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We propose a new witness operation for the non-classical character of a harmonic oscillator state.
The method does not require state reconstruction. For all harmonic oscillator states that are clas-
sical, a bound is established for the evolution of a qubit which is coupled to the oscillator. Any
violation of the bound can be rigorously attributed to the non-classical character of the initial
oscillator state.
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I. INTRODUCTION

Quantum mechanics is fundamentally different from
classical mechanics. Interference of probability ampli-
tudes, superposition of states, uncertainty relations be-
tween canonically conjugate variables, etc., are essential
quantum phenomena that are not present within the clas-
sical theory. If a state of a system exhibits any such
intrinsically quantum feature, the state is called non-
classical [1].
For a given physical system, quantitatively categoriz-

ing the states into classical and non-classical is usually
challenging. In this report, we are interested in catego-
rizing the states of a harmonic oscillator. Any harmonic
oscillator state can be written in the coherent state diag-
onal representation [2, 3]:

ρ =

∫

d2αP (α)|α〉〈α|, (1)

where |α〉 is a coherent state. Within the fundamen-
tal limits imposed by the uncertainty relation between
the position and the momentum, a coherent state cor-
responds as closely as possible to a classical harmonic
oscillator of a definite complex amplitude. For this rea-
son, a coherent state can be considered to be classical. A
natural definition of classicality based on this observation
was introduced by Glauber [3]. He proposed that if P (α)
is a valid probability measure, the state ρ can be thought
of as a statistical mixture of various classical states and
thus is classical itself. On the other hand, if P (α) is not
a valid probability measure, the state ρ is non-classical.
We will adopt this definition of non-classicality of a har-
monic oscillator state.
There are many ways of checking whether the P dis-

tribution corresponding to a given oscillator state fails
to be a valid probability measure. For example, one can
perform a complete state tomography to find out what
ρ is [4, 5]. Knowing the state, one can then derive the
P distribution. Such an approach, although possible in
principle, is difficult to carry out in practice because the
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inverse relation connecting the distribution to the state
involves an integral with an exponentially diverging fac-
tor [6]:

P (α) =
e|α|

2

π2

∫

d2γ e|γ|
2

〈−γ|ρ|γ〉e−γα∗+γ∗α. (2)

Because of the diverging term, any experimental error
gets exponentially enhanced [7]. For this reason, instead
of performing a full state tomography, one generally looks
for non-classicality witnesses that signify P as an invalid
probability measure. Some of these witnesses are anti-
bunching [8], sub-Poissonian statistics [9, 10], quadra-
ture squeezing [11], slower decay of the characteristic
function of the rotated quadrature distribution than the
characteristic function of the ground state [12], negative
Wigner distribution of the oscillator state [5], violation
of Bochner’s criterion for the existence of a valid positive
semidefinite characteristic function of the P distribution
[12, 13], etc.

II. WITNESSING NON-CLASSICALITY

THROUGH A QUBIT COUPLED TO THE

OSCILLATOR

In this report, we propose another observable signa-
ture of non-classicality of an oscillator state. We longi-
tudinally couple the oscillator to a qubit with the joint
Hamiltonian given by:

H = ~
ω0

2
σz + ~ωa†a+ ~ωβ(a+ a†)σz , (3)

where ω0 and ω are the qubit and oscillator frequencies
and β is a dimensionless, constant coupling parameter.
The oscillator operators, a and a†, are the annihilation
and creation operators respectively and the qubit oper-
ator, σz , is a Pauli matrix. This Hamiltonian is differ-
ent from the Rabi Hamiltonian where the qubit-oscillator
coupling is through σx.
Because of the qubit-oscillator interaction, it is possi-

ble to learn about the initial state of the oscillator by fol-
lowing the evolution of the qubit. The method of recon-
structing an arbitrary oscillator state by looking into the
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dynamics of an interacting few level system was proposed
in [14]. Later, using an interacting qubit, the method
of state reconstruction was developed in areas of cavity
QED [15–22], circuit QED [23, 24], trapped ions [25, 26]
and nano-mechanical resonators [27, 28].
It was shown by Tufarelli, et al., that by using a Hamil-

