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Quantum Lyapunov control was developed in order to transform a quantum system from arbitrary
initial states to a target state. The idea is to find control fields that steer the Lyapunov function
to zero as t → ∞, meanwhile the quantum system is driven to the target state. In order to shorten
the time required to reach the target state, we propose two designs to optimize Lyapunov control
in this paper. The first design makes the Lyapunov function decrease as fast as possible with a
constraint on the total power of control fields, and the second design has the same purpose but with
a constraint on each control field. Examples of a three-level system demonstrate that the evolution
time for Lyapunov control can be significantly shortened, especially when high control fidelity is
required. Besides, this optimal Lyapunov-based quantum control is robust against uncertainties in
the free Hamiltonian and decoherence in the system compared to conventional Lyapunov control.
We apply our optimal design to cool a nanomechanical resonator, a shorter cooling
time is found with respect to the cooling time by the conventional Lyapunov design.

PACS numbers: 03.65.Yz, 02.30.Yy, 03.67.-a

I. INTRODUCTION

Quantum control [1, 2] has attracted much attention
in recent years and it has found potential applications
in many fields such as quantum information processing,
quantum chemistry and quantum simulation. Among
these quantum control problems, state transfer is a cen-
tral task. Various methods such as quantum optimal
control and Lie group decompositions have been used to
design control laws to drive quantum systems to target
states or to realize some specific operations [3–13].

Quantum Lyapunov control was proposed in the early
2000s as a good candidate for state transfer[14, 15]. This
strategy has been widely studied recently both in the-
ory and applications [16–26], because it offers a simple
and effective way to design control fields. However, the
problem of speeding up Lyapunov control has not been
widely considered to date. Quantum Lyapunov control is
practically employed in an open-loop way without mea-
surement and feedback. Hence, it is quite natural to
shorten the evolution time so as to overcome the deco-
herence effect induced by inevitable interactions with the
surrounding environment.

In quantum Lyapunov control, a function V , called a
Lyapunov function of quantum states, is specified to de-
sign time-varying control fields. The system converges to
the target state given by V̇ = 0 while V decreases to its
minimum. Based on this concept, we present a scheme to
optimize Lyapunov control by using the following idea:
Speed up evolution to the target state by making V de-
crease faster.

Generally, the total Hamiltonian in a quantum control

system can be written in two parts H0 +
∑k

n=1
fn(t)Hn,

where H0 is the free (internal) Hamiltonian and Hn are
external control Hamiltonians with fn(t) representing the
corresponding control fields. These control fields should
be designed to ensure V̇ ≤ 0. In fact, there are many
ways to choose fn(t) to achieve this goal. In this paper,
we consider the question: With given control Hamiltoni-
ans Hn, how should we design the shape of the control
fields fn(t) in order to make V decrease fastest.

It is shown that one can enable V to decrease faster
simply by enhancing the strength of the control fields.
However, strong control fields may not be feasible and
always bring unwanted results, for example a large en-
ergy (power) cost, invalidation of mathematical approx-
imation and treatment for the system. In view of these
factors, we propose two designs for the control fields.
One is under the constraint that the power-type quan-

tity W =
∑k

n=1
fn(t)

2 is bounded. The other is under
the constraint that the strength of each field is bounded.
These designs for control fields make V decrease as fast as
possible within given limitations. The second design has
the simple form of “bang-bang” control which is easy to
be implemented in an experiment. We also illustrate our
control method with a three-level system. The results
suggest that the evolution time is significantly reduced
compared with the conventional method.

The paper is organized as follows: In Sec.II, we de-
rive control fields for a general Lyapunov function V =
Tr(Pρ) under the two aforementioned constraints. In
Sec.III, we simulate our field designs and compare them
with the conventional method. The robustness of the op-
timal Lyapunov designs is analyzed in Sec.IV. Finally, we
summarize our work in Sec. V.
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II. DESIGN OF CONTROL FIELDS

