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We investigate the quality of quantum state transfer through a uniformly coupled antiferromag-
netic spin chain in a multi-excitation subspace. The fidelity of state transfer using multi-excitation
channels is found to compare well with communication protocols based on the ground state of a
spin chain with ferromagnetic interactions. Our numerical results support the conjecture that the
fidelity of state transfer through a multi-excitation subspace only depends on the number of ini-
tial excitations present in the chain and is independent of the excitation ordering. Based on these
results, we describe a communication scheme which requires little effort for preparation.
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I. INTRODUCTION

Spin qubits have been considered in many quantum
communication analyses due to their wide applicability
in various solid-state devices. A prominent form of inter-
action between the spins is the exchange coupling which
can be described by the Heisenberg model. The Heisen-
berg spin chain has been extensively studied as a commu-
nication channel for many quantum information process-
ing tasks [1]. In most theoretical treatments of the sub-
ject one assumes a ferromagnetic (FM) coupling and the
channel spins are assumed to be initialized to the com-
pletely polarized ground state. However, most physical
realizations of quantum spin channels have an antiferro-
magnetic (AFM) ordering [2]. The ground state wave
function for the antiferromagnetic XY Hamiltonian con-
tains numerous amplitudes within a multi-excitation sub-
space. Although the ground state configuration is more
complicated than the FM ground state, it may prove to
be a more suitable pathway for quantum communication.
It appears that the first proposal for using antiferromag-
netic spin chains for quantum state transfer was provided
in [3]. There it was shown that AFM Heisenberg chains
can represent good quantum channels for robust finite
temperature teleportation and state transfer.

Recently, an experimental proposal for the quantum
simulation of an AFM spin chain in an optical lattice
has been provided [4]. It has also been shown that the
ground state of some one-dimensional spin models with
finite correlation length can distribute entanglement be-
tween long distance sites [5]. As the chain length in-
creases, true long-distance entanglement, characterized
by energy gaps above the ground state, vanishes expo-
nentially. However, long distance entanglement can be
supported by the ground state of spin models with infi-
nite correlation length defined on one-dimensional open
chains with small end bonds [5]. Open quantum spin
chains endowed with XY-like Hamiltonians containing
nearest-neighbor interactions have also investigated [6].
For dimerized XY chains, true long distance entangle-
ment has been found to exist only at zero temperature

although ”quasi long-distance” entanglement can be re-
alized in open XY chains with small end bonds [6]. There
it was found that the entanglement properties slowly fall
off with the size of the chain and that efficient qubit tele-
portation can be realized with high fidelity in long chains
even at moderately low temperatures.

Quantum computing is possible using a wide variety
of systems assembled from antiferromagnetically coupled
spins [7]. Entanglement properties in two-dimensional
AFM models have been studied [8] and it has been shown
that multiqubit entanglement can be generated efficiently
via a quantum data bus consisting of spin chains with
strong static AFM couplings [9, 10]. The effects of fluc-
tuating exchange couplings and magnetic fields on the
fidelity of data bus transfer have also been investigated
[11]. Bayat et al. studied the entanglement transfer
through an AFM spin chain and found that when com-
pared to the FM case, the entanglement can be trans-
mitted faster, with less decay, and with a much higher
purity [12]. Furthermore, Wang et al. demonstrated
that near-perfect entanglement can be generated between
the first and last spins of an AFM isotropic Heisenberg
chain by applying a magnetic field to a single site in a
specific direction [13]. Moreover, perfect state transfer
across a strongly coupled AFM spin chain or ring has
been shown to be possible using weakly coupled external
qubits [14]. Detrimental dispersion effects on the trans-
mission are found to be strongly reduced by modifying
only one or two bonds in an XX spin chain and a trans-
mission fidelity more than 99% for arbitrary long chains
is gained [15, 16].