tonian that is similar to Eq. (3), one can reconstruct the
entire state of the oscillator [28] . This state reconstruc-
tion method is experimentally extremely challenging as
it requires a predefined, deterministic modulation of the
coupling strength in time. Also in the reconstruction
procedure, it is necessary to be able to change the am-
plitude of modulation in different experimental runs. In
the present report, we propose a different method of wit-
nessing the oscillator state non-classicality through the
qubit dynamics that can be carried out using a constant
coupling parameter, β.
We assume that the qubit and the oscillator states are

initially separable and their joint state is given by:

ρqo = ρq ⊗ ρo,

=

(

z(0) w(0)
w∗(0) 1− z(0)

)

⊗

∫

d2αP (α)|α〉〈α|. (4)

The oscillator state, ρo, is the state whose non-classicality
we want to investigate. The rows and columns of the
qubit state are defined in the basis: |+〉 and |−〉, where
σz |±〉 = ±|±〉. The parameters, z and w, defining the
matrix elements of the qubit are related to the expec-
tation values of the Pauli matrices: z = (〈σz〉 + 1)/2,
w = (〈σx〉 − i〈σy〉)/2.
Using the Hamiltonian, Eq. (3), the time evolution

of the joint state, ρqo, can be found. The qubit state
can be evaluated by tracing over the oscillator degrees
of freedom from the time evolved joint qubit-oscillator
state:

ρq(t) = Tro{e
−iHt/~ρqoe

iHt/~}. (5)

The diagonal terms of the qubit density matrix, writ-
ten in the σz eigenbasis, do not change in time, i.e.
z(t) = z(0). This is because σz is a constant of motion:
[σz , H ] = 0. For the off-diagonal terms, we find:

w(t) = e−iω0tg(t)w(0), (6)

where g(t) depends only on the oscillator degrees of free-
dom and is defined as

g(t) =Tro{e
−iH+t/~ρoe

iH−t/~},

=

∫

d2αP (α)

× Tro{e
−iH+t/~|α〉〈α|eiH−t/~}, (7)

where

H± = ~ω
(

a†a± β(a+ a†)
)

. (8)

The H± operators correspond to the Hamiltonians of dis-
placed harmonic oscillators. So, one can evaluate g(t)
analytically to get:

g(t) = e−8β2 sin2(ωt
2 )

∫

d2αP (α)

× e−4iβ(αe−iωt/2+α∗eiωt/2) sin ωt
2 ,

= e−8β2 sin2(ωt
2 )

∫

d2αP (α) f(α, t), (9)

= e−8β2 sin2(ωt
2 )W (t), (10)

where we have defined

f(α, t) = e−4iβ(αe−iωt/2+α∗eiωt/2) sin ωt
2 , (11)

and

W (t) =

∫

d2αP (α) f(α, t). (12)

If we look at the absolute value of the function g(t),
we get from Eq. (9):

|g(t)| = e−8β2 sin2(ωt
2 )

∣

∣

∣

∫

d2αP (α) f(α, t)
∣

∣

∣
,

≤ e−8β2 sin2(ωt
2 )

∫

d2α
∣

∣

∣
P (α) f(α, t)

∣

∣

∣
. (13)

If P (α) is a valid probability measure, we can write

∣

∣

∣
P (α) f(α, t)

∣

∣

∣
= P (α)

∣

∣

∣
f(α, t)

∣

∣

∣
. (14)

Putting Eq. (14) in Eq. (13) and using the fact that
|f(α, t)| = 1 and

∫

d2αP (α) = 1, we get:

|g(t)| ≤ e−8β2 sin2(ωt
2 )

∫

d2αP (α),

= e−8β2 sin2(ωt
2 ). (15)

Using this upper bound for g(t) in the expression for the
off diagonal element of the qubit density matrix, Eq. (6),
we get:

|W (t)| ≡ e8β
2 sin2(ωt

2 )
∣

∣

∣

w(t)

w(0)

