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We study models of itinerant spinless fermions with random long-range interactions. We motivate such
models from descriptions of fermionic atoms in multi-mode optical cavities. The solution of an infinite-range
model yields a metallic phase which has glassy charge dynamics, and a localized glass phase with suppressed
density of states at low energies. We compare these phases to the conventional disordered Fermi liquid, and the
insulating electron glass of semiconductors. Prospects for the realization of such glassy phases in cold atom
systems are discussed.
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I. INTRODUCTION

There is much current interest in experiments with ultracold
atoms and photons that provide clean realizations of models
from condensed matter physics. A variant of the antiferro-
magnetic Ising model in one dimension, for example, has re-
cently been “quantum-simulated” with bosons in optical lat-
tices [1] –an encouraging step toward quantum simulation of
more general, strongly correlated quantum magnets in low di-
mensions. The hope is that these quantum optics experiments
eventually reach the parameter regimes and accuracy neces-
sary to allow for predictions that can overcome the limitations
of conventional theoretical approaches for strongly interacting
quantum many-body systems.

On top of that, the tunability of ultracold atoms allows one
to explore new quantum many-body Hilbert spaces that have
no direct condensed matter analog. In a series of remark-
able experiments at ETH Zurich [2–4], Baumann et al., have
begun the quantum-simulation of strongly-interacting quan-
tum gases with genuine long-range interactions [5]. In these
many-body cavity QED systems, an atomic ensemble (a ther-
mal cloud [6, 7] or Bose-Einstein condensate) is loaded into an
optical cavity containing quantized photon modes. Because
the photons are massless, they mediate an interatomic interac-
tion which does not decay as a function of distance between
atoms and therefore couples all the particles in the ensemble
to one another. Exploiting this property, Baumann et al. [4, 8]
found a mapping of their entangled atom-light system to the
classic Dicke model describing N two-level atoms uniformly
coupled to a single quantized photon mode [9–11]. The su-
perradiance transition of the Z2 Dicke model spontaneously
breaks an Ising symmetry and may be viewed as a realiza-
tion of an Ising ferromagnet which is exactly solvable due to
the infinite range of the photon-mediated “spin-spin” interac-
tion. By extending the experimental setup to multiple cavity
modes, increasingly complex spatial structures of long-range
atom-atom interactions can be achieved [12, 13].

Strack and Sachdev [14] recently computed the phase di-
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agram and spectral properties for atomic “spins” in multi-
mode cavities assuming that the cavity mode functions and
(fixed) positions of the atoms can be chosen so that the effec-
tive “spin-spin” interactions become random and frustrated. It
was shown that a quantum phase transition in the universality
class of the (solvable) infinite-range Ising quantum spin glass
[15, 16] occurs, potentially enabling comparison between ex-
periment and the theory of spin glasses. In a related paper
[17], Gopalakrishnan et al. provided experimental details and
detection methods for the spin glass phase.

In the present paper we explore quantum glassiness in
the charge or density sector of itinerant fermionic atoms in
multi-mode cavities. An important difference to the previous
study [14] consists in the inclusion of hopping of atoms on
the lattice; the resulting phase diagram now depends on the
quantum statistics of the itinerant particles. Related bosonic
versions (Bose Hubbard models coupled to cavity photons)
were considered in Ref. 19, wherein a superradiant Mott in-
sulating phase, displaying entanglement of the charge of the
atoms with a cavity mode, was found. Degenerate fermions
interacting with a single cavity mode were also considered
previously [20, 21].

Our calculations provide evidence that multi-mode cavities
with degenerate fermionic atoms can quantum-simulate vari-
ous phases and properties of infinite-range glasses that share
several properties with Efros-Shklovskii Coulomb glasses in
the quantum regime.

For a single-mode cavity coupled to itinerant bosonic atoms
[4], the onset of superradiance is concomitant with transla-
tional symmetry breaking and the formation of a charge den-
sity wave with a period of the cavity photon wavelength. The
glassy ordering of fermionic atoms in multi-mode cavities can
instead be understood as the formation of one out of many en-
ergetically low-lying amorphous charge density patterns in a
random linear combination of cavity modes. Most of these
amorphous density orderings are metastable and the ensuing
slow relaxation dynamics should in principle be measurable
as a response to probe laser fields.

Glassy phases of fermions have long been predicted to exist
in Coulomb frustrated semiconductors, so-called electron- or
Coulomb glasses [22]; in our case, the fermionic atoms play
the role of the electrons in these earlier studies. In these elec-
tronic systems frustration results naturally from a competition
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between long range Coulomb repulsions and the random po-
sitions and energies of impurity sites. While the former favor
a regular density pattern, such as in a Wigner crystal, the latter
disrupt this order and provoke a non-crystalline density order.
The competition of these two ingredients leads to many long-
lived metastable configurations with very slow relaxation dy-
namics between them. This structure of phase space entails
remarkable out-of-equilibrium properties such as memory ef-
fects and logarithmic relaxation persisting over many hours
[23, 24] which are also present in quantum electron glasses ap-
proaching a metal insulator transition [25], and were reported
to persist even in the metallic phase [26, 27].

An important hallmark of such insulating electron glasses
is the Efros-Shklovskii gap in the single particle density of
states in the glassy phase, whose elementary charge excita-
tions are strongly Anderson localized. Such a pseudogap is
required by the stability of metastable states in the presence
of unscreened long range interactions [28]. Remarkably, the
amorphous ordering of the glass softens the hard gap –that
would exist in a regularly ordered system– just to the maxi-
mal extent which is still compatible with stability, leaving the
glass in an interesting state of criticality [29, 30]. This critical-
ity results in a widely distributed response to a local excitation
and avalanches [32], features which occur also in mean field
spin glasses [33, 34]. This criticality survives in the presence
of weak quantum fluctuations (non-zero tunneling amplitude
between sites in electron glasses or spontaneous spin-flips in-
duced by a transverse field in spin glasses). It entails gapless
collective excitations despite the absence of a broken contin-
uous symmetry. Eventually the glass order melts at a critical
value of the hopping or transverse field [16, 47, 52, 53].

A common assumption is that the delocalization of the
fermionic quasiparticles, i.e. the insulator-to-metal transition,
co-incides with the disappearance of glassy dynamics, giving
way to a disordered Fermi liquid. However, it is also possi-
ble that these two transitions are separated. The Anderson
delocalization of the fermionic quasiparticles may precede
the melting of the glass, in which case we obtain a metallic
glass with non-zero conductivity at zero temperature. Such
a glassy state with metallic conduction was obtained in dy-
namical mean field theory by Dobrosavljevic and collabora-
tors [35, 36]. Moreover, the fact that glassy phases may also
exist in phases with good transport properties was recently
shown in models of frustrated bosons [18, 44, 45] where a
’superglass’ phase with microscopically coexisting superfluid
and glassy density order exists. In the context of Coulomb
frustrated systems in condensed matter (without disorder), an
intermediate metallic phase with periodic, striped density or-
der (”conducting crystal”) was discussed by Spivak and Kivel-
son [37].

A. Overview of key results and outline of paper

In the present paper, we argue that two types of glassy
phases, a metallic glass and an insulating Anderson-Efros-
Shklovskii glass also exist for fermions with random infinite-
range interactions (see Fig. 1). For low densities, we find that

the metallic glass is avoided; instead, the liquid abruptly tran-
sitions to the localized glass state (see Fig. 2).

Our metallic glass state should not be confused with the
metallic glass of metallurgy. In the latter materials, the glassy
physics is entirely due to classical atoms freezing into out-
of-equilibrium configurations, and the metalllic conduction is
due to conduction electrons which move in the background of
the frozen atoms. In contrast, in our system, the glassy dy-
namics and metallic conduction are due to the same fermionic
degrees of freedom, which are electrons in the condensed mat-
ter realizations, and fermionic atoms in quantum optics real-
izations.

In Sec. II, starting from a Jaynes-Cummings type Hamil-
tonian for itinerant fermions coupled to cavity photons, we
derive the fermionic model that we study in this paper:

H = − t
∑
〈i, j〉

(
c†i c j + h.c.

)
−

N∑
i=1

(εi − µ)ni −
1
2

N∑
i, j=1

Vi jnin j ,

(1)

which contains a short-range hopping term t, disordered,
random onsite energies εi, and long-range, random density-
density interactions Vi j mediated by photons.

In Fig. 1, we show the phase diagram of this model at mod-
erate density, n = O(1), as a function of effective onsite dis-
order (W̃ defined in Eq. (26)) and photon-mediated interac-
tion strength (J) in units of hopping t. For small effective
onsite disorder W̃ & 0, as the interaction is increased, the
disordered Fermi liquid (FL) becomes unstable to the forma-
tion of an irregular, glassy density pattern, which depends on
the interactions mediated by the random cavity modes. How-
ever, the irregular density waves do not gap the Fermi surface,
but leave the fermions metallic, with a finite conductivity in
the low temperature limit. The glassy charge density order
is marginally stable, which leads to soft collective density
excitations. The scattering of fermions from collective den-
sity modes leads to some non-Fermi liquid properties (such as
finite-temperature transport) but the fermionic quasiparticles
remain well-defined. The quantum glass transition and prop-
erties of the metallic glass are analyzed with effective field
theory methods in Sec. V.