It is known that quantum information propagates dis-
persively through most spin chains due to the nontrivial
structure of the many-body Hamiltonian that describes
the channel [17]. Designing a non-dispersive channel re-
quires the intricate engineering of the local couplings
[18]. Dispersion is always detrimental to the information
transmission, usually there is always some portion of in-
formation left in the chain after measurement and hence
lost to the receiver [19]. Although perfect state trans-
fer cannot typically be achieved using uniformly coupled
chains alone, the investigation of state transfer through



2

chains of this sort is warranted due to the relative ease
of preparation compared to more elaborate schemes.
In this work, we compare the quality of state trans-

mission for several initial configurations of a spin chain.
Specifically, we examine spin chains initialized to the Néel
state (AFM arrangements) and find that the average fi-
delity of state transfer using these channels is similar to
that which can be obtained using the completely polar-
ized FM ground state. The results follow the original pro-
posal of Bose [20]. Higher average fidelities occur using
this AFM arrangement for chains having an appropriate
length, and in some cases these higher values are accom-
panied by shorter arrival times as well. It is also found
that the quality of transmission through chains prepared
in a multi-excitation state which contain a fixed number
of initial excitations remains nearly identical regardless
of the order in which these excitations occur. These re-
sults bode well for potential realizations of these com-
munication channels as they suggest a simplification of
the initialization process. We analyze the magnetic field
dependence of the fidelity in all cases and find that this
measure is influenced strongly by fluctuations in the ex-
ternal field.
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FIG. 1: (Color online) Schematic of our spin chain communi-
cation channel. After initializing the chain to the Néel state
Alice encodes an arbitrary qubit state at one end and allows
it to propagate freely to the other end.

We first consider the Néel state configuration shown
schematically in Fig. 1. We will provide our mathemat-
ical model next and derive expressions for the fidelity
measure. In Sec. III we discuss our results for this and
other AFM arrangements and compare these results to
the FM case. Sec. IV concludes with a summary of our
findings.

II. THE MODEL

We consider a linear spin chain with uniform nearest-
neighbor XY couplings. The Hamiltonian is given by

H =
J

2
[

N−1
∑

l=1

(σx
l σ

x
l+1 + σy

l σ
y
l+1)−

2h

J

N
∑

l=1

σz
l ] (1)

In this expression J denotes the exchange constant be-
tween adjacent spins. For FM chain, J < 0 and for AFM
chain, J > 0. h represents the external magnetic field
strength of a field applied along the z direction, and σx,y,z

l

signifies the Pauli operators acting on spin l. We take

~ = 1 throughout. Note that for this Hamiltonian the
z-component of the total spin σz =

∑

σz
l is a conserved

quantity, i.e. [H,σz] = 0, which indicates that the sys-
tem contains a fixed number of excitations. The number
of excitations in the chain corresponds to the number of
|1〉’s appearing in the state vector, where |0〉 represents
the spin-down state of a spin qubit and |1〉 represents a
spin-up state. For instance, the state |111...1〉 labels a
chain containing N excitations.
This Hamiltonian can be diagonalized by means of the

Jordan-Wigner transformation which maps spins to one
dimensional spinless fermions with creation operators de-

fined by c†k = (
k−1
∏

l=1

−σz
l )σ

+
k . Here σ±

k = 1
2 (σ

x
k ± iσy

k) de-

notes the spin raising and lowering operations at site k.

The action of c†k is to flip the spin at site k from down

to up. For indices l and m the operators cl and c†m sat-
isfy the anticommutation relation {cl, c

†
m} = δlm. The z

component of the total spin is a conserved quantity and

thus the total number of excitations M =
∑

k c
†
kck in the

chain remains constant.
The time dependence of the operator c†k has been cal-

culated [22] and is given by

c†k(t) =

N
∑

l=1

fk,l(t)c
†
l . (2)

In this expression the transition amplitudes fk,l evolve
according to the relation

fk,l(t) =
2

N + 1

N
∑

m=1

sin(qmk) sin(qml)e−iEmt, (3)

where qm = πm/(N + 1), Em = 2h + 2J cos qm. In
what follows, let us define the completely polarized state
|000 . . .0〉 to be |0〉 ≡ |000 . . .0〉 and let S denote a
set of M different numbers from 1, 2, ..., N . The set
S = {k1, k2, ..., kM} serves to label the sites where the
M excitations initially exist. In this notation, we can
express our initial chain configuration as

|Ψ(0)〉 =

(

∏

k∈S

c†k

)

|0〉 . (4)