In quantum Lyapunov control, the system is steered
from an initial state to a target state by control fields
designed using Lyapunov function V . The goal of this
paper is to obtain optimized control fields that make the
time derivative of the Lyapunov function |V̇ | largest so
as to speed up the evolution to the target state. We start
from a closed quantum system described by the Liouville
equation

dρ

dt
= −i[H0 +Hc(t), ρ], (1)

where H0 is the free Hamiltonian for the controlled sys-
tem and Hc(t) is a time-dependent Hamiltonian repre-
senting coupling to external control fields which is called
the control Hamiltonian. We have set ~ = 1 and assume
that the system is controllable. In Lyapunov control, the
solution of Eq.(1) converges to the minimum of V (ρ).
Meanwhile, the state converges to a set of states char-
acterized by the La Salle’s invariance principle [1]. The
control Hamiltonian Hc(t) can be written in the form,

Hc(t) =
k

∑

n=1

fn(t)Hn (2)

where Hn (n = 1, ..., k) are time-independent Hermitian
operators corresponding to different types of external
control and fn(t) are time-varying real functions, usu-
ally representing electro-magnetic fields. k is a positive
integer.
In this paper we consider the following form of Lya-

punov function

V = Tr(Pρ), (3)

where P is a Hermitian operator and assumed to be posi-
tive semi-definite in order to satisfy the standard require-
ment for a Lyapunov function, V ≥ 0 [1]. Also, some
other forms of Lyapunov function can be described by
Eq.(3), such as that based on the Hilbert Schmidt dis-
tance [1, 19].
The time derivative of V needs to be calculated to

design the control fields,

V̇ = Tr(−iP [H0 +

k
∑

n=1

fn(t)Hn, ρ])

= Tr(−iρ[P,H0]) +

k
∑

n=1

fn(t)Tr(−iρ[P,Hn])

=
k
∑

n=1

fn(t)Tn

(4)

where Tn = Tr(−iρ[P,Hn]) is a real function of ρ, Hn and
P . We have used the assumption that [P,H0] = 0, which
can be achieved by constructing P using the eigenvectors
of H0.

The Lyapunov control strategy requires V̇ ≤ 0. There
are many ways to design fn(t) to satisfy this requirement.
A simple and conventional way is to let fn(t) = −KTn

with K > 0 so that

V̇ (ρ) = −
k

∑

n=1

KTn(t)
2 ≤ 0. (5)

With such control fields, V will decrease to its minimum
and state ρ will converge to the target state ρf with
the same spectrum as the initial state ρ0 and satisfying
Tr(e−iH0tρfe

iH0t[P,Hn]) = 0 [1].

In the conventional field design method, the ampli-
tude of the control fields fn(t) is proportional to Tn.
That means when Tn is small (for example, when ρ is
very close to ρf ), fn(t) will become small leading to a
slow decreasing of V and a long evolution time. Our aim
is to determine optimized control fields fn(t) to enable
V to decrease as fast as possible in order to speed up
control. From Eq.(4) it is seen that if each fn(t) has a

different sign to the corresponding Tn, then V̇ < 0 and
large |fn(t)| will lead to fast decreasing of V . Therefore,
the problem has to be discussed under a constraint on
the control fields fn(t). Considering the following rea-
sons for constraining the control fields: First, one often
wishes control fields to be weak in order to reduce energy
(power) costs. Second, strong external control fields may
lead to invalidation of the modeling of the system. Third,
strong fields may disturb neighboring quantum systems
that we do not want to disturb. We propose two designs
of control fields under constraints on the power of the
control fields (constraint A) and on the strength of each
control field (constraint B), respectively.

A. A power-type Constraint

First, we consider the following constraint on the con-
trol fields

W =

k
∑

n=1

fn(t)
2 ≤ Wmax. (6)

Since the control fields fn(t) are always associated with
the amplitude of the electro-magnetic fields, the quantity
W can be interpreted as a power-type quantity. We will
call it power for simplicity in the following. The total
power of the control fields is bounded in this case.

Consider
∑k

n=1
T 2
n 6= 0 (ρ 6= ρf ) in time t and the

constraint for fn(t) is
∑k

n=1
fn(t)

2 = W . In order
to determine the optimized control fields that minimize

V̇ =
∑k

n=1
fn(t)Tn (V̇ is negative), we use the Lagrange

multiplier method. Let

L =
∑

n

fnTn + λ(
∑

n

f2
n −W ) (7)
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where λ is the Lagrange multiplier, and fn represents
fn(t) at a certain time t. Then from the following equa-
tions

∂

∂fn
L = Tn + 2λfn = 0, (8)