Upon further reduction of the hopping, or increase of inter-
actions, the random Hartree potential generated by the frozen
density pattern starts to localize the quasiparticles and induces
an Anderson insulator. The latter has strongly suppressed dif-
fusion, which is expected to vanish at T = 0. At this point,
the metallic background vanishes, leaving behind an insulat-
ing charge glass with a spatially strongly fluctuating frozen-
in density distribution. This phase and an estimate for the
transition point (J/t)c,loc for a 3d cubic lattice is presented in
Sec. III. We will show there that for low fermion densities,
at equilibrium, the metallic glass is avoided and the Fermi
liquid transitions discontinuously to a localized glass phase.
Nevertheless, even at lower densities, the metallic glass may
be experimentally observable, as it is expected to exist as a
long-lived metastable phase, which eventually will nucleate
the energetically more favorable localized glass.

In Fig. 1, the metallic glass “strip” is predicted to separate
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FIG. 1: (Color online) Schematic phase diagram of model (1) for
moderate densities in the vicinity of half-filling n ≈ 1/2 . J2 is the
variance of the long-range disorder Vi j, and W̃2 the variance of the ef-
fective onsite disorder, Eq. (26). The black, dashed line is the metal-
insulator transition. The blue line is the glass transition. Quantitative
computations in this paper are restricted to the W̃ = 0 axis, while the
nature of the transition lines around the Anderson transition (J = 0)
are inferred from scaling considerations in Sec. VI. The localization
transition from the metallic glass to the Anderson-Efros-Shklovskii
glass and the signatures of this insulating glass phase are discussed
in Sec. III. We describe the Fermi liquid to metallic glass transition
and the properties of the metallic glass phase in Sec. V.
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FIG. 2: (Color online) Schematic phase diagram of Eq. (1) for small
effective onsite disorder (W̃ = 0) as a function of fermion density n.
Below the crossing point (yellow dot) of the metal-insulator transi-
tion (black-dashed line) and the glass transition (blue), the transition
becomes first order. The Fermi liquid and the metallic glass may still
exist (as long-lived metastable states) to the right of the dashed line.

the AES glass from the Fermi liquid even close to the Ander-
son transition at (J = 0, W̃loc). In that regime, as we explain in
Sec. VI, the quantum glass transition is sensitive to the fractal
nature of the fermionic wavefunctions close to the Anderson
transition.

In Sec. VII, we conclude with a unifying discussion about
the potential of many-body cavity QED as a quantum sim-
ulator of long-range quantum glasses exhibiting freezing in
different sectors (spin, fermionic charge, bosonic charge). We
also outline interesting open questions for future research.

II. MODEL

We consider spinless lattice fermions coupled to multiple
cavity photon modes. The absorption of cavity photons (rep-
resented by canonical bosonic creation and annihilation op-
erators a†, a) raises the internal state of the fermions from
a ground state (represented by canonical fermion creation and
annihilation operators c†g, cg) to an excited state (c†e , ce). In ad-
dition, a classically-treated pump laser coherently drives tran-
sitions between the ground state and the excited state. The
Hamiltonian operator,

H[c†g, cg, a, c†e , ce] = Hatom + Hphoton + Hpump, (2)

consists of three terms. The first one describes itinerant
fermions on a d-dimensional (optical) lattice with i = 1, ...,N
sites with short-range, nearest-neighbor (〈i, j〉) hopping t
(taken to be the same for ground and excited state):

Hatom = − t
∑
〈i, j〉

(
c†i,gc j,g + c†i,ec j,e + h.c.

)
+

N∑
i=1

(−µ + ∆) ni,e +

N∑
i=1

(
εi,g − µ

)
ni,g . (3)

Here µ is the chemical potential, and ni,g = c†i,gci,g are density
operators for the atoms in the ground state, and analogously
for the excited state. The single-particle energy of the ground
state, εi,g, can be chosen as the energy reference point.

Following Maschler et al. [46], we write our equations in a
frame rotating with the frequency of the pump laser and ∆ de-
scribes the atom-pump detuning which can generally be cho-
sen larger than the kinetic energy ∆ � t.

We further have M cavity photon modes with frequencies
ω` and spatially non-uniform atom-photon couplings gi` that
generally depend on the atom’s site i and the characteristics of
the cavity photon mode `. Finally, we have a pump term with
amplitude hi that does not involve photon operators:

Hphoton =

M∑
`=1

ω`a
†

`
a` −

N∑
i=1

M∑
`=1

gi`

(
c†i,eci,ga` + c†i,gci,ea†

`

)
,

Hpump = −

N∑
i=1

hi

(
c†i,eci,g + c†i,gci,e

)
. (4)

The excited state can be adiabatically eliminated. In the afore-
mentioned regime of large atom-pump detuning, one can ig-
nore the dependence of the effective ground state interactions
on the dynamics and spatial propagation of the excited state
[46]. Therefore, the εi,e do not appear in the parameters of the
resulting effective Hamiltonian, which reads:

H[c†g, cg, a] = − t
∑
〈i, j〉

(
c†i,gc j,g + h.c.

)
+

N∑
i=1

εi,g − µ +
h2

i

∆

 ni,g

+

M∑
`=1

ω`a
†

`
a` +

N∑
i=1

M∑
`=1

gi`hi

∆
ni,g

(
a` + a†

`

)
+

N∑
i=1

M∑
`,m=1

gi`gim

∆
ni,ga†

`
am . (5)
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We drop the subscript g from now on. We include the expec-
tation value of the term in the last line as a contribution to the
single-particle energies,

εi =

M∑
`,m=1

gi`gim

∆
〈a†
`
am〉 + εi +

h2
i

∆
. (6)

In a final step, we integrate out the photons from Eq. (5) and
get the expression:

H
[
c†, c

]
= − t

∑
〈i, j〉

(
c†i c j + h.c.

)
+

N∑
i=1

(εi − µ) ni −
1
2

N∑
i, j=1

Vi jnin j .

(7)

The long-range density-density interaction written in a path
integral representation

Vi j(Ω) = 2
M∑
`=1

gi`g j`hih j

∆2

ω`

Ω2 + ω2
`

(8)

makes the dependence on the bosonic Matsubara frequency
Ω explicit [73]. The magnitude of Vi j is proportional to the
amplitude of the driving laser hi and can therefore be tuned
flexibly. The sign and spatial dependence of Vi j is determined
by the choice of mode profiles of the cavity modes and pump
lasers as well as the orientation of the lattice within the cavity.

In this paper, we are primarily interested in the case where
the photon mode functions gi`g j` in Eq. (8) can be realized as
randomly varying in sign and magnitude in each disorder re-
alization and with M sufficiently large, we assume the Vi j(Ω)
to be Gaussian-distributed with variance

δVi j(Ω)δVi′ j′ (Ω′) =
(
δii′δ j j′ + δ ji′δi j′

)
V(Ω,Ω′)/N. (9)

The overline represents a disorder average, and δVi j is the
variation from the mean value. Such a mean value only shifts
the chemical potential and can be dropped. Further, we as-
sume in this paper that couplings between different sites are
uncorrelated.

We note that it should also be possible to generate ran-
dom and frustrated interactions of longer range by using other
means than random cavity modes. For example one might
employ a second fermion species to generate RKKY-type in-
teractions among the primary fermion species. As in metallic
spin glasses, such interactions decay as a power-law with dis-
tance and oscillate with periods of the Fermi wavelength of
the second species, which induces frustration.

