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Higher-order sidebands in optomechanically induced transparency is discussed in a generic optomechanical
system. We take account nonlinear terms and give an effective method to deal with such problem. It is shown
that if a strong control field with frequencyω1 and a weak probe field with frequencyωp are incident upon the
optomechanical system, then there are output fields with frequenciesω1 ± 2Ω generation, whereΩ = ωp − ω1.
We analyze the amplitude of the output fieldω1 + 2Ω varies with the control field, and show that the amplitude
of the second-order sideband can be controlled by the strongcontrol field.
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I. INTRODUCTION

Optomechanical system is a rapidly growing field, and
many theoretical [1–29] and experimental [30–41] analysis
have been done. Figure 1(a) shows a schematic diagram of a
generic optomechanical system. The optomechanical system
consists of an optical cavity, in which one mirror of the cav-
ity is movable with the angular frequencyΩm and the massm.
This optomechanical system is driven by a strong control field
with frequencyω1 and a weak probe field with frequencyωp.
This emerging subject leads some remarkable and interesting
topics, such as cooling of micromechanical cantilevers to the
ground state of motion [1–4], gravitational-wave detectors [5],
and optomechanically induced transparency [10, 11, 30, 31]
which is an analogue of electromagnetically induced trans-
parency. Electromagnetically induced transparency (EIT),
which is original discovered in atomic vapors, leads to many
important developments in optical physics [42–46], and has
been reported in many different systems [47, 48]. It has been
demonstrated recently that a form of induced transparency en-
abled by the radiation-pressure coupling of an optomechani-
cal system, and such effect is called optomechanically induced
transparency (OMIT).

OMIT is a very interesting phenomenon, and can be ex-
plained by the Heisenberg-Langevin equations. According to
this topic, many fundamental works have been done [6–9].
The Heisenberg-Langevin equations are nonlinear, and it is
very difficult to get an analytic solution of these equations. If
the probe field is far weaker than the control field, one can use
the perturbation method to deal with such problem. Consid-
ering that the control field provides a steady-state solution of
the system, and we write the intracavity field and the mechan-
ical displacement at the steady-state as ¯a and x̄. The probe
field can be simply considered as a perturbation of the control
field. The total solution of the intracavity field and the me-
chanical displacement under both the control and probe field
can be written asa = ā + δa andx = x̄ + δx. Using the lin-
earization of the Heisenberg-Langevin equations, OMIT can
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FIG. 1: (Color online) (a) Schematic diagram of a generic optome-
chanical system. The optomechanical system is driven by a strong
control field with frequencyω1. If the weak probe field with fre-
quencyωp are incident upon the optomechanical system, then there
are some interesting phenomena occur, such as optomechanically in-
duced transparency. (b) Frequency spectrogram of a genericoptome-
chanical system. The frequency of the control field, as shownby the
yellow line, is detuned bȳ∆ from the cavity resonance frequency
which has a linewidth ofκ. We choose that̄∆ approximately equals
to −Ωm, andωp − ω1, which recorded asΩ, is over the optical res-
onance of the cavity. There are higher-order sidebands in such a
generic optomechanical system due to the nonlinear terms−iGδxδa
and ~Gm δa

∗δa.

be described. In the present work, we take account the non-
linear terms−iGδxδa and ~Gm δa

∗δa, whereG is the coupling
constant which describes the coupling between the cavity field
and the movable mirror, and give an effective method to deal
with the problem of higher-order sidebands in OMIT. These
terms are ignored in most studies [1–30], while we show that
these nonlinear terms can lead some interesting phenomena
of optomechanical system, such as second and higher-order
sidebands [49, 50].