∂

∂λ
L =

∑

f2
n −W = 0, (9)

it is easy to obtain the amplitude of the fields fn at time
t,

fn = −
√
WTn

√

∑k
n=1

T 2
n

(10)

with Tn = Tr(−iρ[P,Hn]). The corresponding time
derivative of Lyapunov function is

V̇ =

k
∑

n=1

fnTn = −
√
W

∑k
n=1

T 2
n

√

∑k
n=1

T 2
n

. (11)

It is seen that V̇ is proportional to
√
W , so we choose

W = Wmax for a faster decreasing of V and our control
design for all evolution time reads

fn(t) =

{

−
√
WmaxTn√∑

k

n=1
T 2
n

(
∑k

n=1
T 2
n 6= 0)

0 (
∑k

n=1
T 2
n = 0).

(12)

Note that when ρ reaches the final state ρf , all Tn =
Tr(−iρf [P,Hn]) become zero and all control fields are
switched off. Considering that ρ converges to ρf asymp-
totically, we will switch off the control fields after
D(ρ, ρf ) < ε where D denotes some measurement for the
distance between ρ and ρf and ε is the required precision.
In the case k = 1, i.e., there is only one control Hamil-

tonian, our control design reduces to

f1(t) =







−
√
Wmax (T1 > 0)√
Wmax (T1 < 0)
0 (T1 = 0)

(13)

which has a simple “bang-bang” control form. With its
discrete shape of the control fields, this control design
should be easy to realize experimentally [8, 23].

B. Constraint on the strength of each control field

Next, we will find the optimized control fields when
the strength of each field is bounded. For simplicity, we
assume the maximum strength of every control field fn(t)
is S (S > 0), i.e.,

|fn(t)| ≤ S, (n = 1, 2, · · · , k). (14)

From V̇ =
∑k

n=1
fn(t)Tn, it is easy to obtain the op-

timized control fields that minimize V̇ with condition

Eq.(14),

fn(t) =







−S (Tn > 0)
S (Tn < 0)
0 (Tn = 0)

n = 1, 2, · · · , k (15)

and the time derivative of the Lyapunov function is

V̇ =

k
∑

n=1

fn(t)Tn = −S

k
∑

n=1

|Tn|. (16)

This design has the “bang-bang” control form with k
different control fields. When there is only one control
Hamiltonian, the design has the same form as that in
Eq.(13) with

√
W replaced by S.

We have presented two designs of control fields for sys-
tems described by Eq.(1) and Lyapunov function Eq.(3)
with two constraints. However, these designs can also be
applied to other Lyapunov control as long as the deriva-
tive of Lyapunov function has the form of Eq.(4) where
fn(t) represents a control field and Tn represents a real
function of the quantum state. In fact, for many differ-
ent kinds of Lyapunov function and different dynamical
equations [14, 18, 20, 21], V̇ takes this form.

III. ILLUSTRATIONS

In this section, we will present an example to illus-
trate the proposed schemes. The example consists of a
3-level system driven by a control Hamiltonian. We show
that the system can be steered to an eigenstate of the
free Hamiltonian from arbitrary initial states (except the
states in the La Salle’s invariant space) by both the con-
ventional design fn(t) = −KTn and the design proposed
in this paper. The difference is that the present design
can speed up the convergence.
Consider a three-level system described by the quan-

tum Liouville equation

dρ

dt
= −i[H0 +

4
∑

n=1

fn(t)Hn, ρ] (17)

with free Hamiltonian

H0 = ω





1.5 0 0
0 1 0
0 0 0



 . (18)

where the energy difference between |1〉 and |2〉
(|2〉 and |3〉) is ω (1

2
ω). ~ = 1 has been set through-

out this paper.
The aim is to steer the system from an arbitrary initial

pure state ρ0 = |φ0〉〈φ0| to an eigenstate, say |φf 〉 =
|3〉 = [1, 0, 0]T of the free Hamiltonian H0. We choose
the Lyapunov function V = Tr(Pρ) with

P =





0 0 0
0 1 0
0 0 1



 . (19)
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FIG. 1: (color online) (a) Pf (solid line) and |V̇ | (dashed
line) as a function of time with the conventional control de-
sign fn(t) = −KTn. (b) Control fields (in units of ω) for
Wmax=0.0001, and Smax = 0.007 . These fields are switched
off when Pf ≥ 0.999 at t = 191 .

