a transition amplitude approach that is often
used in homodyne detection. The field wave function

|ψ〉 = |0〉+
∑
i,s

T (i, s)â†i â
†
s|0〉, (A20)

where the transition amplitude T (s, i) is given by

T (i, s) =

√
2π~ωs
V

√
2π~ωi
V

∫ ∞
−∞

dωp
2π
E(p)(ωp)

× δ(ωs + ωi − ωp)χ(2)
LL−[−ωs,−ωi, ωp] (A21)

can be rewritten as a sum of two terms that represent two
pathways (i arrives first or s arrives first). The field den-
sity matrix |ψ〉〈ψ| has 4 pathways - two for the bra and
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two for the ket (see Fig. 2). The gating must be described
by the density matrix in the joint space of two molecules
and it involves the interference of all 4 pathways. In

other words since each χ
(2)
LL− depends on the signal, idler

and pump, one cannot say that the signal and idler are
generated at different molecules. Rather, each molecule
creates a coherence in the field between states with zero
and one photon, and by combining the amplitudes from
a pair of molecules we get a photon occupation number
that can subsequently be further detected.
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