Figure 1(b) shows the frequency spectrogram of a generic
optomechanical system. The frequency of the control field,
as shown by the yellow line, is detuned by∆̄ from the cavity
resonance frequency which has a linewidth ofκ. The first up-
per sideband with respect to the pump, viz. control field, is
referred to as the anti-Stokes field, while the first lower side-
band as the Stokes field. We choose that∆̄ approximately
equals to−Ωm, andωp is offset by the tunable frequencyΩ
from ω1. There are higher-order sidebands in such a generic
optomechanical system due to the nonlinear terms−iGδxδa
and ~Gm δa

∗δa. The higher-order sideband processes is that if
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the strong control field with frequencyω1 and the weak probe
field with frequencyωp are incident upon the optomechanical
system, then there are output fields with frequenciesω1 ± nΩ
generation, wheren is a integer. The output fields with fre-
quenciesω1 ± 2Ω simply as the second upper and lower side-
bands. In the present work, we only focus on the second-order
upper sideband. We show that higher-order sidebands can also
be tuned by the strong control field.

II. DERIVATION OF HIGHER-ORDER SIDEBANDS IN
OPTOMECHANICALLY INDUCED TRANSPARENCY

In this section, we will give a full description of the deriva-
tion of higher-order sidebands in optomechanically induced
transparency. We begin our discussion by introducing the
Hamiltonian formulation of a generic optomechanical system
[10, 30]:

H =
p̂2

2m
+

mΩ2
m x̂2

2
+ i~
√
ηcκε1(â†e−iω1t − âeiω1t)

+i~
√
ηcκ(â

†εpe−iωpt − âε∗peiωp t) + ~ωcâ†â + ~Gxâ†â, (1)

where p̂ and x̂ are the momentum and position operators of
the movable mirror with effective massm and angular fre-
quencyΩm. The term~ωcâ†â is the free Hamiltonian of the
cavity field and the term~Gxâ†â denotes the interaction be-
tween the cavity field and the movable mirror. The terms
i~
√
ηcκε1(â†e−iω1t− âeiω1t)+ i~

√
ηcκ(â†εpe−iωpt − âε∗peiωpt) de-

scribes the driving field, and in the present work it contains
a strong control field and a weak probe field. The ampli-
tudes of the pump field and the probe field are normalized
to a photon flux at the input of the cavity [30], and defined as
ε1 =

√
P1/~ω1 andεp =

√

Pp/~ωp, whereP1 is the pump
power, andPp is the power of the probe field.κ is the total
loss rate which contains an intrinsic loss rateκ0 and an exter-
nal loss rateκex. The coupling parameterηc = κex/(κ0 + κex),
which can be continuously adjusted, is chosen to be critical
coupling 1/2 here, with the best contrast achieved [30].

In a frame rotating atω1, the Heisenberg-Langevin equa-
tions read [30]:

˙̂a = (i∆ − iGx − κ/2)â +
√
ηcκε1 +

√
ηcκεpe−iΩt + âin, (2)

˙̂x = p̂/m, (3)

˙̂p = −mΩ2
m x̂ − ~Gâ†â − Γm p̂ + F̂th, (4)

where∆ = ω1 − ωc andΩ = ωp − ω1, and the decay rates of
the cavity field (κ) and mechanical oscillators (Γm) are intro-
duced classically. The quantum noise of the mirror and cavity
are described by ˆain and F̂th with 〈âin(t)â†in(t′)〉 = δ(t − t′),
〈âin(t)〉 = 0, 〈F̂th(t)F̂†th(t′)〉 = Γm

∫

e−iω(t−t′)[coth(~ω/2kBT ) +
1]dω/2πΩm and 〈F̂th(t)〉 = 0. In this work, we are inter-
ested in the mean response of the system to the probe field, so
the operators can be reduced to their expectation values, viz.
a(t) ≡ 〈â(t)〉, a∗(t) ≡ 〈â†(t)〉, x(t) ≡ 〈x̂(t)〉, andp(t) ≡ 〈p̂(t)〉.
In this case we reduce the operator equations to the mean
value equations, and drop the quantum and thermal noise

terms because〈âin(t)〉 = 0 and〈F̂th(t)〉 = 0. The Heisenberg-
Langevin equations then become:

ȧ = (i∆ − iGx − κ/2)a +
√
ηcκε1 +

√
ηcκεpe−iΩt, (5)

ẋ = p/m, (6)