According to the Lyapuonv control theory, the system
Eq.(17) will be driven to an eigenstate of P with the
minimum eigenvalue 0, i.e., ρ → ρf = |3〉〈3|. Addi-
tionally, in the pure state case, this Lyapunov function
can be explained as the Hilbert Schmidt distance be-
tween |φ〉 and |φf 〉. Recall that P = I − |φf 〉〈φf |, and
V = Tr(Pρ) = Tr((I − |φf 〉〈φf |)|φ〉〈φ|) = 1 − |〈φ|φf 〉|2,
our control design in this example acts to make the dis-
tance between |φ〉 and |φf 〉 decrease as fast as possible
with a given restriction on the control fields.
In order to achieve the best performance, we choose

the control Hamiltonians Hn to be the generators of
the SU(3) group λn(n = 1, ..., 8), namely, Hc(t) is con-
strained from

λ1 =





0 1 0
1 0 0
0 0 0



 , λ2 =





0 −i 0
i 0 0
0 0 0



 ,

λ3 =





1 0 0
0 −1 0
0 0 0



 , λ4 =





0 0 1
0 0 0
1 0 0



 ,

λ5 =





0 0 −i
0 0 0
i 0 0



 , λ6 =





0 0 0
0 0 1
0 1 0



 ,

λ7 =





0 0 0
0 0 −i
0 i 0



 , λ8 =
1√
3





1 0 0
0 1 0
0 0 −2



 .

(20)

Notice that since only λ1, λ2, λ4 and λ5 satisfy [P, λn] 6=
0, only these generators are effective for our model which
can be understood by examining Eq.(4). Therefore, the
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FIG. 2: (color online) (a) Pf (solid line) and |V̇ | (dashed
line) as a function of time with the control design Eq.(12)
under constraint A. (b) Control fields (in units of ω) with
Wmax = 0.0001. These fields are switched off at t = 90 when
Pf ≥ 0.999.

control Hamiltonians are chosen as,

H1 = λ1 =





0 1 0
1 0 0
0 0 0



 , H2 = λ2 =





0 −i 0
i 0 0
0 0 0



 ,

H3 = λ4 =





0 0 1
0 0 0
1 0 0



 , H4 = λ5 =





0 0 −i
0 0 0
i 0 0



 ,

(21)

which can be rewritten as H1 = |3〉〈2| + |2〉〈3|, H2 =
i(−|3〉〈2| + |2〉〈3|), H3 = |3〉〈1| + |1〉〈3|, and H4 =
i(−|3〉〈1| + |1〉〈3|), which couple the energy levels |1〉
and |2〉 to the final state |3〉. We would like to note
that the control Hamiltonians in this example are opti-
mal, because any operator for this 3-level system can be
written as an expansion of these generators. For high-
dimensional system, the problem becomes more compli-
cated.
We first simulate the problem with the conventional

control field design fn(t) = −KTr(−iρ[P,Hn]) with
K = 0.01 and initial state |φ0〉 = 1√

3
(|1〉 + |2〉 + |3〉).

The control fields are switched off when the probability
Pf = |〈φ|φf 〉|2 reaches 0.999 both in this simulation and
the following two so as to compare the evolution time.
Fig.1(a) shows the evolution of probability Pf (black

solid line) and |V̇ | (blue dashed line). It is seen that the
system is driven to target state |φf 〉 and the evolution
time is about t = 191 for Pf = 0.999. The time-varying
control fields fn(t) are plotted in Fig.1(b). The power

W =
∑4

n=1
fn(t)

2 reaches its maximum Wmax = 0.0001
at t = 17 and the maximal strength of a single control
field is |f1| = 0.007 at t = 16.
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FIG. 3: (color online) (a) Pf (solid line) and |V̇ | (dashed
line) as a function of time with ”bang-bang” control Eq.(15)
under constraint B. (b) Control fields (in units of ω ) with
S = 0.007. These fields are switched off at t = 74 when
Pf ≥ 0.999.

Next, we employ the control design Eq.(12) under the
constraint on the power of control fields. In order to be
comparable with the last example, the maximal power
Wmax and initial state are chosen to be the same as the
above one. Results in Fig.2(a) show that the evolution
time for Pf = 0.999 is t = 92 which is evidently shorter
than that shown in Fig. 1. Control fields are plotted in
Fig.2(b) which have a sinusoidal shape. In this example,
for all the time before control fields are switched off, the
power of control fields remains constant and the shapes
of fields are optimized so that the Lyapunov function
decreases fastest under constraint A. We can see this from
evolution of |V̇ | in Fig.2(a) (blue dotted line).

