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We investigate the quantum dynamics of particles on graphs (“quantum random walks”), with the
aim of developing quantum algorithms for determining if two graphs are isomorphic (related to each
other by a relabeling of vertices). We focus on quantum random walks of multiple non-interacting
particles on strongly regular graphs (SRGs), a class of graphs with high symmetry that is known
to have pairs of graphs that are hard to distinguish. Previous work has already demonstrated
analytically that two-particle non-interacting quantum walks cannot distinguish non-isomorphic
SRGs of the same family. Here, we demonstrate numerically that three-particle non-interacting
quantum walks have significant, but not universal, distinguishing power for pairs of SRGs, proving
a fundamental difference between the distinguishing power of two-particle and three-particle non-
interacting walks. We analytically show why this distinguishing power is possible, whereas it is
forbidden for two-particle non-interacting walks. Based on sampling of SRGs with up to 64 vertices,
we find no difference in the distinguishing power of bosonic and fermionic walks. In addition, we find
that the four-fermion non-interacting walk has greater distinguishing power than the three-particle
walks on SRGs, showing that increasing particle number increases distinguishing power. However, we
also analytically show that no non-interacting walk with a fixed number of particles can distinguish
all SRGs, thus demonstrating a potential fundamental difference between the distinguishing power
of interacting and noninteracting walks.

PACS numbers: 03.67.Lx,05.40.Fb,02.10.Ox,03.67.Ac

I. INTRODUCTION

There has long been interest in algorithms that use ran-
dom walks to solve a variety of mathematical and scien-
tific problems [1–5]. Typically, the random walks in ques-
tion have been classical random walks (CRWs). How-
ever, there is increasing interest in random walks with
quantum walkers. In particular settings, these quantum
random walks (QRWs) have been shown to have compu-
tational advantages over CRWs [6–8]. Certain algorithms
utilizing QRWs have been proven to have faster runtimes
than their best known classical counterparts [9–15].

Additionally, QRWs have been experimentally demon-
strated in a variety of physical settings, such as ion traps
[16], atom traps [17], quantum optics [18, 19], and NMR
systems [20]. Recent works have experimentally realized
QRWs with two walkers, demonstrating the potential for
implementing QRWs with many walkers [21–24]. More-
over, there are proposed methods for physically imple-
menting non-trivial walks [25], indicating that there may
be many QRW algorithms to be developed that would
both be physically realizable and computationally pow-
erful.

Often the context for QRWs is one in which the walks
occur on graphs. It has been shown that QRWs are uni-
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versal; any quantum algorithm can be mapped onto a
QRW on such a graph [26]. It is also the case that many
interesting computational problems are easily expressed
in graph theoretic terms [27]. Thus there is considerable
interest in further exploring QRWs on graphs, with the
hope that we may be able to use such a framework to
solve certain problems.

There are also interesting physical phenomena associ-
ated with many particles walking on a graph. It is known
that QRWs of non-interacting bosons on graphs can give
rise to effective statistical interactions [28–30]. It has
even been shown that Bose-Einstein condensation can
occur at finite temperature in less than two dimensions
if the bosons are placed on a particular kind of graph
[30]. Therefore, there is motivation in further exploring
the dynamics of multi-particle ensembles on graphs.

This paper addresses the graph isomorphism problem,
which is, given two graphs, to determine if they are iso-
morphic; that is, if one can be transformed into the other
by a relabeling of vertices. This problem is of note for
several reasons. While many graph pairs may be dis-
tinguished by a classical algorithm which runs in a time
polynomial in the number of vertices of the graphs, there
exist pairs which are computationally difficult to distin-
guish. Currently, the best general classical algorithm has

a runtime of O(c
√
N logN ), where c is a constant and N

is the number of vertices in the two graphs [31]. Graph
isomorphism (GI) is believed to be similar to factoring in
that both are thought to be NP-Intermediate problems
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[32]. Additionally, both problems may be approached
as hidden subgroup problems, though this approach has
had limited success for GI [33]. Due to these similarities,
and the known quantum speedup available for factoring
[34], there is hope that there similarly exists a quantum
speedup for GI.

Strongly regular graphs (SRGs) are a particular class
of graphs that are difficult to distinguish classically [31].
(See Section II B for a formal definition.) Shiau et al.
showed that the single-particle continuous-time QRW
fails to distinguish pairs of SRGs with the same family
parameters [35]. Gamble et al. extended these results,
proving that QRWs of two non-interacting particles will
always fail to distinguish pairs of non-isomorphic strongly
regular graphs with the same family parameters [27].
They also demonstrated numerically the distinguishing
power of the two-boson interacting QRW; it successfully
distinguished all tested pairs of SRGs [27]. Since the pub-
lication of Gamble et al., Smith proved that for any fixed
number of bosons p, there exist non-isomorphic graph
pairs which the p-boson interacting walk fails to distin-
guish [36]. These counterexample graphs are not strongly
regular; whether or not the two-boson interacting walk
successfully distinguishes non-isomorphic strongly regu-
lar graphs is still an open question.