∣

∣

∣
≤ 1. (16)

Note that w(t) and thus |W (t)| can be experimentally
measured by measuring the expectation value of the
qubit observables, σx and σy , as a function of time.
Inequality (16) is the main result of the paper and

we call it the non-classicality witness inequality (NCWI).
The inequality states that if the oscillator state is such
that the associated P distribution is a proper probability
measure implying Eq. (14) to be correct, |W (t)| is always
bounded from above by unity. Thus if |W (t)| > 1, we
know for sure that the initial oscillator state, ρ0, is non-
classical.
Two remarks are in order at this point. First, it can be

shown that W (t) is related to the characteristic function
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of the P distribution [29]. This suggests that Eq. (16)
is related to the criterion for observing non-classicality
through measuring the probability distribution of rotated
quadratures [12]. The second remark is just that a viola-
tion of the NCWI is only a sufficient but not a necessary
condition for determining whether a state is non-classical,
i.e., a state can be non-classical and still not violate
the witness inequality (see the examples of Fock states,
vacuum subtracted thermal states and Schrödinger Cat
states in the next section).

III. EXAMPLES

To illustrate the above statements, we calculate |W (t)|
for various initial oscillator states.

Coherent state: The P distribution for a coherent
state, say |α0〉, is Pcoh(α) = δ2(α−α0). Corresponding to
Pcoh(α), we have |Wcoh(t)| = 1. Thus, no coherent state
ever violates the NCWI. This is required for consistency
because by our definition a coherent state is considered
to be a classical state.

Thermal state: For a thermal state with mean excita-
tion number n̄, the P distribution is given by:

Pth(α) =
1

πn̄
exp (−|α|2/n̄). (17)

We see that Pth(α) is a Gaussian probability distribu-
tion and thus a thermal state with arbitrary n̄ can be
considered classical. Using Pth(α), we get

|Wth(t)| = e−16n̄β2 sin2(ωt
2 ). (18)

In agreement with our intuition that a thermal state is
a classical state, we see that |Wth(t)| is always less than
one and thus never violates the NCWI.

Fock state: The P distribution for a Fock state, |N〉,
is

PN (α) =
exp (αα∗)

N !

(

∂2N

∂αN∂α∗N
δ2(α)

)

. (19)

Because PN (α) forN > 0 involves derivatives of the delta
function and is more singular than the delta function
itself, each Fock state, except the ground state, is non-
classical. Calculating WN (t) using PN (α), we get:

|WN (t)| =
∣

∣

∣
LN

(

16β2 sin2
ωt

2

)

∣

∣

∣
, (20)

where LN (x) is a Laguerre polynomial.
In Fig. 1, we plot |WN (t)| for various values of N and

for a given constant coupling strength, β = 0.5. Noting
that |WN (t)| is a periodic function, we plot |WN (t)| only
for a single period. We see from the figure that for some
Fock states, e.g. for N = 1 and 10, the NCWI is violated.
This agrees with the non-classical nature of these Fock
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FIG. 1. (Color online) The function |WN(t)| for β = 0.5 and
various values of N . We clearly see that |WN (t)| violates the
NCWI indicating that Fock states are non-classical states.

states. On the other hand, it is important to note that
for any given coupling strength, not all Fock states will
violate the NCWI. For example, in Fig. 1, no violation is
shown by |W0(t)| and |W15(t)|. However, this result does
not suggest that some Fock states are classical. This
point is further examined in the following examples of
vacuum subtracted thermal state and superposition of
classical states. By looking at the asymptotic expression
of a Laguerre polynomial for largeN [30], it can be shown
that for a given coupling strength, β, the NCWI will not
be violated for highly excited Fock states.