Now we study the control design Eq.(15) under con-
straint B. For comparison, we let the maximal strength
S and the initial state be the same as that in the first sim-
ulation. The simulation results are illustrated in Fig.3.
The evolution time for Pf = 0.999 is t = 73 which is
about 38 percent of the first example. In this exam-
ple, the control fields shown in Fig.3(b) are step-like.
Such a control method makes Lyapunov function de-
crease fastest under the restriction of strength and has
the advantage of being easy to be implemented in ex-
periment. The evolution of |V̇ | is not smooth (shown in
Fig.3(a) by blue dashed line), which is due to the discrete
control fields.

Furthermore, we plot in Fig.4 the evolution of
D = 1 − |〈φ|φf 〉|2 for the three designs of control
field with 50 randomly chosen initial states ( |φr〉 =
R[r1e

i2πr4 , r2e
i2πr5 , r3e

i2πr6 ]T , where ri(i = 1, ..., 6) are
random numbers uniformly created between 0 and 1,
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FIG. 4: (color online) Evolution of D = 1− |〈φ|φf 〉|
2 for the

three control designs with logarithmic scale. (a),(b) and (c)
correspond to the conventional control field design, the design
under constraint A, and that under constraint B, respectively.
Each picture is a result averaged over 50 random initial states.
The convergence speed of (b) and (c) is faster than that of
(a) as these figures show.

R = 1√
r2
1
+r2

2
+r2

3

is a normalization factor) respectively.

The simulations show that the convergence rate for the
usual control design is exponential where the evolution
time grows linearly with the distance between the actual
and target states D, whereas the convergence rate of our
two methods is larger than the conventional one, espe-
cially when the control fidelity is required to be high.
The reason is our methods keep |V̇ | at its maximum for
all the evolution even if Tn is very small.

We found that some of the control fields may oscil-
late with very high frequency at the end of the control
in Eq.(15) with constraint B. The oscillation depends on
the initial state and the distance between the actual and
target states. The reason of this oscillation is as fol-
lows. When the state is close to the target state, some
Tn become very small leading to ineffectiveness of the
corresponding control field fn(t). While in conventional
Lyapunov control, the control field fn(t) decreases to zero
with Tn → 0. In our method, however, fn(t) is designed
to take the value S or −S, which makes the state oscil-
late almost every step of simulation. This problem can
be solved by averaging the control fields over a proper
time period and then use the reshaped fields instead of
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FIG. 5: (color online) The average fidelity verses uncertain-
ties in the free Hamiltonian, (a) for λ1 and (b) for λ3. The
blue triangle, green star and black circle represent the fidelity
obtained by bang-bang control design, design with power con-
straint and the conventional one, respectively.

the oscillating one. In fact, this average can be used in
the situation when the control fields are not a (fast) os-
cillating function of time, it yields the same control fields
and maintains the results.

IV. ROBUSTNESS OF THE DESIGNS

One may wonder if these optimal designs improve the
robustness of the Lyapunov-based control. In the follow-
ing, we shall examine this problem following the repre-
sentations in [26] by calculating an average fidelity of the
system with Hamiltonian uncertainties, decoherence and
field fluctuation in the controls Eq.(17). Here the aver-

age fidelity is defined by P
′

f = 1

N
(
∑N

j=1
|〈φj |φf 〉|2), |φj〉

denotes the actual state evolving from a random initial
state under the control with uncertainties, decoherence
or fluctuations. In other words, the average is taken over
N actual states, each evolves from a randomly chosen
initial state, driving by the controls with uncertainties,
decoherence or fluctuations. Our focus is on whether
the optimal designs is robust against these uncertainties
compared with the conventional one.
We begin with analyzing robustness against the uncer-

tainty in the free Hamiltonian H0. The uncertainties can
be taken into account by adding a perturbation δH0 to
the free Hamiltonian, i.e.,

H0 → H0 + δH0.
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x 10
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P
f’

FIG. 6: (color online) The average fidelity as a function of
the decoherence rates, here we choose γ2 = γ3 = γ. The blue
triangle, green star and black circle represent bang-bang con-
trol design, design with power constraint and the conventional
one, respectively.