Investigations into discrete-time QRW algorithms for
GI have also been made [37–39]. Berry and Wang numer-
ically showed that a discrete-time non-interacting QRW
of two particles could distinguish some SRGs, something
its continuous-time counterpart cannot do. However, this
distinguishing power is not universal on SRGs, nor is an
analytic explanation of the distinguishing power given
[39]. The discrete-time algorithm proposed by Emms et
al. successfully distinguished all tested SRGs [37], but it
has been shown to not be universal [36]; it is unknown if
it is universal on SRGs. Additionally, for the same num-
ber of particles, the discrete-time QRWs require Hilbert
spaces larger than the ones required by continuous-time
QRWs [39]. In an effort to relate discrete-time and
continuous-time QRWs, it has been noted that the coin
state of a discrete-time walk may be thought of as a
relativistic particle’s internal degree of freedom; such a
feature is absent from continuous-time QRWs [40]. The
relationship between discrete-time and continuous-time
quantum random walks in the context of the graph iso-
morphism problem has been examined as well [41]. It
remains an open question as to whether or not discrete-
time walks in general have fundamentally greater distin-
guishing power than continuous-time walks, or if they are
better candidates for a universal GI algorithm.

This paper extends the results of [27] to address
continuous-time multi-particle non-interacting quantum
walks on SRGs, with a particular focus on understand-
ing the role of particle number in determining the dis-
tinguishing power of the walks. We have several main
results. We numerically demonstrate that three-particle
non-interacting walks have significant (but not univer-
sal) distinguishing power on hard-to-distinguish pairs of

SRGs. Additionally, we find that a four-fermion non-
interacting walk has even greater (but still not univer-
sal) distinguishing power on SRG pairs. We analytically
explain where this distinguishing power comes from, and
how these multi-particle non-interacting walks are funda-
mentally different from single-particle and two-particle
non-interacting walks. This is done by showing that a
particular feature present in the smaller walks which lim-
its their distinguishing power is not present in walks of
three or more non-interacting particles. Further, we ana-
lytically show that, even though the distinguishing power
of non-interacting walks increases with particle number,
there is no non-interacting walk with a fixed number of
particles that can, with our comparison algorithm, dis-
tinguish all strongly regular graphs.

This paper is organized as follows. Section II covers
the requisite background, including graph theoretic defi-
nitions and concepts, a review of strongly regular graphs,
and a formal definition of the quantum random walk. In
Section III, we first demonstrate analytically how two-
particle non-interacting walks are fundamentally differ-
ent from three-particle non-interacting walks. We then
present the numerical results for non-interacting three-
particle and four-particle walks on SRGs. In the final
part of Section III, we demonstrate that a p-particle non-
interacting QRW cannot distinguish all SRGs for any
fixed p. We discuss our conclusions in Section IV.

Appendix A discusses a fundamental difference be-
tween non-interacting walks of two particles and non-
interacting walks of more than two particles. Appendix B
provides details necessary to show that a non-interacting
p-particle walk cannot distinguish all SRGs for a fixed p.
In Appendix C, we show that the number of unique evo-
lution operator elements for a p-particle non-interacting
walk is super-exponential in p. Lastly, we explain in Ap-
pendix D how we ensure numerical stability and deter-
mine numerical error in our simulations.

II. BACKGROUND

A. Basic Graph Definitions

Here we develop the background and definitions nec-
essary to discuss multi-particle QRWs on graphs. This
paper only considers simple, undirected graphs. A graph
G = (V,E) is a set of vertices V and edges E. The ver-
tices are a set of labels, usually integers, and the edges
are a list of unordered pairs of vertices. If a pair of ver-
tices appears in E, then the vertices are connected by
an edge; otherwise there is no edge between the vertices
and they are considered disconnected. The terms “ad-
jacent”, “neighboring”, and “connected” may be used
interchangeably to refer to a vertex pair which shares an
edge. It is convenient to represent a graph by its adja-
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cency matrix A, defined as:

Aij =

{
1 if vertices i and j are connected.

0 if vertices i and j are disconnected.
(1)

A graph of N vertices has an N × N adjacency matrix.
For the undirected and simple graphs considered here, A
is symmetric, with zeros on the diagonal.

Two graphs are isomorphic if one graph is transformed
into the other by a relabeling of vertices. More formally,
given two adjacency matrices A and B, the graphs rep-
resented by A and B are isomorphic if and only if a
permutation matrix P exists such that B = P−1AP.

B. Strongly Regular Graphs

This paper addresses strongly regular graphs (SRGs),
which we examine because they are difficult to distin-
guish classically, and because of their simple algebraic
properties [31, 42]. An SRG is characterized by four pa-
rameters, denoted (N, k, λ, µ). N is the number of ver-
tices in the graph, and each vertex is connected to k other
vertices (the graph is k-regular, or has degree k). Each
pair of neighboring vertices shares λ common neighbors,
while each pair of non-adjacent vertices shares µ com-
mon neighbors. The set of SRGs sharing the same set
of four parameters is referred to as an SRG family ; cor-
respondingly, the four parameters are often called the
family parameters. While some SRG families may have
only one non-isomorphic member, there are many fami-
lies of SRGs with multiple non-isomorphic graphs. These
are the families which are of interest to us.

The adjacency matrix of any SRG has at most three
eigenvalues. As these eigenvalues and their multiplicities
are functions of the family parameters, the adjacency ma-
trices of SRGs in the same family are always cospectral
[42]. This contributes to the difficulty of distinguishing
non-isomorphic SRGs.

The adjacency matrix of any SRG satisfies the partic-
ularly useful algebraic identity [42]:

A2 = (k − µ)I + µJ + (λ− µ)A, (2)

where I is the identity and J is the matrix of all ones.
Because J2 = NJ, JA = AJ = kA, and I acts trivially
on I, J, and A, we see that {I,J,A} forms a commutative
three-dimensional algebra, so we conclude that for any
positive integer n:

An = αnI + βnJ + γnA, (3)

where αn, βn, and γn depend only on n and the family
parameters.