In the calculations below, the results only depend on the
variance, which respects time-translation invariance

V(Ω,−Ω) ≡ J2(Ω) . (10)

To capture the main effects, as in Ref. 14, we may assume the
simplified form:

J(Ω) = 2v2ω0/
(
Ω2 + ω2

0

)
, (11)

where ω0 is a prototypical photon frequency representative
of the spectral range of photons that mediate the inter-atomic

interaction and v the disorder strength. For most of the paper
we will concentrate on frequencies Ω � ω0 and work with
the static limit of the couplings

δVi jδVi′ j′ =
(
δii′δ j j′ + δ ji′δi j′

)
J2/N,

J ≡ J(0) =
2v2

ω0
. (12)

The photon contribution to the single-particle energies in
Eq. (6) and the pump term generate random local potentials
for the fermions, which may additionally be superposed by a
random lattice potential. We summarize all these effects by
assuming random (Gaussian-distributed) onsite energies with
independently tunable variance

δεiδε j = δi jW2 . (13)

III. INSULATING ANDERSON-EFROS-SHKLOVSKII
GLASS

In the absence of hopping, t = 0, the Hamiltonian
(7) reduces to the classical Sherrington-Kirkpatrick (SK)
model [58] of localized ”spins” (describing presence or ab-
sence of a particle). This spins are subject to a random longi-
tudinal field εi, and kept at fixed “magnetization” M = 2n − 1
where n is the fermion density. The low temperature glass
phase of this model is understood in great detail. As illus-
trated by the red graph in Fig. 3, a typical configuration of this
glass exhibits a linear soft gap in the distribution

P(ϕ) =

〈
1
N

N∑
i=1

δ(ϕ − ϕi)
〉
≈ α
|ϕ|

J2 , |ϕ| . J, (14)

of local Hartree fields

ϕi ≡
dH
dni

= εi − µ −
∑
j,i

Vi jn j, (15)

with coefficient α ≈ 4 · 0.31 = 1.24 [59, 60] and Gaussian
decay for |ϕ| � J. The brackets 〈...〉 stand for the thermody-
namic average. As compared to the canonical SK model an
extra factor of 4 arises because we consider Ising degrees of
freedom with magnitude sz

i ≡ ni − 1/2 = ±1/2. Remarkably,
the soft gap (14) at low fields is universal, that is, independent
of the strength of the random fields and the average magneti-
zation (density) [31]. A similar soft gap, the Efros-Shklovskii
Coulomb gap [28] is also known to exist in electron glasses
with Coulomb interactions [31, 35].

A. Anderson-Efros-Shklovskii (AES) glass with quantum
fluctuations/finite hopping (t , 0)

Upon turning on quantum fluctuations via a finite hopping
t , 0, the fermions hop within the disorder potential of the
above discussed Hartree fields. We refer to the eigenener-
gies of the resulting single particle problem as single parti-
cle excitations. In the limit t → 0 the latter are completely
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FIG. 3: (Color online) Sketch of the evolution of the distribution
of single particle energies ρ(E) in arbitrary units as the hopping t
increases. In the classical Efros-Shklovskii limit, t = 0 (red solid
curve), ρ(E) coincides with the distribution of Hartree fields, which
exhibits a linear pseudogap. In the localized AES glass at finite hop-
ping (blue, dot-dashed curve) a pseudogap with vanishing density of
states at the Fermi level ρ(0) = 0 persists. A finite density of states
at E = 0 emerges when the quasiparticles delocalize and the system
turns metallic. The dip in the density of states at low energy gradu-
ally weakens as t increases.

localized and their energies coincide with the local Hartree
fields. As long as the hopping stays below a critical value
(t < tloc), the fermionic atoms remain Anderson-localized.
In that regime the single particle density of states in a given
local minimum of the glass has to vanish at the Fermi level
(down to energies of order 1/

√
N, at T = 0), otherwise the

state would be unstable with respect to charge rearrangements.
This follows from arguments analogous to those for quantum
Coulomb glasses [28, 40–42]. As a consequence, in a typi-
cal AES glass state, the linear compressibility (the analogue
of zero-field-cooled susceptibility in spin glasses) vanishes,
even though the full thermodynamic (field-cooled) compress-
ibility is finite. Despite the vanishing linear compressibility,
there is no hard charge gap, as there are charge excitations at
any finite energy. The qualitative evolution of the distribution
of single particle energies with increasing hopping is sketched
in Fig. 3.

We now explain the key differences of the AES glass to
other previously discussed glass phases and describe its trans-
port properties.

(Quantum) electron glass: The glassy electrons in strongly
doped semiconductors are localized mostly due to quenched
potential disorder, whereas in the case of the AES glass the po-
tential is mostly interaction-induced and thus self-generated.
If W̃ could be made to vanish, the localization would be en-
tirely induced by the random interactions in a glassy frozen
state. Both, the quantum electron glasses and the AES glass
have linearly suppressed density of states at low energies.

Anderson or Fermi glass: In these localized insulators,
where quenched external disorder dominates, the quasiparti-
cles are localized despite the presence of weak short range

interactions. The bosonic analogues of such insulators are
often referred to as Bose glasses [38, 39]. Both fermionic
and bosonic version of these glasses onsite-disorder dom-
inated and do not exhibit glassiness in the sense of hav-
ing many metastable configurations separated by high multi-
particle barriers, except if strong interactions are present in
addition to the disorder potential. Another difference is that
the strong interactions in the AES glass cause gapless collec-
tive modes, which are absent in less strongly correlated Fermi
and Bose glass insulators.

Mott glass: In fermionic lattice systems at commensurate
filling with strong nearest-neighbor interactions and disorder,
this Mott glass arises as an intermediate phase which is in-
compressible due to a hard charge gap, but has a finite AC
conductivity σ(ω) at any positive frequency [43]. The main
contribution to σ(ω) comes from local particle-hole excita-
tions, which become gapless due to disorder. The AES glass
is very different from this Mott glass, in that it has no hard
charge gap, exists at any filling and does not rely on external
potential disorder.

Ising spin glass in transverse field: If the occupation of
sites ni = 0, 1 is thought of as an Ising variable, the model (7)
looks similar to a mean field Ising spin glass in a transverse
field Γ. The difference with the model considered in this paper
consists mostly in the way in which quantum fluctuations act
on top of the classical SK glass. This entails however a crucial
difference of the respective phases to expect for weak long
range interactions, as we will explain below.

The transverse field SK model is well known to undergo
a quantum glass transition from a glass to a quantum disor-
dered state at a critical value Γ ∼ J. The spins undergo glassy
freezing when their interaction strength is bigger than the in-
verse polarizability of the softest two level systems. One can
show that the thermodynamic glass transition persists in the
presence of random longitudinal fields (the equivalent of the
disorder potential εi in Eq. (7)), even though the latter spoils
the Ising symmetry of the system. The glass transition then
has the character of an Almeida-Thouless transition, like for
mean field spin glasses in an external homogeneous or ran-
dom field. The only symmetry which is broken at this transi-
tion is the replica symmetry, which is rigorously established
to occur in models with infinite-range interactions, while it
remains controversial in finite-dimensional, short range inter-
acting systems.

If the Ising states of a spin are thought of as two states of
a localized fermion (two-level systems), the transverse field
SK model describes interacting, but fully localized fermions.
It follows from the above discussion that such systems have a
non-glassy insulating phase. However, for our model a regime
of localized but non-glassy fermions cannot exist. The reason
is that there is no mechanism which gaps single fermion exci-
tations away from zero energy, in contrast to the finite tunnel-
ing amplitude Γ of two level systems which does gap the local
excitations. Therefore, in the model considered here, the gap-
less low-energy fermionic states are always unstable to glass
formation for any small infinite range interactions Vi j (a sim-
ilar argument was put forward in Ref. 36). This is why the
AES glass in Fig. 1 above W̃loc extends all the way to the axis
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J = 0.
Transport properties: The main contribution to the finite

temperature transport in the AES glass comes from inelastic
scattering of the quasiparticles, with an inelastic rate which is
expected to decrease as a power law of T . At low T , where this
rate becomes smaller than the level spacing in the localization
volume of the fermions, the charge transport is expected to
proceed first by power law hopping, and at lowest T by vari-
able range hopping, assisted by inelastic processes among the
fermions. This type of transport is drastically less efficient
than in the metallic glass of Section V. In the AES glass, the
resistivity that should diverge with vanishing T . At the same
time thermal transport may still be rather good due to collec-
tive density modes, which remain delocalized.

It is tempting to speculate that, upon advancing the tech-
niques of Ref. 62 to many-body cavity QED, the next gener-
ation of experiments could measure also the transport proper-
ties of neutral, glassy fermions.

IV. DELOCALIZATION TRANSITION OUT OF THE
ANDERSON-EFROS-SHKLOVSKII GLASS AT W̃ ≈ 0

As mentioned above, in the localized, insulating phase the
Efros-Shklovskii stability argument assures a vanishing den-
sity of single particle states at the Fermi level. However, the
latter becomes finite when the quasiparticles delocalize at the
insulator-to-metal transition, where diffusive transport behav-
ior sets in. This takes place when the hopping becomes com-
parable to the typical potential difference between a site and
its neighbors. A precise calculation of this transition would
require the solution of the glass problem including quantum
fluctuations, to obtain the distribution of effective onsite dis-
order, and the subsequent analysis of a delocalization transi-
tion of quasiparticles. However, an estimate for the critical
value

(
J
t

)
c,loc

, below which the system behaves metallic, can
be obtained as follows.