In this work we will only consider spin channels which are
initialized to single ket states of this form. This initial
state then evolves to [23]

|Ψ(t)〉 =
∑

l1<l2<...<lM

det(A)

(

M
∏

m=1

c†lm

)

|0〉 , (5)

where

A =

∣

∣

∣

∣

∣

∣

∣

fk1,l1 fk1,l2 ... fk1,lM

fk2,l1 fk2,l2 ... fk2,lM

... ... ... ...
fkM ,l1 fkM ,l2 ... fkM ,lM

∣

∣

∣

∣

∣

∣

∣

. (6)
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Note that we have suppressed the explicit time depen-
dence of the amplitudes fi,j(t) in the determinant above.
The indices l1, l2, ...lM have a similar meaning to the ki
and mark the sites where the excitations have spread to.
We are interested in the fidelity of the state which Bob
receives at site N so we will also need an expression for
the reduced density matrix at this site. This operator
has the form [24]

ρN (t) =

( 〈

σ+
Nσ−

N

〉 〈

σ−
N

〉

〈

σ+
N

〉 〈

σ−
Nσ+

N

〉

)

(7)

where the symbol 〈·〉 represents the average value of
〈

ΨM
l (t)

∣

∣ ·
∣

∣ΨM
l (t)

〉

.
Let us assume that the interaction between spins 1 and

2 can be turned on or off. First the interaction is turned
off and Alice prepares an arbitrary qubit state α |0〉+β |1〉
at the first site of the chain. Now suppose the channel
which includes spins 2 to N is prepared in the Néel state.
The initial state of the system is given by

|Ψ(0)〉 =

{

(α |0〉+ β |1〉)⊗ |1010...10〉 , for odd N
(α |0〉+ β |1〉)⊗ |1010...01〉 , for even N

(8)
Now turn on the interaction and let the system evolve

freely. At an appropriate time Bob will receive a state
which resembles the one Alice prepared. An ideal trans-
mission would result when Bob receives a state which
is identical to the one Alice prepared, in that case the
fidelity would be perfect. Then

|Ψ(t)〉 = α
∑

l1<l2<...<lM1

A1

(

M1
∏

m=1

c†lm

)

|0〉

+ β
∑

l1<l2<...<lM2

A2

(

M2
∏

m=1

c†lm

)

|0〉 .

(9)

In the expression above we have

M1 =
N − 1

2
, M2 =

N + 1

2
, for odd N (10)

and

M1 =
N

2
, M2 =

N

2
+ 1, for even N (11)

The determinants A1 and A2 have the same form as A
except that M is replaced with M1 and M2 respectively.
Now the matrix elements in Eq. (7) can be calculated as

〈

σ+
Nσ−

N

〉

= |α|
2
Γ1 + |β|

2
Γ2,

〈

σ−
Nσ+

N

〉

= |α|
2
Γ3 + |β|

2
Γ4,

and
〈

σ+
N

〉

= αβ∗Γ5,
〈

σ−
N

〉

=
〈

σ+
N

〉∗
(12)

with

Γ1 =
∑

l1<l2<...<(lM1
=N)

(detA1)
∗ detA1,

Γ2 =
∑

l1<l2<...<(lM2
=N)

(detA2)
∗ detA2,

Γ3 =
∑

l1<l2<...<(lM1
6=N)

(detA1)
∗ detA1,

Γ4 =
∑

l1<l2<...<(lM2
6=N)

(detA2)
∗ detA2,

Γ5 =
∑

l1<l2<...<lM1
<(lM2

=N)

(detA2)
∗ detA1. (13)

Let α = cos θ
2 and β = sin θ

2e
iϕ, the average fidelity

of transmission at Bob’s end can then be calculated by
integration over the unit sphere

F =
1

4π

∫

〈ϕin| ρN (t) |ϕin〉 dΩ

=
1

3
[Γ2 + Γ3 +Re(Γ5)] +

1

6
[Γ1 + Γ4]. (14)