C. Defining the quantum random walk

Now we discuss how we form a continuous-time non-
interacting quantum random walk on a graph. As in [27],

we use the Hubbard model, where each site corresponds
to a graph vertex. A particle can move from one vertex
to another if the two vertices are connected. Thus, for a
graph on N vertices with adjacency matrix A, our non-
interacting Hamiltonian is given by

H = −
N∑
i,j

Aijc
†
i cj , (4)

where c†i and ci are the creation and annihilation oper-
ators, respectively, for a boson or (spinless) fermion at
site i. For bosons, they satisfy the commutation rela-

tions [ci, c
†
j ] = δij and [ci, cj ] = [c†i , c

†
j ] = 0. For fermions,

they satisfy the anti-commutation relations {ci, c†j} = δij

and {ci, cj} = {c†i , c
†
j} = 0.

For walks of p bosons, we use basis states of the form
|j1 . . . jp〉B , which is the appropriately symmetrized basis
state with bosons on vertices j1 through jp. These ver-
tices need not be distinct, since vertices may be multiply
occupied. Similarly, for walks of p fermions, we use basis
states of the form |j1 . . . jp〉F , which is the appropriately
anti-symmetrized basis state with fermions on vertices j1
through jp. These vertices must be distinct, because the
Pauli exclusion principle implies that no vertex can be
occupied by multiple fermions. We refer to these bases
as the particles-on-vertices bases.

Following [27] and [36], it is straightforward to show
that the elements of the p-boson or p-fermion non-
interacting Hamiltonian (Hp,B and Hp,F , respectively)
are, in their respective particles-on-vertices bases:

B〈i1 . . . ip|Hp,B |j1 . . . jp〉B = (5)

−B〈i1 . . . ip|A⊕p |j1 . . . jp〉B ,

F 〈i1 . . . ip|Hp,F |j1 . . . jp〉F = (6)

F 〈i1 . . . ip|A⊕p |j1 . . . jp〉F ,

where

A⊕p = A⊗ I⊗ I . . .⊗ I︸ ︷︷ ︸
p

(7)

+ I⊗A⊗ I . . .⊗ I + . . .+ I⊗ I⊗ I . . .⊗A.

The evolution operator is defined in the standard man-
ner:

U(t) = e−itH, (8)

where ~ = 1 for convenience.

D. Comparison algorithm

Our method for comparing two graphs in an attempt to
determine if they are isomorphic or not is the same as the
one used in [27]. Given two graphs with adjacency ma-
trices A and B, we compute in the particles-on-vertices
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basis UA(t) and UB(t), respectively, for the same num-
ber and type of particle, as well as the same time t. The
absolute value of each element of UA(t) and UB(t) are
written to lists XA and XB, respectively. Both lists are
sorted, and we compute the distance between the lists,
∆:

∆ =
∑
ν

|XA[ν]−XB[ν]|. (9)

We say that A and B are distinguished by a particu-
lar walk if and only if that walk yields ∆ 6= 0; iso-
morphic graphs and non-isomorphic non-distinguished
graphs both yield ∆ = 0 [27]. We note that we lose
phase information by taking the absolute value of the
elements, but it makes our comparison procedure more
tractable, and seems to do no harm, see [27]. Lastly, for
all simulations presented in this paper, t = 1.

III. QUANTUM RANDOM WALKS ON
STRONGLY REGULAR GRAPHS

A. Comparing distinguishing power of two- and
three-particle non-interacting walks

In this subsection we show analytically that there
is a fundamental difference between two-particle non-
interacting walks and three-particle non-interacting
walks on strongly regular graphs, because three-particle
non-interacting walks are capable of distinguishing SRGs
from the same family, unlike two-particle non-interacting
walks. To show this difference, we recall the proof used
by Gamble et al. to demonstrate the inadequacy of two-
particle walks [27].

The proof in Gamble et al. first shows that the value
of every element in the two-particle evolution opera-
tors (B 〈ij|U2B(t) |kl〉B or F 〈ij|U2F (t) |kl〉F ) must be
a function only of the SRG family parameters and the
time t. Then it is shown that the multiplicity of each ele-
ment value in the evolution operator is also a function of
SRG family parameters. We begin similarly here for the
three-particle walk, and find that while the values of the
elements are all functions of the SRG family parameters,
the multiplicities of the values are not.

We first address the element values. We refer to each
element of each evolution operator (computed in the
particles-on-vertices basis) as a Green’s function, follow-
ing the nomenclature of Gamble et al. [27]. Because
the three-particle walk in question is non-interacting, we
know that the evolution operator for the walk factorizes
into three single-particle evolution operators:

B 〈ijk|U3B |lmn〉B =B 〈ijk|U1P
⊗3 |lmn〉B , (10)

F 〈ijk|U3F |lmn〉F =F 〈ijk|U1P
⊗3 |lmn〉F , (11)

where U1P
⊗3 = U1P ⊗U1P ⊗U1P ; U1P is the evolution

operator for the single-particle walk, that is, U1P = eiAt

and U1P = e−iAt.

Recalling Eq. (3), and expanding eiAt as a Taylor series
in powers of At, we note that:

U1P = αI + βJ + γA, (12)

where α, β, and γ are functions of the family parameters
and the time t. Therefore, we conclude that all possible
values of the elements of U3B and U3F (the Green’s func-
tions) are determined by the family parameters. Thus,
the set of all potential values for the Green’s functions
are the same for any two graphs in the same family. Any
distinguishing power of the walks must come from the
existence of at least one Green’s function with different
multiplicities for non-isomorphic graphs in the same fam-
ily.