A. Moderate density: n ∼ O(1)

Even if W̃ of Eq. (26) is negligible, the soft gap in the
Hartree potentials acts like a rather strong onsite disorder for
the fermions. To discuss delocalization at the Fermi level we
need to consider sites with Hartree potentials of the order of
the hopping ε . t. At such energies, the density of states in
the soft gap can be roughly approximated by the constant den-
sity of states of a box-distributed onsite potential of width WJ
given by

WJ ≈
1

P(ϕ ≈ t)
≈

J2

αt
. (16)

For a box distribution of onsite disorder, Anderson delocaliza-
tion of quasiparticles on a cubic lattice in d = 3 dimensions is
known to occur at a critical disorder strength [55](Wc

t

)
3d

= ZU ≈ 16.54. (17)

From this we may infer an estimate for the delocalization tran-
sition out of the insulating glass phase at( J

t

)
c,loc
&

√
αZU ≈ 4.6. (18)

In this rough estimate we have neglected quantum fluctuations
of the density order in the localized phase which are expected
to increase the value of (J/t)c,loc further. This is because they
weaken the density inhomogeneity and thus the onsite disor-
der generated by the interactions.

B. Low density: n � 1

At low fermion densities, n � 1, the pseudogap is irrel-
evant for the delocalization transition because the gap is re-
stricted to very small energies, far below the hopping strength
needed for delocalization. The frozen fields (15) have a typi-
cal magnitude WJ ∼

√
nJ. If this is the dominant contribution

to disorder (i.e., for weak external disorder, W . WJ), the de-
localization instability arises in the glass phase when t ∼ WJ,
i.e., when the interactions are reduced below the value

(J/t)loc ∼ n−1/2. (19)

At larger external disorder, delocalization happens when t ∼
W, independently of the interaction strength J. However, the
interaction strength (19) is parametrically smaller than the in-
stability (J/t)met ∼ n−5/6 of the Fermi liquid toward the metal-
lic glass, which we will derive below in Eq. (44). This implies
that at low densities, beyond the yellow, tri-critical points of
Fig. 2, the localized glass state jumps discontinuously into a
non-glassy Fermi liquid via a first order transition. The lo-
cation of that transition can be estimated by considering the
competition of kinetic energy cost ∼ t and potential energy
gain ∼

√
nJ of transforming the Fermi liquid into a fully lo-

calized glass state. This yields

(J/t)1st ∼ n−1/2, (20)

which scales in the same way with density as the delocaliza-
tion instability of the localized phase, but is physically distinct
from it. However, since the interactions are essentially infinite
ranged, the system cannot simply nucleate a localized glass
droplet locally, but has to undergo the localization transition
more or less at once in the whole system. This suggests that
the Fermi liquid phase is a very long lived metastable state,
even far beyond the equilibrium transition point (J/t)1st.

V. METALLIC GLASS AT W̃ ≈ 0

In this section, we develop an effective field theory ap-
proach for the Fermi liquid to metallic glass transition (the
blue line for W̃ ≈ 0 in Fig. 1) and compute key properties of
the metallic glass. We can write the path integral pendant to
Eq. (7) in terms of collective Hubbard-Stratonovich fields for
charge fluctuations ρi(τ) and N Lagrange multipliers αi which
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enforce ρi(τ) = c̄i(τ)ci(τ), where c̄, c are Grassmann variables
representing the fermion fields and T will denote temperature.
With this field content, the partition function corresponding to
the model of Eq. (7), Z =

∫
DαDρDc̄Dc e−

(
S0+Sint

)
, is deter-

mined by the action

S0 =

∫ 1/T

0
dτ

N∑
i=1

c̄i(τ) (∂τ − µ) ci(τ)

−

∫ 1/T

0
dτ

∑
〈i, j〉

t
(
c̄i(τ)c j(τ) + c̄ j(τ)ci(τ)

)
,

Sint = −
1
2

N∑
i, j=1

∫ 1/T

0
dτ

∫ 1/T

0
dτ′Vi j(τ − τ′)ρi(τ)ρ j(τ′)

+

N∑
j=1

∫ 1/T

0
dτ iα j

(
c̄ j(τ)c j(τ) − ρ j(τ)

)
+ ρ j(τ)ε j . (21)

In order to streamline notation, we will use
∑

signs for all
lattice site summations and integrations over imaginary time.

We now integrate out the fermions, performing a cumulant
expansion in the terms ∝ α to obtain an effective action for the
density fields Z =

∫
DαDρ e−S[α,ρ] with

S[α, ρ] = −
1
2

∑
i, j,τ,τ′

Vi j(τ − τ′)ρi(τ)ρ j(τ′) +
∑

j,τ

ρ j(τ)ε j

−
∑

j,τ

α j(τ)
(
〈n j(τ)〉0 − ρ j(τ)

)
+

1
2

∑
i, j,τ,τ′

αi(τ)α j(τ′)〈ni(τ)n j(τ′)〉0 + ... , (22)

where 〈...〉0 denotes the quantum and thermal average with re-
spect to the non-disordered free fermion action S0. We intro-
duce the auxiliary Hubbard-Stratonovich density fields ρi as
an intermediate step to make the physics more transparent and
to make contact with our previous work [14]. As in Ref. 14,
we will later integrate them out again to obtain an action for
the order parameter fields Qab

i . In App. A, we present an al-
ternative route to derive the final self-consistency equations
(38-40), which offers insight into the nature of the approxi-
mations made below.

We proceed by integrating over α, without keeping explicit
track of the higher-order terms in α denoted by the dots in
Eq. (22). Below we drop those corrections. However, the
alternative approach in App. A can in principle resum them,
at the expense of replacing the bare density-density correla-
tor Eq. (24) with the full proper “polarizability” [15]. By
dropping the interaction corrections to the latter, we operate
at a level equivalent to the approximation used by Miller and
Huse for the closely related infinite-range quantum spin glass
problem [15]. Those authors obtained a good estimate for
the quantum glass transition point when compared with more
elaborate studies [56, 57] .

It is convenient to express the resulting action in terms of lo-
cal fluctuations in the onsite density δρi(τ) = ρi(τ)−〈ni(τ)〉0 ≡

ρi(τ) − n:

S[ρ] =
1
2

∑
i, j,τ,τ′

δρi(τ)
[
−Π(0)

]−1

τ,τ′,i, j
δρ j(τ′) (23)

−
1
2

∑
i, j,τ,τ′

δρi(τ)Vi j(τ − τ′)δρ j(τ′) +
∑
τ,i

δρi(τ)ε̃i + ... ,

with the bare density-density correlator denoted by

Π
(0)
i, j,τ,τ′ = 〈ni(τ)n j(τ′)〉0 . (24)

The effective onsite disorder consists of two terms

ε̃i = εi −
∑
j,τ′
〈n j(τ′)〉0Vi j(τ − τ′) . (25)

Focusing on low frequencies we neglect the retardation, and
find the disorder variance from Eqs. (9, 13) as:

δε̃i δε̃ j = δi j

(
W2 + J2(0)〈nk〉

2
)
≡ δi jW̃2 . (26)

The dots in (23) stand for interactions between more than two
δρi.

We proceed by employing standard replica methods [48] to
average over the disorder configurations of the Vi j(Ω) and εi.
The resulting inter-replica interaction term ∼ δρ4 proportional
to the variance of Vi j is non-local in both, imaginary time and
position space. We decouple this terms with an inter-replica
matrix-valued Hubbard-Stratonovich field, that depends on
two frequencies, Qab

i (Ω,Ω′) ↔ δρa
i (Ω)δρb

i (Ω′), which is bi-
local in imaginary time, but local in position space. Finally,
we write the n-times replicated, disorder-averaged partition
function Zn =

∫
DQDρ e−S̄ with the action

S̄ =
1
2

∑
i, j,τ,τ′,a

δρa
i (τ)

[
−Π(0)

]−1

τ,τ′,i, j
δρa

j (τ
′) −

∑
i,τ,τ′,a,b

W̃2

2
δρa

i (τ)δρb
i (τ′)

+ T 2
∑

i, j,Ω,Ω′,a,b

V(Ω,Ω′)
N

[
1
4

Qab
i (Ω,Ω′)Qab

j (−Ω,−Ω′)−

1
2

Qab
i (−Ω,−Ω′)δρa

j (Ω)δρb
j (Ω

′)
]
. (27)

In the end we will take the replica limit n → 0 to ex-
tract quenched averages. The dots stand for further replica-
diagonal interactions between several δρi, which are generated
by the higher order cumulants in Eq. (22).

Incorporating local disorder into the polarizability, which
replaces Π

(0)
i, j,τ,τ′ in a complete solution will actually generate

replica off-diagonal terms in Π that self-consistently depend
on W̃ and J2(0)〈n〉2. This significantly complicates the anal-
ysis. As announced above, we restrict here formally to the
W̃ = 0 slice of Fig. 1, and defer the quantitative analysis of
onsite-disorder effects to future work [74].

A. Saddle-point free energy (W̃ = 0)

Without any truncation in the cumulant expansion (22), the
functional integration would yield results for the correlators
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of δρ that automatically obey the Pauli principle. However,
after a truncation the latter might be violated. In order to
proceed with a saddle-point analysis, we introduce into the
action a global Lagrange multiplier λa conjugate to density
fluctuations, enforcing that correlation functions still obey the
Pauli principle on average. Namely, λa is determined self-
consistently so that the equality

N∑
i=1

〈δρa
i (τ)δρa

i (τ)〉 = Nn(1 − n) (28)

is satisfied. The lefthand side can be viewed as the variance
of the binomial probability distribution of N lattice sites being
either occupied (ρi = 1) with probability n or empty (ρi = 0)
with probability 1 − n. We recall that n is the average density.
n = 0 corresponds to an empty band, n = 1/2 to half-filling,
and at n = 1 the band is filled.