When two excitations exist (M=2) the fidelity can be
found to agree with Eq. (7) of Ref [25] where we discuss
duplex quantum communication in a FM spin chain.
Here we define the perfect state transfer as ”Bob re-

ceives a state which is identical to the one Alice pre-
pared”. However, other works[1, 20] about the defini-
tion of perfect state transfer allow the receiver’s state
has an arbitrary phase factor compared with the sender’s
state. In the latter definition, the third term in Eq.(14) is
changed to (|Γ5| cos γ)/3, where γ = arg{Γ5}. To maxi-
mize the average fidelity, the magnetic field must be prop-
erly chosen such that cos γ = 1.
When M = 1, i.e. only one excitation exists in the

chain, the excited state contributes as a term in Alice’s
encoded qubit state (k1 = 1). In this case we have Γ1 =

0, Γ2 = |f1,N |2, Γ3 = 1, Γ4 = 1− |f1,N |2, and Γ5 = f∗
1,N .

The corresponding average fidelity can be simplified to

F =
1

2
+

1

3
|f1,N | cos γ +

1

6
|f1,N |2 . (15)

Where γ = arg{f1,N}. This result is in accordance
with Bose’s expression (Eq. (6) in Ref [20]) where the
channel spins are prepared in the ground state of a FM
chain.

III. RESULTS AND DISCUSSIONS

Starting from the initial state (Eq.(8)) the system un-
dergoes a time evolution described by Eq’s. (9)-(12).
This evolution can be viewed as the propagation of the
half site excitations. After initialization these excitations



4

0.0
0.4

0.8
1.2

1.6
2.0 0

20
40

60
80

100

0.4

0.5

0.6

0.7

0.8

0.9

F

Jt2h/J

FIG. 2: (Color online) Plot of the average fidelity of state
transfer as a function of scaling time Jt and scaling external
field 2h/J . The figure corresponds to a N=10 site chain which
has been initialized to the Néel state.

begin to spread outward and at a later time there is typi-
cally a nonzero probability of finding any one of the spins
in an excited state. From the point view of wave mechan-
ics, the transition amplitude fk,l(t) can be viewed as the
propagator and the state transfer can be characterized
in terms of the dispersion of all propagators. At some
time Tmax maximum constructive interference occurs at
the receiving end and the state of the spin at Bob’s site
now has its strongest resemblance to the state which Al-
ice prepared. First we investigate the effect of a magnetic
field on the evolution of the average fidelity. As an exam-
ple, Fig.2 illustrates the average fidelity of transmission
through an N=10 site chain as a function of Jt and 2h/J .
We find that the average fidelity changes abruptly with
Jt and 2h/J as it oscillates around the value 0.5. The
magnetic field has a pronounced effect on the average fi-
delity, with increasing 2h/J the oscillation of the average
fidelity becomes more rapid. The maximum average fi-
delity (MAF) Fmax=0.909 is achieved at JTmax = 6.0
with 2h/J=0.2.

In Fig.3 we compare the communication fidelity when
an arbitrary qubit state is transferred through two initial
channel configurations of various length. One of these
channels is chosen to be the ground state |0〉 of a FM
chain while the other channel corresponds to the Néel
state. We note that it has recently been shown that for
chains containing N = p − 1 or N = 2p− 1 sites, where
p is prime, or if N = 2m − 1, a maximum fidelity greater
than 1 − ǫ (ǫ > 0) can be achieved if the waiting time is
not an issue. We set the magnetic field to h=0.0 (h=1.0)
for plots Fig. 3(a) (Fig. 3(b)). First notice that when
N=5, both channels yield Fmax ≈ 1 indicating that near
perfect state transfer can be realized. Secondly, in the
absence of a magnetic field (Fig. 2(a)) the MAF associ-
ated with the Néel channel is typically greater than or
equal to the values which occur for the FM ground state
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FIG. 3: (Color online) Comparison of the maximum average
fidelity that can be achieved as a function of chain length
N for different initial state configurations; the FM ground
state and the Néel state. The results are obtained within the
time interval [0,500/|J | ] and for field strengths (a) h=0.0, (b)
h=1.0, (c) optimal field strengths.