Gamble et al., prove that the multiplicity of each
Green’s function for two-particle non-interacting walks is
a function of the SRG family parameters. In Appendix A,
we show that there exist Green’s functions for the three-
particle non-interacting walk on SRGs whose multiplic-
ities are not functions of the family parameters. This
is because the multiplicity of a Green’s function in a p-
particle walk depends on how many shared neighbors a
collection of up to p vertices has. For p = 2, strong reg-
ularity uniquely determines the number of shared neigh-
bors: λ if the vertices are connected, and µ if they are
not. However, for p ≥ 3, the multiplicity is dependent
on the number of shared neighbors among sets of p ver-
tices. Thus the multiplicity is not uniquely determined
by strong regularity, so the multiplicity for such a Green’s
function need not be a function of the family parameters.

The definition of SRGs does not directly constrain the
number of neighbors of a set of p vertices with p ≥ 3.
However, this difference from the two-particle case does
not guarantee that walks of three or more particles can
distinguish non-isomorphic SRGs, only that they have
the potential to do so. Our numerical investigations of
the distinguishing power of these walks are presented in
Section III B.

B. Numerical results

In this subsection, we present our numerical results
for three-particle and four-fermion walks on SRGs. To
simulate a walk on a graph, we compute the appropri-
ate Hamiltonian and exponentiate it to compute its cor-
responding evolution operator, following the algorithm
described in Section II D. Then, to compare pairs of
non-isomorphic graphs from the same family, we com-
pute the list distance ∆, defined in Equation (9). We find
our error on ∆ to be no greater than 10−6, so two non-
isomorphic graphs are considered distinguished if and
only if ∆ > 10−6. Further details of numerical error
analysis are provided in Appendix D.

Because the Hamiltonians are very large, we must use a
sparse matrix exponentiation routine [43] to make expo-
nentiation computationally tractable. (The largest evo-
lution operators we compute have a dimension of 91 390,
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TABLE I. Numerical results for the three-particle non-interacting walks on twelve families of SRGs. The first column lists the
family parameters for the particular SRG family being examined. The second column lists the number of graphs in the family
that we compared. This number is equal to the number of graphs in the family, with the exception of (49,18,7,6), where we
only examined a subset of the family. The third column gives the number of comparisons made for each family, which is equal
to the number of graphs in that family that we examined choose 2. The fourth and fifth columns list the number of graph pairs
which the three-boson and three-fermion walks fail to distinguish, respectively. We see that out of 70 712 graph comparisons,
both the boson and fermion walks fail a total of 256 times, corresponding to a success rate of greater than 99.6%

SRG Family (N , k, λ, µ) Number of Graphs Comparisons Boson Failures Fermion Failures
(16, 6, 2, 2) 2 1 0 0
(16, 9, 4, 6) 2 1 0 0
(25, 12, 5, 6) 15 105 0 0
(26, 10, 3, 4) 10 45 1 1
(28, 12, 6, 4) 4 6 0 0
(29, 14, 6, 7) 41 820 0 0
(35, 18, 9, 9) 227 25651 38 38
(36, 14, 4, 6) 180 16110 89 89
(40, 12, 2, 4) 28 378 8 8
(45, 12, 3, 3) 78 3003 7 7
(49, 18, 7, 6) 147 10731 21 21
(64, 18, 2, 6) 167 13861 92 92

TABLE II. Numerical results for four-fermion non-interacting walks on 136 graph pairs that are not distinguished by three-
particle non-interacting walks. Of the 136 graph pairs tested, only one pair is not successfully distinguished. We therefore
see that increasing the number of non-interacting particles beyond three continues to increase the distinguishing power of the
non-interacting QRWs.

Family (N , k, λ, µ) 3 Particle Failures 4 Fermion Failures
(26, 10, 3, 4) 1 0
(35, 18, 9, 9) 38 0
(36, 14, 4, 6) 89 1
(40, 12, 2, 4) 8 0

and correspond to the four-fermion walks on graphs of
40 vertices.) Additionally, in order to be able perform
these exponentiations sufficiently quickly, we parallelize
the computations, utilizing the Open Science Grid and
the University of Wisconsin-Madison’s Center for High
Throughput Computing Cluster.

Our numerical results for three-particle walks are pre-
sented in Table I. For the 70 712 pairs of SRGs compared,
the boson and fermion walks distinguish all but 256 pairs,
corresponding to a success rate of greater than 99.6%.
Thus we see that both the three-boson and three-fermion
walks have significant (but not universal) distinguishing
power on SRGs, while the two-particle non-interacting
walks fail on all pairs of non-isomorphic graphs in the
same family [27].

The bosonic and fermionic walks fail to distinguish the
same pairs of non-isomorphic graphs that we tested; we
have found no graph pair that one kind of particle suc-
cessfully distinguishes while the other does not. Thus,
despite having a state space of smaller dimension (due
to Pauli exclusion), the three-fermion walk has the same
distinguishing power as the three-boson walk on all tested
graph pairs. It remains an open question whether graph
pairs exist for which this is not true.

Having identified some graph pairs that three non-
interacting particles fail to distinguish, we want to know

if non-interacting walks exist that can distinguish these
graphs. However, it is computationally expensive (even
with speedup provided by parallelization) to simulate
four-particle walks. We therefore simulated only fermion
walks, and only on a subset of the three-particle coun-
terexample graph pairs. Our results are summarized
in Table II. We simulated four-fermion non-interacting
walks on 136 counterexample pairs, finding that all but
one pair are distinguished.