This global constraint is analogous to the “spherical” ap-
proximation in spin glasses. It can be shown that relaxing the
(exact) local constraints to a global constraint does not affect
the quantum critical behavior [16, 49–51].

Noticing that the action in Eq. (27) is quadratic in the ρ-
variable, we can integrate it out exactly. Note that the bare
density correlator Π

(0)
τ,τ′,i, j only depends on the differences in

time (|τ − τ′|) and space (|i − j|). The resulting action has a
prefactor N, the number of atoms, and thus, a saddle-point
evaluation becomes exact. The free energy

F = − lim
n→0

lim
N→∞

T
Nn

ln Zn , (29)

becomes a functional of the order parameter field

Qab(τ, τ′) ≡
1
N

∑
i

Qab
i (τ, τ′) =

1
N

∑
i

〈δρa
i (τ)δρb

i (τ′)〉 (30)

and the Lagrange multipliers λa. Assuming that on the sad-
dle point the latter take a replica-symmetric value λ, the func-
tional takes the form F = limn→0

1
nF n with

F n(Qab, λ) =
T
4

∑
a,b,Ω

J2(Ω)
∣∣∣Qab(−Ω,Ω)

∣∣∣2 − λ (1 − n) n

+
T
2

∑
ω,q

trab ln
[ ([
−Π(0)(Ω,q)

]−1
+ 2λ

)
δab

− J2(Ω)Qab(−Ω,Ω)
]
, (31)

where trab denotes the trace over replica indices and the dots
stand for the neglected terms mentioned above. We have im-
posed time-translational invariance of Qab:

Qab(Ω,Ω′)→ Qab(Ω,Ω′)δΩ+Ω′,0/T.

As long as we are primarily interested in the critical behav-
ior and the properties of a single typical state close to the glass
transition, we may proceed with a replica symmetric calcula-
tion, even though the replica-symmetric saddle point is strictly

speaking unstable towards the breaking of replica symmetry.
The latter signals the emergence of many pure states in the
glass phase, the breakdown of full thermalization, i.e., ergod-
icity breaking and the associated out-of-equilibrium phenom-
ena at long time scales. As we show in App. A, the glass
instability conditions obtained below (Eq. 38,43) indeed sig-
nal the instability of a replica symmetric saddle-point toward
replica symmetry breaking.

For the Qab fields, the following ansatz is natural:

Qab(Ω,−Ω) = D(Ω)δab +
δΩ,0

T
qEA . (32)

Here, the Edwards-Anderson order parameter qEA shows up
both in diagonal and off-diagonal entries of Qab. This ansatz
in terms of qEA and the (site- and disorder-averaged) dynamic
density response D(Ω) is the most general one, respecting
replica symmetry and time-translational invariance.

A non-zero value of qEA signals a frozen-in density distri-
bution of the atoms:

qEA = lim
t→∞

1
N

∑
`

〈
δρ`(t)δρ`(0)

〉
.

In the glass phase, the spatially non-uniform on-site densi-
ties differ randomly from their average value (depending on
the state into which the glass freezes) and retain that value
for infinitely long times. As in any glass, these frozen den-
sity patterns are expected to depend sensitively on the details
of the quench protocol or the preparation history in general.
Note however, that only in the case of vanishing effective dis-
order, W̃ = 0, qEA serves as an order parameter for the glass
transition. In the more realistic case of finite onsite disorder,
W̃ , 0, the system still exhibits a thermodynamic glass tran-
sition, as do mean field spin glasses in random fields, but the
only symmetry to be broken in that case is the replica symme-
try, since density inhomogeneities already exist in the Fermi
liquid phase (cf. App. A).

The average dynamic density response,

D(Ω) =
1
N

∑
`

〈
δρ`(Ω)δρ`(−Ω)

〉
, (33)

characterizes the response of the fermions to local, time-
periodic modulations of the density. In terms of the
parametrization (32), the free energy (31) obtains as

F =
T
4

∑
Ω

J2(Ω)|D(Ω)|2 +
1
2

J2(0)D(0)qEA − λ (1 − n) n

+
T
2

∑
Ω

∫
ddq

(2π)d ln
[ [
−Π(0)(Ω,q)

]−1
+ 2λ − J2(Ω)D(Ω)

]
−

1
2

∫
ddq

(2π)d

 J2(0)qEA[
−Π(0)(Ω,q)

]−1
+ 2λ − J2(0)D(0)

 .
(34)

This free energy depends on the microscopic parameters of
the original fermionic theory via the bare density response

〈ni(τ)n j(τ′)〉0 = T
∑

Ω

∫
ddq

(2π)d e−iΩ(τ−τ′)+iq(xi−x j)Π(0)(Ω,q) ,

(35)
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where Π(0) is the real part of the particle-hole bubble, i.e. the
convolution of two bare fermion propagators:

Π(0)(Ω,q) = Re
[
− T

∑
ω

∫
ddk

(2π)d G0(ω + Ω,k + q)G0(ω,k)
]

= Re
[ ∫

ddk
(2π)d

f (ξk) − f (ξk+q)

iΩ −
(
ξk+q − ξk

) ] , (36)

with f (x) = 1/(exp[x/T ] + 1) the Fermi function and ξk the
fermion lattice dispersion. For a 3d cubic lattice, for instance

ξk = −2t
(
cos kx + cos ky + cos kz

)
− µ , (37)

with t the nearest-neighbor hopping matrix element and µ the
chemical potential which fixes the lattice filling (µ = 0 for
half-filling, that is, n = 1/2).

From the free energy functional (34) we will extract the
phase boundary between the Fermi liquid and the metallic
quantum charge glass and the associated quantum-critical dy-
namics of the density correlations. Minimization of Eq. (34)
with respect to qEA, λ and D(Ω) for each Ω, yields a set of
coupled saddle-point equations. The derivative with respect
to D(Ω) for Ω > 0 together with the derivative with respect to
qEA requires the density response to obey the selfconsistency
relation

D(Ω) =

∫
ddq

(2π)d

1[
−Π(0)(Ω,q)

]−1
+ 2λ − J2(Ω)D(Ω)

. (38)

The lefthand side, when written as a geometric series, can be
seen to express the self-consistent resummation of all cactus
diagrams in the interactions Vi j. Minimization of Eq. (34)
with respect to λ gives back the global constraint on density
fluctuations:

T
∑

Ω

D(Ω) + qEA = n(1 − n) . (39)

Finally, the minimization with respect to D(0) determines the
Edwards-Anderson parameter self-consistently:

qEA =

∫
ddq

(2π)d

J2(0)qEA([
−Π(0)(0,q)

]−1
+ 2λ − J2(0)D(0)

)2 . (40)

For vanishing interactions, J(Ω) = J(0) = 0, we have qEA = 0
and Eqs. (38,39) have the free fermion solution:

D(0)(Ω) =

∫
ddq

(2π)d

[
−Π(0)(Ω,q)

]
λ = 0 . (41)

Indeed, for free fermions, the constraint T
∑

Ω D(0)(Ω) =

n (1 − n) is automatically fulfilled, and thus λ(J = 0) = 0.
Note that Eq. (40) is a variant of the general glass instability

condition:

J2

N

∑
i j

χ̂2
i j(Ω = 0) = 1 (42)

where χ̂ is the full density-density correlator. In Appendix A,
we present an alternative route to derive Eqs. (38-40,42).
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FIG. 4: (Color online) Numerically computed phase boundary of the
metallic glass for various densities and W̃ = 0. The crosses corre-
spond to data points computed from a simultaneous solution of the
saddle-point equations (38,39,43); they are connected as a guide to
the eye. Note that the phase boundary to the insulating glass is not
plotted (see Fig. 2 for an illustration of both phase boundaries).

B. Numerical results for metallic glass: phase diagram and
density response

We now compute the glass transition line (Fig. 4) and the
associated density response (Fig. 5), assuming no effective on-
site disorder W̃ = 0 on a 3d-cubic lattice. We simultaneously
solve Eqs. (38, 39) together with the criticality condition de-
rived from Eq. (40) (where it permits a solution with infinites-
imal qEA):

1 =

∫
ddq

(2π)d

J2(0)([
−Π(0)(0,q)

]−1
+ 2λc,glass − J2(0)D(0)

)2 .

(43)

This criticality has an important consequence for the dynamic
response. By writing D(Ω) = D(0) − δDΩ, and expanding
Eq. (38) around Ω = 0, we find that the condition (43) entails
a more singular low frequency behavior δDΩ ∼

√
|Ω|, as com-

pared to the behavior of the bare density response δD(0)
Ω
∼ |Ω|.