configuration. The figure suggests that for h=0.0 the
Néel channel supports a better state transfer than |0〉
for chains containing 7 + 4n (n = 0, 1, 2...) sites. In Fig.
3(b) we compare the results when an external magnetic
field is present. In this case the MAF associated with the
Néel state can be lower than the |0〉 channel for certain
N . We also find that when N = 5 + 4n and N = 6 + 4n
(n = 0, 1, 2...), the MAF is equal for the Néel channel
and the FM ground state channel. In Fig.3(c) we plot
the MAF for optimal choice of magnetic field. Through
numerical calculation we find that the MAF and the time
Tmax at which the average fidelity gains its maximum
value (Fig.4(c)) are always equal when using the the FM
ground state and the Néel state as the initial state. Then
half excitations of the chain length and a single excitation
shows same transmission quality when considering opti-
mal choice of magnetic field. Fig.3(c) also shows that the
MAF are greatly enhanced compared with the fixed mag-
netic field which is plotted in Fig.3(a),(b). N = 4, 5, 6
gives nearly perfect (Fmax=0.999) state transfer.

In Fig.4 we plot the time Tmax as a function of site
number N . In the absence of a magnetic field (Fig.4(a))
we find that when Fmax is equal for chains differing in
length by one unit the associated arrival times Tmax
are also equal. In the presence of a magnetic field (Fig.
4(b)) this behavior also exists. For certain chain lengths
a shorter arrival time accompanies the higher MAF which
can be obtained using the Néel channel, e.g., N =11, 19
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(h=0.0) and N=12, 16 (h=1.0).
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FIG. 4: (Color online) The time Tmax at which the average
fidelity gains its maximum. (a) h=0.0, (b) h=1.0 (c) optimal
field strengths.

Since the Néel state is not an eigenstate of the AFM
chain there is a large probability that it will collapse to
another state when we attempt to obtain it through mea-
surement. These other possible states will contain the
same number of excitations as the Néel state but the lo-
cation of the excitations will generally be different. For
instance, when N=6 and M=3 the locations of the exci-
tations for the Néel state are at sites 2, 4, and 6. Sup-
pose these excitations occupied other sites, say sites 2, 3,
and 4. We now check to see how the average fidelity is
affected by such a re-ordering. We sample random con-
figurations for chains containing N=6 and N=15 sites
having M=3 and M=7 excitations respectively. For the
N=6 site chains we select the excitation locations to be
(2, 3, 4), (3, 4, 5), (2, 4, 6), and for the N=15 site chains
we choose (3, 4, 6, 10, 11, 12, 14), (2, 3, 7, 8, 10, 11, 13).
Using the arrival times Tmax associated with the Néel
ordered states we calculate the difference in the average
fidelity between these different configurations. For h =
1.0 we find a difference of only 5.55× 10−16 between the
orders (2, 3, 4) and (3, 4, 5). A comparison between

orders (2, 4, 6) and (2, 3, 4) yields an even smaller differ-
ence for the same value of h. For h=0.0 and N=15 the
difference in the fidelity for the two configurations above
is 3.55× 10−15. We have also checked other initial state
configurations using various values for N and find that
the average fidelity is nearly equal to the corresponding
N -site Néel state at the same time which maximizes the
Néel channel average fidelity. We conjecture that when
the number of excitations is roughly similar to half of
the system size, the evolution of the average fidelity only
depends on the number of excitations in the chain and
is independent of their ordering. If this prediction holds,
the initialization process of the AFM chain would be sim-
plified. If the chains state collapses via measurement to
any state containing a fixed and known number of exci-
tations we could predict the behavior of the subsequent
evolution of the fidelity.

IV. CONCLUSIONS

In this work we have shown that multi-excitation chan-
nels can provide suitable pathways for quantum commu-
nication. Some of the AFM chains we have considered
have been found to outperform state transfer protocols
based on ferromagnetic media which are initialized to the
ground state. Specifically, we have found certain Néel
state configurations which allow a quantum state to be
transmitted in a shorter amount of time and arrive with
a higher average fidelity than in the FM case. Moreover,
numerical calculations support our conjecture that the
quality of state transfer through a multi-excitation sub-
space only depends on the number of excitations present
in the initial state of the system. Since the fidelity of
state transfer appears to be independent of the ordering
of the initial excitations, we believe that the AFM ground
state can serve as a communication channel.
These results should be interesting to test experimen-

tally, perhaps using NMR methods [26], fabricated AFM
nano-chains [2], or optical lattices [4, 27].
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