Since increasing the number of non-interacting parti-
cles in the walk apparently increases the distinguishing
power, it is natural to ask “Does there exist a p such
that the p-particle non-interacting walk can distinguish
all strongly regular graphs?” The next subsection shows
that the answer to this question is no.

C. Limitations of non-interacting walks

In this subsection, we show that pairs of non-
isomorphic strongly regular graphs exist that are not
distinguished by any p-particle non-interacting quantum
walk with fixed p in conjunction with the comparison
algorithm described by Equation (9). This is because
for a fixed p, there exists an N such that the number
of strongly regular graphs with N vertices is larger than
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the maximum number of graphs distinguishable by the
p-particle non-interacting walk.

To prove this claim, we define S(N), the number of
strongly regular graphs in a particular family with N
vertices, and Z(p,N), the number of distinct “graph fin-
gerprints” that the p-boson walk can generate for an SRG
family whose graphs have N vertices. By a “graph fin-
gerprint,” we mean a sorted list of the absolute value of
every element of an evolution operator (Eq. (10)). We
examine the boson walk here, because its state space is
strictly larger than the fermion walk of the same number
of particles. Thus the p-boson walk generates more fin-
gerprints than the p-fermion walk (even though we have
seen no evidence yet that it distinguishes more graph
pairs). Therefore, Z(p,N) bounds from above the max-
imum number of SRGs with N vertices in a particular
family that non-interacting walks of either p fermions or
bosons can distinguish.

We now define the ratio R(p,N):

R(p,N) =
S(N)

Z(p,N)
. (13)

We will show that for any fixed p, R is greater than 1
for large enough N , thus demonstrating that there exist
more SRGs than the p-particle walk can distinguish.

It is shown in [44] that there is a mapping between
Latin squares of size n and SRGs of size n2 with family
parameters (n2, 3(n − 1), n, 6). The results of [44, 45],
imply that when N is large enough, the number of non-
isomorphic Latin square SRGs of sizeN is bounded below
by:

S(N) ≥ 1

6
(
√
N !)2

√
N−3N

−N
2 . (14)

As for Z(p,N), we show in Appendix B that for a fixed
p, Z satisfies the inequality:

Z(p,N) < N2Xp(p+1), (15)

where Xp is the number of unique values a Green’s func-
tion for a p-boson walk can assume. While it can be
shown that Xp is super-exponential in p, it does not de-
pend on N . This is because the value of a Green’s func-
tion for a non-interacting p-particle QRW on an SRG is
determined by a configuration of up to 2p vertices in that
SRG, as discussed in Section III A and Appendix A.

To examine the behavior of R in the limit of large N ,
we use Stirling’s formula:

x! =
√

2πe−xxx+1/2(1 +O(x−1)). (16)

This allows us compute a lower-bound for R in the limit
of large N :

lim
N→∞

R ≥ 1

6
(2π)

√
N− 3

2 e−2N+3
√
NN

N
2 −
√
N− 3

4−2Xp(p+1).

(17)

Taking the logarithm of Eq. (17) yields:

lim
N→∞

logR(p,N) ≥ lim
N→∞

N

2
logN +O(N), (18)

which diverges as N → ∞. Therefore, for a fixed p, R
approaches∞ as N increases, showing that no p-particle
non-interacting walk can distinguish all SRGs.

One can let p grow slightly with N and achieve the
same result. Indeed, we show in Appendix C that

log2(Xp) = p2 +O(p log p). (19)

Using this, we find our argument remains valid for
p < C

√
log2N , for any C < 1.

We can contrast these results to those of Gamble et
al.. They found that the hard-core two-boson walk dis-
tinguished all graph pairs in a dataset of over 500 million
pairs of SRGs [27]. This distinguishing power was shown
to arise from an underlying algebra that is fundamen-
tally different than that of the noninteracting two-boson
or two-fermion walks. As we see no obvious way to ex-
tend the proof presented in this section to include hard-
core walks, it is an open question as to whether or not
the two-boson hard-core walk has universal distinguish-
ing power on SRGs. Even if does not, it is still possible
that there exists a fixed p > 2 such that the p-boson
hard-core walk could distinguish all SRGs. If this is the
case, then this would be a marked difference between the
non-interacting and hard-core walks.

IV. DISCUSSION

We have shown how three-particle non-interacting
quantum random walks are qualitatively different from
two-particle non-interacting quantum random walks; the
latter will always fail to distinguish non-isomorphic
strongly regular graphs from the same family, whereas
the former successfully distinguish many (but not all)
non-isomorphic pairs of strongly regular graphs. We
have analytically identified a fundamental difference be-
tween these two classes of quantum walks. The three-
particle walks have potential distinguishing power be-
cause the shared connectivity of triples of vertices in
SRGs is not governed by the SRG family parameters. We
have also demonstrated numerically that three-particle
non-interacting walks have significant, but not universal,
distinguishing power on SRGs. We observe numerically
that bosonic and fermionic walks distinguish the same
pairs of non-isomorphic pairs of graphs. Increasing the
number of non-interacting fermions to four further in-
creases distinguishing power. However, this distinguish-
ing power is not limitless; we have shown that for any
fixed number of non-interacting particles, there exist non-
isomorphic pairs of SRGs that cannot be distinguished.