This is illustrated by the explicit solution of D(Ω) on a fre-
quency grid in Fig. 5. Eq. (39) with finite qEA, and more
general arguments presented below ensure that this criticality
extends into the glass phase. We will present an approximate
analytical calculation of D(Ω) at the glass transition and in the
metallic glass phase in the following subsection V C.

For the numerical solution of these equations we discretized
D(Ω) on a frequency grid with varying step size up to a
hundred grid points exploiting D(Ω) = D(−Ω). We em-
ployed a modified version of Powell’s Hybrid method algo-
rithm for multi-dimensional root-solving [54]. For the 3d-
numerical momentum integrations of the right-hand-sides,
we employed the VEGAS Monte Carlo algorithm [54]. To
avoid 6-dimensional integrations at each step of the multi-
dimensional root solver, the momentum-integrated particle-
hole bubble was catalogued as 4-dimensional array and then
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FIG. 5: (Color online) Comparison of the collective density response
as a function of imaginary frequencies in units of the hopping t at
the glass transition (blue crosses on the frequency grid computed
from saddle-point equations (38,39,43), and its bare pendant from
Eq. (41). The slope of the low energy response in the glass phase is
singular, with a

√
|Ω| behavior for small frequencies.

“quadru-linearly” interpolated in the integrands for the 3-
dimensional q-integration (see App. B for some excerpts of
Π(0)(Ω, qx, qy, qz)).

The resulting phase boundary between Fermi liquid and
metallic glass is plotted in Fig. 4 for various fermion densi-
ties. Along the phase boundary the glass transition is of con-
tinuous nature, i.e. with a continuous onset of the Edwards-
Anderson parameter qEA (in the case W̃ = 0). Like in quan-
tum spin glasses, but in contrast to structural glasses (super-
cooled liquids), the dynamic freezing and the thermodynamic
glass transition are thus expected to coincide. Accordingly
one expects the replica symmetry breaking pattern within the
glass phase to be continuous (full replica symmetry breaking)
which ensures criticality and the existence of gapless collec-
tive modes [52].

One can see from Eq. (43) that as a function of density,
the glass instability of the Fermi liquid occurs when J ∼
(Π0(n)n1/2)−1. Using that Π0(n) ∼ n/EF(n) ∼ n1−2/d/t, we in-
fer that in dimensions d = 3 the glass instability of the Fermi
liquid scales as

(J/t)met ∼ n−3/2+2/d = n−5/6 (44)

at low densities. This scaling with the fermion density is
confirmed by the numerical results of Fig. 4. However, as
we argued in Sec. IV B, at lower densities (beyond the yel-
low tricritical points in Fig. 1), this instability is pre-empted
in equilibrium by a first order transition which takes place
at (J/t)1st ∼ n−1/2 � (J/t)met. Nevertheless, the Fermi liq-
uid phase should remain experimentally relevant even at these
low densities, since it is very difficult to nucleate the localized
insulator out of the metastable Fermi liquid phase, owing to
the high nucleation barrier imposed by the long range interac-
tions.

The glass transition, Fig. 4, and the associated emergence of
a singular density response, Fig. 5, are that of the universality

class of infinite-range, metallic quantum Ising spin glasses.
Those are characterized by the interaction- and disorder-
induced freezing of Ising degrees of freedom in the presence
of a metallic charge sector with gapless fermionic excitations,
which damp the order parameter fluctuations. This was orig-
inally put forward in the context of metallic spin glasses by
Sachdev, Read, and Oppermann [53], as well as by Sengupta
and Georges [49]. Later on this universality class was further
analyzed in the form of a Landau theory for a mean field ver-
sion of the electron-glass transition out of the Fermi liquid to
by Dalidovich and Dobrosavljević [47].

C. Dynamic density response in the metallic glass

It is instructive to derive an approximate analytical solu-
tion for D(Ω) neglecting the q-dependence of the particle-
hole bubble in Eq. (38). To this end we take Π(0)(Ω,q) →
Π(0)(Ω,Q) with a fixed, prototypical Q , 0 different from any
potential nesting vectors, |Q| < 2|kF|. Then, Eq. (38) becomes
a quadratic equation for the (approximate) density response,
which we call DQ(Ω). It can be solved in closed form:

DQ(Ω) =

[
−Π(0)(Ω,Q)

]−1
+ 2λ

2J2(Ω)
−√√ [−Π(0)(Ω,Q)

]−1
+ 2λ

2J2(Ω)

2

−
1

J2(Ω)
. (45)

where we chose the physical solution with minus-sign
in front of the square-root, ensuring that DQ(Ω) decays
to zero for large frequencies. Recall that the particle-
hole bubble becomes zero for large external frequencies:
lim|Ω|→∞ Π(0)(Ω,Q) → 0. The criticality condition, Eq. (43)
for fixed momentum Q, applied to Eq. (45), yields: λc,glass =

J(0) − 1
2

[
−Π(0)(0,Q)

]−1
, and DQ(0)c,glass = 1

J(0) . At the glass
transition DQ(Ω) develops a singular response to small fre-
quency pertubations of the local fermion density. The approx-
imate energy scale

∆ =

√√λ +

[
−Π(0)(0,Q)

]−1

2

2

− J2(0) (46)

controls the distance to the transition and separates two qual-
itatively distinct regimes in the dynamic density response of
the Fermi liquid.

Continuing Eq. (45) to real frequencies, iΩ → Ω + i0+, we
obtain:

−Im DQ(Ω) ∼
{ √

Ω , Ω � ∆ ,
Ω , Ω � ∆ .

(47)

The self-consistency condition (39) pins ∆ = 0 in the en-
tire glass phase, and the density response remains singular at
zero frequency. This property holds true independently of the
above approximations, as can be formally derived assuming
full replica symmetry breaking in the glass phase [52].
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The key ingredient for the unusual square-root behavior for
both, DQ(Ω) and the full D(Ω) of Fig. 5, is the coupling of
the collective charge fluctuations to the metallic particle-hole
continuum which coexists with glassy, amorphous density or-
der. The low frequency behavior of the particle-hole bubble
(see Fig. 6 in the appendix) at finite momentum transfer Q:

Π(0)(Ω,Q) − Π(0)(0,Q) ∼ |Ω| , (48)

underlies Eq. (47) and also enters into the numerical compu-
tation of Fig. 5.

D. Fermionic quasiparticles in the metallic glass

The single-particle properties of the underlying fermions in
systems belonging to the universality class of infinite-range,
metallic quantum Ising glasses have been worked out by Sen-
gupta and Georges [49]. At T = 0, at the critical point and
in the glass phase, the fermions remain well-defined quasi-
particles. Indeed, the leading self-energy correction due to
low frequency charge fluctuations scale as

Σ f (ω) ∼ ω3/2 , (49)

with a frequency exponent > 1. Nevertheless, at finite tem-
peratures this translates into non-analytic corrections in the
transport properties. The finite-temperature resistivity, for ex-
ample, scales as δρ(T ) ∼ T 3/2 in the quantum-critical regime
above the QCP [49] and in the entire metallic quantum glass
phase. Deeper in the glass phase, the metallic diffusion even-
tually breaks down when the localization transition to the
Anderson-Efros-Shklovskii glass of Sec. III is reached.

VI. PHASE BOUNDARIES OF THE METALLIC GLASS AT
W̃ > J

In the preceding section we have argued for a metallic glass
phase at moderate densities and weak external disorder. How-
ever, also when the effective onsite disorder W̃ is larger than
the infinite-range interaction J, we expect an intermediate
metallic glass phase “strip” between the Fermi liquid and the
AES glass, as shown in Fig. 1. Below we will present scaling
arguments to justify this scenario, with both transitions at the
borders of the metallic glass “strip” (the metal-insulator tran-
sition on “top” and the glass transition on the “bottom”) being
continuous.

For vanishing interactions J = 0, the two instability lines
must join at the Anderson transition of the disordered free
fermions, where W̃loc/t = Wloc/t = 21.29 (for Gaussian dis-
order at half filling [55]). In the presence of weak interac-
tions, the frozen fields from the glassy density order tend to
increase the disorder variance by δ(W2) . J2, which has a
similar effect as a weak increase of disorder δW ∼ J2/W. Ac-
cordingly one expects the critical value W/t for delocalization
to decrease by a relative amount

δ
[W

t

]
loc
≡

[W
t

](0)

−

[W
t

](J)

loc
∼ −

( J
W

)2

, (50)

since stronger hopping is necessary to compensate for the ex-
tra disorder.