Here δH0 =
∑8

n=1
δnλn with δn a real number and λn

the generators in Eq.(20). For simplicity, we examine
separately the 8 uncertainties δH0 = δnλn, n = 1, 2 · · · 8.
The equation dρ

dt
= −i[H0 + δH0 +

∑4

n=1
fn(t)Hn, ρ] is

simulated for the three designs with the same control
fields and the same parameters as in section III. Selected
results are showed in Fig.5 where the fidelity P

′

f is an
average over fidelities from 1000 randomly chosen initial
states.

The simulations show that, (1) the optimal Lyapunov
control is robust against the uncertainty λ1, and is sen-
sitive to that of λ3; (2) the bang-bang design is more
robust than the design with power constraint, and the
conventional design has the worst robustness. In fact,
the robustness against the uncertainty δ8λ8 is simi-
lar to Fig.5(a) and robustness against the uncertainties
δnλn(n = 2, 3, 4, 5, 6, 7) is roughly similar to Fig.5(b).
Thus here we only show the robustness of the control
against the uncertainties λ1 and λ3. This conclusion con-
firms that the system is sensitive to the uncertainties that
commute with the free Hamiltonian, while it is robust
against the uncertainties that does not.

We next discuss the robustness against decoherence.
In this discussion, we assume that states |2〉 and |1〉 are
long lived, namely only the spontaneous emission |3〉 →
|1〉 and |3〉 → |2〉 is assumed. This can be described
by L(ρ) =

∑

i=1,2 γi(σ
−
i ρσ+

i − 1

2
σ−
i ρσ

+

i − 1

2
σ−
i ρσ+

i ) with

σ−
i = |i〉〈3| and σ+

i = |3〉〈i|. With this assumption,
the target state is not a steady state, so the fidelity will
be affected seriously. However, the optimal controls are
better than the conventional one due to the short time
needed to drive the quantum system from an initial state
to the target state. As we did in Fig.5, we calculate the
average fidelity for the three control designs with 1000
random initial state and fixed γ. The results are depicted
in Fig.6. In this case, the fidelity of the two optimal
designs is obviously higher than the conventional design.
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The robustness against field fluctuations (with zero-
mean) and errors in the initial state is also explored. The
results are similar to that in [26], namely the control field
fluctuation with zero mean affects the fidelity slightly,
while it depends sharply on the fluctuation with non-zero
mean, and the final fidelity is sensitive to the initial state.
In these cases, the optimal control has no advantage with
respect to the conventional one.

V. APPLICATION TO THE COOLING OF A
MECHANICAL OSCILLATOR

The cooling of mechanical resonators [27–31] becomes
an active research topic in recent years due to its poten-
tial applications in detecting extremely small displace-
ment and observing quantum phenomenon of macro-
scopic mechanical object. In this section, we apply
the Lyapunov control to cooling a nano-mechanical res-
onator. The results show that it is possible to cool a
nano-mechanical system to its ground state by Lyapunov
control, the optimized control design leads to a shorter
cooling time with respect to the conventional control de-
sign.
Consider a nano-mechanical resonator (called target)

with frequency ω coupled to the other microwave (opti-
cal) oscillator (auxiliary system), the microwave oscilla-
tor has a sufficiently higher frequency Ω such that it can
be prepared in its ground state at finite temperature. In
the language of Lyapunov control, the free Hamiltonian
of the composite system is given by

H0 = ~ωa†a+ ~Ωb†b. (22)

We assume the coupling Hamiltonian of the two oscilla-
tors has the following form,

Hc = g(t)xAxB (23)

with xA = a+ a† and xB = b + b†. This type of Hamil-
tonian can be realized by coupling the target to a LC
oscillator and the coupling rate g(t) can be modulated
by the voltage of the LC circuit [27–29].
In the sideband cooling, g(t) is modulated at Ω−ω so

that the two resonators are effectively coupled and the
rotating wave approximation (RWA) applies when the
coupling g is weak. Recently, the authors of [27] shown
that quantum control can improve the cooling, when the
control goes beyond the RWA in the ultra-strong coupling
regime g ∼ ω [27]. Here, we show that we can obtain
the control design by the Lyapunov functional, and the
optimized Lyapunov design can shorten the cooling time.
Denote the state of the two resonators by ρ, we can

choose the Lyapunov function as

V (ρ) = Tr(a†aρ) = 〈na〉, (24)

namely, we choose the mean phonon number of the tar-
get resonator as the Lyapunov function, which is non-
negative and becomes zero when the target system is