Lastly, we discuss the implications of these results in
terms of the computational complexity of the graph iso-
morphism problem. Not only are there graph pairs on



7

i

j

k

p

q

r

FIG. A1. Sketch of a generalized subgraph, or “widget,” used
to calculate the values and degeneracy of a Green’s function
for a three-particle quantum walk on an SRG. The vertices
on the right side correspond to the vertices the particles are
on to begin with (the ket |pqr〉B or |pqr〉F ), and the vertices
on the left side correspond to the vertices the particles end
up on (the bra B 〈ijk| or F 〈ijk|), after application of the
evolution operator U . A solid line between vertices x and y
indicate that Axy = 1. A dashed line between x and y means
that the value of Axy does not affect the value of the Green’s
function. Thus, for bosons, the depicted widget corresponds
to the Green’s function B 〈ijk|U3B |pqr〉B when all six ver-
tices are distinct, and when Axy = 1 for all x ∈ {i, j, k} and
y ∈ {p, q, r}. Eqs. (10) and (12) show that the value of this
Green’s function, or widget, is B 〈ijk|U3B |pqr〉B = 6(β+γ)3.

which the three- and four-particle walks fail, but we know
that for any fixed particle number, there will be SRGs
that such non-interacting walks cannot distinguish. It is
still possible that, given any non-isomorphic SRG pair of
a fixed size N , there exists a p such that the p-particle
non-interacting walk will succeed in distinguishing the
graphs. However, the lower bound given at the end of
Section III C rules out the possibility of our algorithm
providing a classical polynomial-time solution to GI for
SRGs.
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VI. APPENDICES

A. Computing multiplicities of values of matrix
elements of the evolution operator for strongly

regular graphs

Here we discuss how to compute the multiplicities of
values of elements of evolution operators, or Green’s func-
tions, for SRGs. We show in this appendix that the mul-

i

j

p

q

(a) (b)
i

j

k

p

q

r

FIG. A2. Empty widgets for two-particle and three-particle
non-interacting walks. In both widgets, all vertices are dis-
tinct and no vertex in the initial state is adjacent to any vertex
in the final state. The values of the widgets depend only on
the family parameters for both (a) and (b), while the degen-
eracies of these values depend only on family parameters for
two particles but not for three. The multiplicity of each wid-
get’s respective Green’s function for a particular SRG is equal
to the number of times that widget appears in the SRG. (a)
The empty widget for two particles. The number of times this
widget appears in an SRG is a function of the SRG family pa-
rameters, as is the case for all two-particle widgets [27]. (b)
The empty widget for three particles. The number of times
this widget appears in an SRG is not a function solely of
SRG family parameters. This is demonstrated by the graphs
in Figure A3. An analytic explanation for this phenomenon
is given in the text following Equation (21).

(a) (b)

FIG. A3. The two non-isomorphic graphs of the SRG fam-
ily (16,6,2,2). The widget of Figure A2(b) appears in the
graph shown in (a) 608 times, whereas the same widget ap-
pears in the graph shown in (b) 512 times. Thus we see that
the same three-particle widget can have different multiplici-
ties in graphs of the same family, so the three-particle non-
interacting walk can distinguish at least some non-isomorphic
graphs from the same SRG family.

tiplicity of a non-interacting three-particle Green’s func-
tion is in general not a function of SRG family parame-
ters. This result is used in Section III A to demonstrate
how two-particle and three-particle non-interacting walks
have different distinguishing powers for SRGs.

To compute the multiplicity of each value of the
Green’s function in a non-interacting three-particle walk,
we first note that Eqs. (10) through (12) imply that the
value of a given Green’s function depends on the rela-
tionships between the vertices in the final state (the bra;



8

(a) (b)

FIG. A4. (Color online.) Two copies of the Petersen graph,
an SRG with parameters (10, 3, 0, 1). In each graph, three mu-
tually non-adjacent vertices are highlighted as red diamonds.
In (a), the three vertices share one common neighbor, marked
as a green square. In (b), the three vertices share no common
neighbors. This demonstrates that the number of neighbors
common to a triple of vertices in a strongly regular graph is
not strictly a function of the SRG family parameters, thus
showing why widget multiplicity is not strictly governed by
family parameters when p ≥ 3.

{i, j, k}) and the vertices in the initial state (the ket;
{p, q, r}). For each pair of indices (x, y), with x from the
bra (x ∈ {i, j, k}), and y from the ket (y ∈ {p, q, r}),
there are three possible relations. The vertices can be
connected (Axy = 1), the vertices can be the same
(δxy = 1), or the vertices can be different and discon-
nected (Axy = δxy = 0). Therefore, we may think of
each Green’s function as corresponding to a generalized
subgraph of the original graph. We say “generalized sub-
graph” because the Green’s function is unaffected by in-
ternal connections within the initial or final state; we
adopt the more compact terminology of referring to these
generalized subgraphs as “widgets.”

To illustrate this point, let us consider the widget
shown in Figure A1. The solid lines in the widget indi-
cate that the sites are connected in the graph, while the
dashed lines indicate that the value of the widget does
not depend on whether or not those sites are connected.
Thus, two widgets are considered the same whether or
not sites that are connected by dashed lines are actually
adjacent. To evaluate B 〈ijk|U3B |pqr〉B for the wid-
get shown in Figure A1, we note that all six vertices
({i, j, k, l, p, q, r}) are distinct. We can then use Eqs. (10)
and (12) to find that B 〈ijk|U3B |pqr〉B = 6(β + γ)3,
where β and γ, defined in (12), are functions of the SRG
family parameters. The multiplicity of this particular
value for a particular graph is given by the number of
times its corresponding widget occurs in the graph.