A. The role of fractality for the glass transition

On the other hand, we have to analyze the glass instability
(42) within the metallic phase. In the limit J → 0, it holds that
χ̂ → χ(J = 0), which reduces to the (exact) susceptibility of
non-interacting fermions. As noted in Ref. 36, the sum over
susceptibility squares,

χ2 ≡
1
N

∑
i j

χ2
i j(Ω = 0) (51)

diverges at the Anderson transition. This implies a glass in-
stability already within the metallic phase, even for very weak
interactions J � t,W. To the best of our knowledge, the pre-
cise divergence of χ2, or equivalently, of χ2

i j, as
[

W
t

]
→

[
W
t

](0)

loc
,

is not known. However, the disorder-averaged density-density
correlator has been well studied, since it reveals interesting
properties of the fractal nature of the electronic wavefunctions
and the anomalous diffusion at the Anderson transition [64].
In particular, the spatial Fourier transform of χi j(Ω = 0) be-
haves as

χq(Ω→ 0) ≡ D(q,Ω→ 0) ∼
1

δξ f (|q|ξ)
, (52)

where ξ is the correlation length, which diverges at the Ander-
son transition as ξ ∼ (1− t/tc)−ν; δξ = 1/νξd is the single parti-
cle level spacing in the correlation volume and ν is the density
of states. The scaling function f (x) behaves as [63, 65]

f (x) ∼ xd2 , x � 1, (53)
f (x) ∼ x2, x � 1. (54)

Here, d2 is the fractal dimension associated with the distri-
bution of |ψ4(x)| over all space, ψ(x) being a critical single
particle wavefunction at the delocalization transition. From
this one obtains that

χ̂2 ≡
1
N

∑
i j

χi j(Ω = 0)
2

=

∫
ddq

(2π)d χq(Ω = 0)
2

∼ ξ2(d−d2) ∼ (1 − t/tc)−α̂ . (55)

The exponent results as α̂ = 2ν(d − d2) ≈ 4, using the known
values d2[d = 3] ≈ 1.3 [64, 66] and ν = 1.57. [55]

It is reasonable to expect that χ2 ∼ (1 − t/tc)−α needed in
Eq. (51) diverges at least as fast as χ̂2, and thus α ≥ α̂. Hence
we expect that the glass instability is displaced from the non-
interacting Anderson transition by an amount

δ
[W

t

]
met
≡

[W
t

](0)

−

[W
t

](J)

met
∼ −

( J
W

)2/α

. (56)

Comparing with Eq. (50) and noting that α > 1, one sees
that as J → 0 the glass instability line approaches the non-
interacting Anderson transition from smaller values of (W/t)
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than the delocalization instability, as indicated in Fig. 1. These
arguments confirm the existence of an intermediate phase,
with metallic diffusion and glassy density order, between the
disordered Fermi liquid and Anderson localized glass.

VII. CONCLUSION

Based on the calculations and arguments of this paper and
a previous work [14], we believe that many-body cavity QED
could evolve into a new platform to explore the physics of
long-range quantum glasses. The long range of the photon-
mediated interactions simplifies the theoretical analysis for
these systems; this may allow for quantitative comparison be-
tween experiment and theory. Our work complements previ-
ous proposals on glassy many-body systems in quantum op-
tics [71, 72] which have focussed onto the creation of onsite
disorder or random short range exchanges by using random
optical lattices and species admixture.

In Ref. 14, we predicted a quantum spin glass transition
of fixed, stationary atoms where the source of quantum fluc-
tuations was spontaneous tunneling between suitable chosen
internal states of the atoms. In the present paper, we have con-
sidered itinerant fermions where the source of quantum fluc-
tuations is tunneling between adjacent lattice sites. We have
found a metallic glass phase with a gapless Fermi sea in the
presence of random density order and, for stronger interac-
tions, a localized state with strongly random charge distribu-
tions and vanishing conductivity at T = 0.

Various aspects of the phase transitions into and out of these
glass phases are worth further studies: One is to quantify fur-
ther the impact of the fractality of wavefunctions close to the
Anderson transition and compute the critical exponent α with
which the glass instability line approaches the non-interacting
Anderson transition point.

It would be interesting to study rapid quenches of the inter-
action strength from the ergodic Fermi liquid into the insulat-
ing glass phase similar to experiments on silicon 2d electron
gases, where gate-controlled quenches of the electron density
across the metal-insulator transition entailed very slow, glassy
relaxation of the measured transport properties [27]. Repeated
ramps from the Fermi liquid phase into the glass phase should
produce metastable states with a different density pattern at
each run. The resulting variations in absorption images could
be particularly strong, and therefore perhaps easier to detect,
in the low density regime where the glass and localization
transition is of first order.

What happens when one considers models of type Eq. (1)
with bosonic atoms? Numerical simulations [44, 45] and
replica calculations [18] for similar models agree on the ex-
istence of a stable “superglass” phase with superfluid phase
coherence in the presence of glassy random density order. It
is tempting to identify the superglass as the bosonic pendant
to the metallic fermion glass. However, at finite temperatures,
the domain of the superglass (cf. Fig. 1 of Ref. 18) is reduced
because the main effect of thermal fluctuations is to weaken
the superfluid phase coherence of the bosons. For fermions,
on the other hand, the domain of the metallic glass increases

at finite T because the main effect of thermal fluctuations is to
enhance the inelastic scattering rate and to weaken the local-
izing disorder potential.

We described the disordered atom-light quantum phases us-
ing an effective equilibrium ground-state description. In opti-
cal cavities, one deals with pumped, steady-state phases cer-
tain features of which may not be captured in an effective equi-
librium description [11, 68, 69]. We hope to address the non-
equilibrium properties of open, disordered Dicke models in
the near future in a forthcoming paper. We also want to an-
alyze how the intriguing properties of classical and quantum
glasses such as aging (see Ref. 70 and references therein), or
out of equilibrium dynamics and avalanches [33] are modified
in the open, driven, steady-states in many-body cavity QED.

Finally, it will be interesting to investigate how the results
of this paper and Ref. 14 behave upon varying the number of
cavity modes and their profiles.
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Appendix A: Alternative derivation of the glass instability
equations (38,43,42)

1. Replica approach

Here we formally derive the glass instability for arbitrary
onsite disorder using the replica approach. We start from
model (7). Replicating n times and taking the disorder av-
erage and introducing Hubbard Stratonovich fields to decou-
ple the quartic density interactions, one obtains the replicated
partition function

Zn =

∫ ∏
a,i,τ

Dc̄a
i (τ)Dca

i (τ)
∏

a≤b,τ,τ′
DQab(τ, τ′) exp[−SQ − Sc]

(A1)

with the action

Sc =

n∑
a=1

∫ 1/T

0
dτ

N∑
i=1

c̄a
i (τ) (∂τ − µ) ca

i (τ)

+

n∑
a=1

∫ 1/T

0
dτ

∑
〈i, j〉

t
(
c̄a

i (τ)ca
j (τ) + c̄a

j (τ)ca
i (τ)

)
−

1
2

n∑
a,b=1

∫ 1/T

0
dτ dτ′

[
W2 + J2(τ − τ′)Qab(τ, τ′)

]
na

i (τ)nb
i (τ′) ,

SQ =
N
4

n∑
a,b=1

∫ 1/T

0
dτ dτ′J2(τ − τ′)Q2

ab(τ, τ′) . (A2)
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In the thermodynamic limit (N → ∞), the infinite range of
the interactions allows us to take the saddle point with respect
to Qab, which satisfy the saddle point equations

Qab(τ, τ′) =
1
N

∑
i

〈na
i (τ)nb

i (τ′)〉 . (A3)

(Note the slightly different definition of Q as compared to Qab
defined in Eq. (30).) From here on we neglect the retardation
in the mediated coupling J(τ − τ′) and replace it simply with
J. As usual, the saddle point values of Qab are independent
of τ, τ′ for a , b, and depend only on τ − τ′ for the replica
diagonal Qaa. In the disordered, replica symmetric phase the
term W̃2 ≡ W2 + J2Qa,b can be recognized as the variance
of the self-consistent effective disorder (25). Note that since
Qa,b ≥ 〈n〉2, the effective disorder never really vanishes, un-
less εi and Vi j have special correlations.

To detect a glass instability one has to solve first the saddle
point equations of the disordered phase. This yields a replica
symmetric solutionQRS

ab (τ, τ′) which encodes the Edwards An-
derson overlap

qEA ≡ Q
RS
a,b =

1
N

∑
i

〈ni〉
2 , (A4)

and the average local susceptibility,

QRS
aa (τ − τ′) − qEA =

1
N

∑
i

〈ni(τ)ni(τ′)〉c ≡ χloc(τ − τ′) .

(A5)

The glass instability is found by writing Q = QRS + δQ
and expanding the free energy in δQ. A standard cumulant
expansion yields

Zn[QRS + δQ] = exp[−N(βFRS + δ(βF))] , (A6)

which by virtue of the extremality of QRS starts with a
quadratic term. The glass instability is signalled by the vanish-
ing of the coefficient of the term δQ2

ab (the mass of the replicon
mode),

0 = (βJ)2 −
J4

N

∑
i, j

〈∫
dτdτ′ni,a(τ)n j,a(τ′)

〉2

c

≡ (βJ)2

1 − J2

N

∑
i, j

χ̂2
i j

 . (A7)

Hereby the correlator

χ̂i j =

∫
dτ

〈
ni,a(τ)n j,a(0)

〉
c
, (A8)

has to be evaluated with the replica symmetric action.
Eq. (A7) is to be compared with Eqs. (42,43).