Vacuum subtracted thermal state: We now consider the
state

ρ′th =

∞
∑

N=1

2−N |N〉〈N |. (21)

The above state corresponds to a thermal state with
unit mean excitation number and from which the vac-
uum state has been discarded. The P distribution for
this state is

P ′
th(α) =

2

π
exp (−|α|2)− δ2(α). (22)

We see that P
′

th(α) has a negative measure at α = 0
[3]. This implies that ρ′th is a non-classical state. Corre-

sponding to P
′

th(α), we have

|W ′
th(t)| = |2e−16β2 sin2(ωt

2 ) − 1|. (23)

Although P
′

th(α) corresponds to a non-classical state, we
see that |W ′

th(t)| is always less than one and never vi-
olates the witness inequality. This illustrates the fact
that violation of the NCWI is not a necessary but only a
sufficient condition for determining non-classicality [31].

Superposition of classical states: Even though a co-
herent state is considered to be classical, a state consist-
ing of a superposition of coherent states might exhibit
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FIG. 2. (Color online) The function |Wsc(t)| for β = 0.5 and
various values of α0. For some values of α0, |Wsc(t)| violates
the NCWI. This indicates the non-classical nature of these
Schrödinger cat states.

non-classicality. To understand this, let us examine the
Schrödinger Cat state which consists of an equal super-
position of two coherent states, one being the negative of
the other:

|Ψsc(α0)〉 =
|α0〉+ | − α0〉
√

2(1 + e−2α2
0)
. (24)

For simplicity, we have taken α0 to be real. The P dis-
tribution corresponding to |Ψsc(α0)〉 is [1]:

Psc(α) = N 2
[

δ2(α− α0) + δ2(α+ α0) + e(|α|
2−|α0|

2)

×
(

eα0∂α∗ e−α0∂α + e−α0∂α∗ eα0∂α

)

δ2(α)
]

, (25)

where 1/N 2 = 2(1 + e−2α2
0). We see that for α0 6= 0,

Psc(α) contains infinitely high order derivatives of the
delta function. This clearly suggests that a Schrödinger
Cat state is a non-classical state if α0 6= 0.
For the Schrödinger Cat state,Wsc(t) can be calculated

analytically to get:

|Wsc(t)| = N 2
∣

∣

∣
cos (4βα0 sinωt)

+ e−2α2

cosh

(

8βα0 sin
2 ωt

2

)

∣

∣

∣
. (26)

In Fig. 2, we plot Wsc(t) for β = 0.5 and for various
values of α0. It is clear that the NCWI is violated for

α0 = 1 and 2. This confirms the non-classical nature of
these states. On the other hand, for any given value of
β, we notice that not all Schrödinger Cat states violate
the NCWI. This is evident from the plots corresponding
to α0 = 0 and 5.

IV. CONCLUDING REMARKS

In this report, we use Glauber’s criterion for non-
classicality, which is the failure of an oscillator’s coherent
state P distribution to behave as a valid classical proba-
bility distribution. We demonstrate a witness operation
for non-classicality of this type. We show that one can
imprint a signature of non-classicality onto the dynamics
of an interacting qubit. The result is that all classical
initial states of the oscillator lead to a fixed qubit bound,
given in equation (16). In other words, the qubit oper-
ator’s time evolution, expressed via |W (t)|, must remain
bounded from above if the oscillator’s initial state was
classical. A violation of the bound is a direct indication
of the non-classical nature of the initial oscillator state.
The method does not require state reconstruction, and
monitoring of the qubit can be confined to a single period
of the oscillator. A number of examples are presented to
illustrate the behavior of the bound, and confirm intuitive
expectation in special cases. This strategy for witnessing
non-classicality is well suited for physical systems where
strong longitudinal coupling can be achieved between a
qubit and a single-mode of an oscillator [32, 33]. Because
of the unavoidable interaction of the qubit-oscillator sys-
tem with its environment in any experiment, it is im-
portant to take into account the effect of noises on the
evolution of |W (t)|. Under the Markovian approximation
of system-environment interaction, one expects |W (t)| to
decrease exponentially in time and this decay can be com-
pensated for if it is experimentally possible to obtain the
exponential decay constants [28].
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