To compute the multiplicity, M , of 6(β + γ)3 in U3B ,
we count the number of occurrences of this widget in the

graph. To do this, we perform the following combinato-
rial sum, generalizing the procedure outlined in Appendix
B of Gamble et al. [27].

M =
∑
i<j<k

∑
p<q<r

AipAiqAirAjpAjqAjrAkpAkqAkr (20)

=
1

36

∑
ijkpqr

AipAiqAirAjpAjqAjrAkpAkqAkr×

(1− δij)(1− δik)(1− δjk)(1− δpq)(1− δpr)(1− δqr).

The analogous sums considered in Gamble et al., which
only examines two-particle walks, can be decomposed
into sums and traces over powers of the adjacency matrix.
Such operations are given by contracting over two occur-
rences of the same index in the summand. Conveniently,
these quantities are expressible in terms of SRG family
parameters, as is illustrated in Gamble et al. Things are
not so simple, however, for the three-particle walks. By
inspection, we see that Eq. 20 contains contractions over
three occurrences of the same index. Such contractions
correspond to neither matrix multiplication nor comput-
ing the trace, and cannot in general be massaged into
forms expressible in terms of SRG family parameters, as
evidenced by the fact that the three-particle walks have
distinguishing power over many pairs of SRGs.

However, the above statement does not give us analytic
proof that there exist Green’s functions whose multiplic-
ities are not functions of the family parameters; up to
this point, we are still relying on the numerical results
as proof. Below, we analytically demonstrate that there
exist widgets whose multiplicities cannot be determined
by family parameters. To demonstrate this, we take a
step back to the two-particle walk. Consider the widget
shown in Figure A2(a). We can determine this widget’s
multiplicity for an arbitrary SRG with family parameters
(N, k, λ, µ) by performing the combinatorial sum analo-
gous to Equation (20), or equivalently, we can actually
count the number of times we can fit this widget on the
SRG. To begin, we pick two sites in the graph to serve as
sites i and j; these sites may be adjacent or not, as indi-
cated by the dashed line between them in the figure. Now
we must count, given our choice of i and j, how many
sites we may pick as p and q. If i and j are connected,
there are

(
N−2k+λ

2

)
choices for p and q, whereas if i and

j are disconnected, there are
(
N−2−2k+µ

2

)
choices for p

and q. There are Nk
2 choices for connected sites that can

serve as i and j, and
(
N
2

)
− Nk

2 disconnected sites. Thus,
the number of four-vertex empty widgets occurring in a
two-particle non-interacting walk is:

M2,empty =
Nk

2

(
N − 2k + λ

2

)
+ (21)((

N

2

)
− Nk

2

)(
N − 2− 2k + µ

2

)
,

in agreement with the result in Gamble et al. for this par-
ticular widget [27]. Thus we see that this widget’s mul-
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tiplicity is, as expected, a function of the family param-
eters. Let’s see what happens when we try this same ap-
proach for the corresponding widget in the three-particle
walks, shown in Figure A2(b). Again, we consider the
multiplicity of the widget in an arbitrary SRG by count-
ing the number of times we can fit this widget on the
graph. Now we pick three sites to serve as i, j, and k.
We want to count, given our choice of i, j, and k, the
number of sites that can serve as p, q, and r. To do this,
we need to know how i, j, and k are connected amongst
themselves, just as we did in the previous example. There
are four possible non-isomorphic connectivities, as there
can be between zero and three connections amongst these
sites. In order to count the multiplicity of this widget,
we must consider for each of these four cases how many
sites in the graph are mutually disconnected from sites
i, j, and k. In the previous example, we could answer
the analogous question via the family parameters, as il-
lustrated above. However, this is because the family pa-
rameters µ and λ tell us how many common neighbors
pairs of vertices have. There are no family parameters
which encode this information for triples of vertices, as
strong regularity does not place absolute constraints on
shared connectivities for triples of vertices.

We illustrate this point with an example in Figure A4.
Two copies of the Petersen graph, an SRG with family
parameters (10, 3, 0, 1) are depicted. The first copy high-
lights three mutually non-adjacent vertices; this particu-
lar triple of vertices has one common neighbor. The sec-
ond copy also highlights a triple of mutually non-adjacent
vertices, but this triple has no shared neighbors. Thus
we have demonstrated by example that strong regularity
cannot in general uniquely determine the shared connec-
tivity for triples of vertices.

Moreover, we can see that counting the multiplicity of
the widget shown in Figure A2(b) can be used to dis-
tinguish two non-isomorphic graphs from the same SRG
family. Figure A3 shows the two non-isomorphic graphs
in the SRG family (16,6,2,2). The widget in Figure A2(b)
appears 512 times in the first graph and 608 times in the
second graph, thus distinguishing them.

We conclude then that there exist three-particle
widgets whose multiplicities cannot be functions of
family parameters. Thus, the three-particle non-
interacting walks are not forbidden from distinguishing
non-isomorphic SRGs from the same family, unlike the
two-particle non-interacting walks.

B. Computing the number of SRG fingerprints

In Section III C, it is shown that quantum walks of
p non-interacting particles cannot distinguish all non-
isomorphic pairs of strongly regular graphs. This is done
by showing that Z(p,N), the number of graph finger-
prints given by the p-boson walk on an SRG family with
N vertices, is less than the number of non-isomorphic
strongly regular graphs with N vertices, in the limit

of large N . This subsection presents the calculation of
Z(p,N).