2. Cavity approach: local selfconsistent action

In this subsection we derive the glass instability conditions
from a selfconsistent local action derived within a cavity ap-
proach. We start from the action (21), and split it into single

particle and interaction part S = S1 + SV ,

S1 =

∫ 1/T

0
dτ

N∑
i=1

c̄i(τ) (∂τ + ε̃i − µ) ci(τ)

−

∫ 1/T

0
dτ

∑
〈i, j〉

t
(
c̄i(τ)c j(τ) + c̄ j(τ)ci(τ)

)
,

SV = −
1
2

N∑
i, j=1

∫ 1/T

0
dτ

∫ 1/T

0
dτ′Vi j(τ − τ′)×

(ni(τ) − 〈ni〉)(n j(τ′) − 〈n j〉) , (A9)

where ni(τ) ≡ c̄i(τ)ci(τ), and

ε̃i = εi −
∑
j,i

Vi j(Ω = 0) 〈n j〉. (A10)

We now take advantage of the infinite range nature of the in-
teractions, to transform the above problem exactly into a self-
consistent single-site problem with retarded density-density
interactions. The extra contribution to the disorder (A10) can
be treated as an additional Gaussian disorder with variance
J2〈ni〉

2 = J2
(
n2 + 〈ni〉

2
c)

. This type of disorder is essentially
unavoidable in the system. Note that if it does not vanish,
ε̃i , 0, there are density inhomogeneities already in the dis-
ordered phase, i.e., 〈ni〉 , 〈n j〉 for i , j. Unfortunately this
renders the exact evaluation of the self-consistency problem
very hard, and one has to resort to approximations in order to
obtain quantitative results.

Upon average over Vi j a subsequent Hubbard Stratonovich
transformation and a saddle point approximation, one finds
that the interaction term can be resummed as

S′V =
∑

i

(ni(τ) − 〈ni〉)R(τ − τ′)(n j(τ′) − 〈n j〉), (A11)

with the kernel

R(Ω) = J2(Ω)
1
N

∑
j

〈n j(Ω)n j(−Ω)〉S1+S′V
≡ J2(Ω)χloc(Ω),

(A12)

where the average local susceptibility χloc must be found self-
consistently.

When computing the density-density correlator

χ̂i j(Ω) ≡ 〈ni(Ω)n j(−Ω)〉S1+S′V
, (A13)

with the self-consistent action, one should be aware, however,
that the above resummation does not include terms which con-
tain a given coupling Vi j only once within the expansion in
interactions. Those are indeed irrelevant upon site or disorder
averaging. However, they cannot be neglected when the glass
susceptibility is computed,

χglass =
1
N

∑
i j

χ2
i j(Ω = 0). (A14)
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A glass transition manifests itself by a divergence of this sus-
ceptibility, which in mean field systems signals the emergence
of ergodicity breaking in the form of many pure states, and
replica symmetry breaking. In this formula χi j is the full
density-density correlator. To the relevant order in Vi j it can be
obtained from χ̂i j by the summation of the geometric series,

χi j = χ̂i j +
∑
k,`

χ̂ikVk`χ̂` j + ... . (A15)

Upon taking the square and summing over all pairs of sites
one finds

χglass =
1

1 − J2

N
∑

i j χ̂
2
i j(Ω = 0)

, (A16)

which diverges when the denominator vanishes, reproducing
Eq. (A7).

In mean field glasses, the continuous breaking of replica
symmetry ensures usually that the condition (A16) remains
fulfilled, even within the glass phase, where χ̂i j is to be inter-
preted as the density-density correlator within one metastable
state (and contributions from single couplings dropped). This
was explicitly shown in the case of the infinite range trans-
verse field Ising spin glass [52]. This phenomenon of main-
tained marginal stability is at the basis of the permanent gap-
lessness of the quantum glass phase.

3. Generalized Miller-Huse type analysis

Following a reasoning similar to the one by Miller and
Huse [15] for the transverse field spin glass, we formally com-
pute the local density-density correlator χ̂ in a perturbation se-
ries in the interaction action SV . The perturbation series for
the correlator χ̂ can be formally summed up as a geometric se-
ries of local interactions R(τ− τ′) linking ”proper polarizabil-
ity” blobs Πi j(τ− τ′) that cannot be reduced into two separate
pieces by cutting a single R-line,

χ̂i j(Ω) = Πi j(Ω) +
∑

k

Πik(Ω)R(Ω)Πk j(Ω) + ...

=

[
1

Π−1(Ω) − R(Ω)

]
i j
. (A17)

The proper polarizability has itself a power series expansion
in R. To lowest order one has simply

Πi j(Ω) = χ(0)
i j (Ω) + O(R), (A18)

where χ(0) denotes the non-interacting density-density corre-
lator,

〈ni(Ω)n j(−Ω′)〉J=0 =: χ(0)
i j (Ω)δΩ,Ω′ . (A19)

As derived above in Eqs. (A7,A16), the glass transition oc-
curs when

1 =
J(0)2

N
Tr

[
Π−1(Ω = 0) − R(Ω = 0)

]−2
. (A20)

In the approximation where we neglect the effective disorder,
ε̃i = 0, in the quantum disordered phase, one has translational
invariance, which allows one to work in Fourier space.

The average local density-density correlator,

D(Ω) =
1
N

∑
i

χ̂ii(Ω) =
1
N

Tr
[
Π−1(Ω) − R(Ω)

]
, (A21)

must satisfy the selfconsistency condition

R(Ω) = J2(Ω)D(Ω). (A22)

It must also obey the constraint∫
dΩ

2π
D(Ω) =

1
N

∑
i

(ni(τ) − 〈ni〉)2 (A23)

=
1
N

∑
i

〈ni〉(1 − 〈ni〉) = n(1 − n) − [〈ni〉
2 − n2].

In the absence of onsite disorder, the last term in brackets
vanishes. The constraint (A23) is fulfilled automatically by
an exact solution. However, if D is evaluated within an ap-
proximate scheme, e.g. with the help of Eqs. (A17,A18), one
should impose this constraint to obtain a better approximation.
In particular, we can satisfy the short time constraint (A23) by
adding an adjustable short-time component λ to the relation
J2(Ω)(D(Ω) − λ) = R(Ω), to correct for the errors at high fre-
quencies introduced by the approximations involved in com-
puting D. The better the approximation, the smaller will be
the λ required to enforce the short time constraint. This recipe
turns out to be essentially equivalent to the global constraint
we introduced in Sec. V A.

We thus have to solve simultaneously∫
dΩ

2π
D(Ω) = n(1 − n) − [〈ni〉

2 − n2], (A24)

and

D(Ω) =
1
N

Tr
(

1
Π−1(Ω) − J2(Ω)[D(Ω) − λ]

)
. (A25)

The glass transition arises when

1 =
J(0)2

N
Tr

(
1

Π−1(0) − J2(0)[D(0) − λ]

)2

=
∂

∂[D(0)]
1
N

Tr
(

1
Π−1(0) − J2(0)[D(0) − λ]

)
. (A26)

The latter relation leads to a singular behavior of D(Ω) around
Ω → 0, as one may see by expanding Eq. (A25) around Ω =

0, very similarly as in quantum spin glasses [15, 52] . This
singularity ensures the presence of spectral weight ImD(Ω→
ω + iδ) at all finite real frequencies ω.

The three last equations are to be compared with Eqs. (38-
40) to which they reduce in the translationally invariant case.
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FIG. 6: (Color online) |Ω| behavior of the particle-hole bubble,
Eq. (36), as a function of external frequency in units of the hopping t
for fixed momentum transfer Q.

FIG. 7: (Color online) Exemplary momentum behavior of the static
(Ω = 0) particle-hole bubble, Eq. (36), at half-filling in 3 dimensions.

Appendix B: Particle-hole bubble as function of external
frequency and momenta

In Fig. 6, we display the particle-hole bubble as a function
of external frequency for fixed momentum transfer. The low-
frequency part behaves as |Ω| as alluded to in Eq. (48).

In Fig. 7, we plot an exemplary Ω = 0 bubble as func-
tion of momenta as occurring in the saddle-point equations
(38,39,43). As expected, the dominant contributions come
from momenta in the vicinity of the nesting condition q ≈
Qnest = (π, π, π). Although logarithmically divergent at q =

Qnest, the right-hand-side of the saddle-point equations re-
mains regular as it involves an additional 3-dimensional in-
tegration over q.
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1034 (1999).
[34] P. Le Doussal, M. Müller, and K. Wiese, EPL 91, 57004 (2010);

arXiv:1110.2011 (2011).
[35] A. A. Pastor and V. Dobrosavljević, Phys. Rev. Lett. 83, 4642
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