10 20 30 40
0
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〈n
a〉

10 20 30 40
−0.2

0

0.2

g 
/ ω

0 10 20 30 40 50
0

5

t (1/ω)

〈n
a〉

0 10 20 30 40 50
−0.2

0

0.2

t (1/ω)
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/ ω

(b)

(a)

FIG. 7: (color online) (a) Phonon number versus time for the
conventional Lyapunov design (upper half) and optimal Lya-
punov design (lower half). The evolution time for 〈na〉 = 0.05
is ωt = 37.5 (upper) and ωt = 13.4 (lower), respectively. (b)
Time-dependent coupling for the conventional design (upper)
and the optimal design (lower), where g(t) for the two designs
share the same maximal strength |gmax|/ω = 1.91. g(t) for
the optimal design is shut off after ωt = 13.4.

cooled to its ground state. By the same procedure, we
get

V̇ (ρ) = g(t)Tn. (25)

Here Tn = Tr(−iρ[a†a, (a† + a)(b† + b)]). If g(t) is

chosen to keep V̇ ≤ 0, the phonon number of tar-
get resonator will decrease monotonically. The conven-
tional Lyapunov design for the time-dependent coupling
strength is g(t) = −KTn with K a positive constant,
while the optimal Lyapunov design is a bang-bang con-
trol given by Eq.(15).
Assume that the target resonator is initially in a ther-

mal state with average phonon number 〈na〉 = 6.38 and
the auxiliary system is prepared in its ground state. Note
that the frequency of auxiliary system Ω should be suffi-
ciently large compared with ω, such that thermal fluctu-
ation has small effect on the microwave oscillator. Our
numerical simulations show that larger Ω leads to faster
oscillation of g(t), but it does not affect the cooling re-
sults. Here we set Ω/ω = 20.
The simulations are performed in the Fock space, we

truncate the Fock space of each oscillator up to 20 Fock
states and the dissipation of each resonator is ignored.
Compare to simulations with 25-Fock state-truncations,
improvement is not significant, so the simulations with
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20-Fock state-truncation are reasonable. We compare
the evolution of phonon number 〈na〉 and g(t) for the two
designs in Fig.7. The top half of Fig.7(a) represents the
evolution of 〈na〉 for conventional design with K = 0.03
and maximal control field strength |g(t)|/ω = 0.191. It
takes t = 37.5 (in unit of 1/ω) for the target to reach
〈na〉 = 0.05. In contrast, for the optimal design, the
evolution time for reaching the same phonon number is
t = 13.4 as shown in the lower half of Fig.7(a). Obviously
the optimal Lyapunov design shorten the cooling time.
Fig.7(b) shows the time dependence of g(t) for the con-
ventional (upper half) and optimal (lower half) design.
For each case, the control field g(t) starts with a non-zero
small number to avoid Tn = 0 at the initial time. It is
seen that the optimal Lyapunov design leads to a faster
decrease of Lyapunov function (i.e. the phonon number).
In addition, the major components of the oscillation fre-
quency of g(t) is automatically turned to the frequency
difference Ω − ω of the two resonators(like that in the
sideband cooling scheme).

VI. SUMMARY

We have presented two designs for Lyapunov con-
trol under constraints on the total power and individ-

ual strength of the control fields. These designs make
Lyapunov function decrease fastest determined by the
constraints. It has been shown that the implementation
of our designs leads to a shorter time towards the tar-
get state especially for high fidelity requirement. More-
over, the second control design gives simple bang-bang

control fields, which may be easy to implement in exper-
iment. Intuitively, our methods use a constant power or
strength of control fields to make Lyapunov function de-
crease as fast as possible. This optimal control is more
robust against uncertainties in the Hamiltonian and de-
coherence in the system with respect to the conventional
design. We also explore the application of our op-
timal design to cool a nanomechanical system, a
significantly shorter time is obtained compared
with the conventional Lyapunov design. Here we
focused only on how to design control fields with fixed
control Hamiltonian Hn, a general formalism to choose
control Hamiltonian Hn to speed up Lyapunov control is
still an open issue.

This work is supported by NSF of China under grant
Nos 61078011, 10935010 and 11175032, and the Aus-
tralian Research Council.
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