To calculate Z(p,N), we note that if there are Xp pos-
sible Green’s function values for the p-boson walk, and Y
elements of the evolution operator U , then computing the
number of unique fingerprints is equivalent to computing
the number of ways one can put Y indistinguishable balls
in Xp labeled bins, so that [46]

Z(p,N) =

(
Xp + Y − 1

Xp − 1

)
. (22)

We recall that Xp is a function of p, but not of N . (We
may think of Xp as the number of uniquely-valued wid-
gets that appear in the p-boson walk.) However, Y , the
number of elements in the evolution operator, will de-
pend on both p and N , and we henceforth write it as
Yp,N . The dimension of the evolution operator is com-
puted by determining how many different ways p bosons
can be put on N vertices, which this is the same problem
as computing the number of ways to put p indistinguish-
able balls into N labeled bins. The number of elements in
the evolution operator is just the square of its dimension,
so we find that:

Yp,N =

(
N + p− 1

p

)2

. (23)

Using Equations (22) and (23), we now compute an
upper bound for Yp,N and Z. It can be shown that(
n+k−1
k−1

)
≤ nk when n ≥ 2 and k ≥ 1. Thus

Yp,N <

(
N + p

p

)2

≤ N2(p+1) (24)

and

Z(p,N) ≤ (Yp,N )
Xp < N2Xp(p+1). (25)

Therefore, the maximum number of unique graphs the
p-boson walk can distinguish is bounded above by
N2Xp(p+1). We use this result in Section III C to show
that there exist SRGs that a particular p-particle walk
cannot distinguish.

C. Bounding the number of widgets in the
non-interacting p-particle walk

Here, we show that log2Xp ∼ p2, where Xp is the num-
ber of distinct widgets for the non-interacting p-boson

walk. First, Auluck proved there are eO(p2/3) widgets
with no edges [47]. (He counted bipartitions of (p, q),
which may be considered to be edgeless widgets when

p = q.) Since there are at most 2p
2

ways to add edges to

one of these, we have the upper bound Xp ≤ 2p
2+O(p2/3).

To get a lower bound, it will suffice to consider the wid-
gets with 2p distinct indices. The edges in one of these
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can be specified by a p × p array of bits, and the wid-
gets isomorphic to it are obtained by permuting rows,
permuting columns, or transposing the matrix. There-
fore, by Burnside’s counting lemma [48], the number of
isomorphism classes of widgets of this type is

1

|F |
∑
f∈F

[ # of arrays fixed by f ],

where the finite group F is the semidirect product of
Sp × Sp by S2. (Sp and S2 are the symmetric groups on
p and 2 objects, respectively.) This is lower bounded by

the term coming from f = 1, which is 2p
2

/(2(p!)2)), and

this is 2p
2+O(p log p) by Stirling’s formula. From these two

estimates the result of Equation (19) follows.
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FIG. A5. (Color online.) The number of numerically distin-
guished elements in the evolution operator U(t), defined in
Equation (8) as a function of the bin size used in grouping the
elements. This plot is for the non-interacting three-fermion
walk on a graph in the SRG family (16,6,2,2). We see that
the actual number of unique elements is about 150, which can
be obtained by using a bin size in the range of 10−7 to 10−4.

D. Error analysis for numerical computations

When comparing two graphs, we compute ∆, a mea-
sure of the distance between the lists of matrix elements

of the evolution operators for the two graphs, as defined
in Eq. (9). Computing ∆ requires comparing two lists
of numbers that are each exponentially large in parti-
cle number p. An evolution operator for a walk of p
non-interacting fermions on a graph with N vertices has(
N
p

)2
elements, and the boson equivalent has

(
N+p−1

p

)2
elements. For example, the evolution operator for the
non-interacting four-fermion walk on a graph of 35 ver-
tices has over 2.7 billion elements.

The comparison of the lists can be made much more
efficient by exploiting the fact that the values in the list
are highly degenerate. Instead of comparing the entries
in a list, we make histograms of element values and their
multiplicities. We then compute ∆ by comparing these
histograms. When constructing the histograms, it is im-
portant to determine the correct bin size. Choosing too
large a bin size results in falsely grouping distinct ele-
ments together, while choosing too small a bin size re-
sults in falsely distinguishing elements. By constructing
a series of histograms with different bin sizes for the same
evolution operator, we are able to determine a range of
bin sizes which are neither too large nor too small. This
is illustrated in Figure A5, which shows that for the non-
interacting three-fermion walk on a graph in (16, 6, 2, 2),
an appropriate bin size is between 10−7 and 10−4.

Because we compute ∆ via numerical simulation, we
expect there to be some numerical noise floor. That is,
for any two permutations of the same graph, we expect
∆ > 0. It is important to determine how big this quan-
tity, which we denote ∆iso, will be. We only consider two
non-isomorphic graphs to be distinguished if they yield
a ∆ which satisfies ∆� ∆iso.

We numerically compute ∆iso using double precision
arithmetic for a variety of random permutations on our
graphs, and we find a maximum ∆iso to be approximately
10−6. Thus, only graph pairs which yield a ∆ > 10−6 are
considered distinguished. We find ∆iso to be relatively
insensitive to graph size and particle number.

In practice, we see a gap for ∆ between distinguished
graph pairs and non-distinguished graph pairs. For dis-
tinguished graphs, we find ∆ at least two orders of
magnitude larger than ∆iso (usually much larger); non-
distinguished graph pairs have values of ∆ are approxi-
mately equal to ∆iso or are even smaller than it.
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