ṗ = −mΩ2
mx − ~Ga†a − Γm p, (7)

For the case that the control field is much stronger than the
probe field, we can use the perturbation method to deal with
Eqs. (5) - (7). The control field provides a steady-state solu-
tion (ā, x̄) of the system, while the probe field is treated as the
noise, or perturbation of the steady-state. The total solution of
the intracavity field and the mechanical displacement under
both the control and probe field can be written asa = ā + δa
andx = x̄ + δx. The steady-state solution of Eqs. (5) - (7) can
be obtained as:

ā =

√
ηcκε1

−i∆̄ + κ/2
, x̄ = −~G|ā|

2

mΩ2
m
, (8)

where∆̄ = ∆ − Gx̄. Equations (8) give functions mapping
the intracavity photon number|ā|2 to the displacement ¯x. This
system has bistability if the control field is strong enough.Fig-
ure 2 shows the displacement ¯x varies with the power of the
control field by solving Eqs. (8) numerically. We usem=20
ng, G/2π=-12 GHz/nm, Γm/2π=41.0 kHz,κ/2π=15.0 MHz,
Ωm/2π=51.8MHz, and∆=−Ωm. All of these parameters are
chosen from the recent experiment [30]. The wavelengh of
the control field is chosen to be 532 nm. It can know that for
the caseP1 < 18 mW, only one solution exists and the sys-
tem has no bistability. For the caseP1 is larger than 18 mW
while less than 150 mW, there are three solutions exist and the
green dashed line indicates the unstable solutions. So the sys-
tem gives rise to bistability in this case. To obtain an OMIT,
the one solution region should be chosen, and we holdP1 <

18 mW throughout the work.
Now we turn to consider the perturbation made by the probe

field. By usinga = ā+δa andx = x̄+δx, Eqs. (5) - (7) become:

d
dt
δa = Θδa − iG(āδx + δxδa) +

√
ηcκεpe−iΩt,

Ψ̂δx = −~G
m

(āδa∗ + ā∗δa − δa∗δa), (9)

whereΘ = i∆ − iGx̄ − κ/2 andΨ̂ = d2

dt2 + Γm
d
dt + Ω

2
m. In what

follows, we will show that the nonlinear terms−iGδxδa and
~G
m δa

∗δa can lead some interesting effects of optomechanical
system.

We solve the problem of inputting a probe fieldεpe−iΩt by
using the ansatz:

δa = δa(1) + δa(2) + · · · ,
δa∗ = δa∗(1) + δa∗(2) + · · · ,
δx = δx(1) + δx(2) + · · · , (10)

whereδa(1) = A−1e−iΩt + A+1eiΩt, δa(2) = A−2e−2iΩt + A+2e2iΩt,
δa∗(1) = (A+1 )∗e−iΩt + (A−1 )∗eiΩt, δa∗(2) = (A+2 )∗e−2iΩt +

(A−2)∗e2iΩt, δx(1) = X1e−iΩt + X∗1eiΩt, andδx(2) = X2e−2iΩt +
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FIG. 2: (Color online) Calculation results of the solutionsof Eqs.
(8). Here we plot ¯x under differentP1. The green dashed line indi-
cates the unstable solutions. We usem=20 ng,G/2π=-12 GHz/nm,
Γm/2π=41.0 kHz,κ/2π=15.0 MHz,Ωm/2π=51.8MHz, and∆=−Ωm.

X∗2e2iΩt. The physical picture of such ansatz is that there are
output fields with frequenciesω1 ± nΩ generation, due to the
nonlinear terms−iGδxδa and ~Gm δa

∗δa, wheren is a integer.
If one ignores such nonlinear terms, then the terms of higher-
order sidebands in the ansatz can not be self-consistent. In
the present work, we only consider the second-order sideband,
and higher-order sidebands (for example, 3Ω) are ignored. So
we can simplify the ansatz as follows:

δa = A−1e−iΩt + A+1eiΩt + A−2e−2iΩt + A+2e2iΩt,

δa∗ = (A+1 )∗e−iΩt + (A−1)∗eiΩt + (A+2)∗e−2iΩt + (A−2)∗e2iΩt,

δx = X1e−iΩt + X∗1eiΩt + X2e−2iΩt + X∗2e2iΩt. (11)

In what follows, we will solve Eqs. (9) by using the ansatz
(11) and give the amplitude of the second-order sideband.
Substituting Eqs. (11) into Eqs. (9) leads six equations:

(Θ + iΩ)A−1 = iG(āX1 + X∗1A−2 + X2A+1 ) − √ηcκεp,

(Θ − iΩ)A+1 = iG(āX∗1 + X1A+2 + X∗2A−1 ),

(Θ + 2iΩ)A−2 = iG(āX2 + X1A−1 ),

(Θ − 2iΩ)A+2 = iG(āX∗2 + X∗1A+1 ),

(Ω2
m −Ω2 − iΓmΩ)X1 = −

~G
m

×
(

ā(A+1 )∗ + ā∗A−1 − (A−1 )∗A−2 − (A+2 )∗A+1

)

,

(Ω2
m − 4Ω2 − 2iΓmΩ)X2 =

−~G
m

(

ā(A+2)∗ + ā∗A−2 − (A+1)∗A−1

)

. (12)

We consider that such second-order sideband is a second order
processes and whose amplitude is much smaller than the probe
field, so we can simplify these six equations into two groups:

one group describes the part of linear case

(Θ + iΩ)A−1 = iGāX1 −
√
ηcκεp,

(Θ − iΩ)A+1 = iGāX∗1,

(Ω2
m − Ω2 − iΓmΩ)X1 = −

~G
m

(

ā(A+1 )∗ + ā∗A−1

)

, (13)

and the another describes the part of second-order sideband

(Θ + 2iΩ)A−2 = iG(āX2 + X1A−1 ),

(Θ − 2iΩ)A+2 = iG(āX∗2 + X∗1A+1 ),

(Ω2
m − 4Ω2 − 2iΓmΩ)X2 = −

~G
m

(

ā(A+2)∗ + ā∗A−2 − (A+1)∗A−1

)

.

(14)

The equations (13) have been obtained in some previous
works [30], and are used to study the effect of optomechan-
ically induced transparency. It can easily solve the equations
and obtainA−1 andX1 as follows:

A−1 =
1+ i f (Ω)

κ/2− i(∆̄ + Ω) + 2∆̄ f (Ω)

√
ηcκεp,

X1 =
−~Gāχ(Ω)

κ/2− i(∆̄ + Ω) + 2∆̄ f (Ω)

√
ηcκεp, (15)

where χ(Ω) = 1/m(Ω2
m − Ω2 − iΓmΩ) and f (Ω) =

~G2|ā|2χ(Ω)/[κ/2+ i(∆̄ −Ω)].
The equations (14) describe the second-order sideband of

such optomechanical system. We also can solve the equations
and obtainA−2 . It reads

A−2 =
G2ā f (2)(Ω)X2

1 +GA−1 X1

(

f (2)(Ω)(iκ + 3Ω − 2∆̄) − 1
)

2∆̄ f (2)(Ω)(−∆̄ + Ω + iκ/2)− (∆̄ + 2Ω + iκ/2)
,(16)

with

f (2)(Ω) =
~G2|ā|2χ(2Ω)

(−∆̄ + Ω + iκ/2)(−∆̄ + 2Ω + iκ/2)
. (17)

Equation (16) is made up of two terms: the first term is a
direct second-order sideband, and the other term is an upcon-
verted first-order sideband. The direct second-order sideband,
whose amplitude is proportional toG2āX2

1, arise from the two-
phonon upconverted process of the control field.

By using the input-output notation, we can obtain the output
fields as follows:

sout = c1e−iω1t + cpe−iωp t − √ηcκA
−
2e−i(2ωp−ω1)t

−√ηcκA
+
1e−i(2ω1−ωp)t − √ηcκA

+
2e−i(3ω1−2ωp)t, (18)

wherec1 = ε1−
√
ηcκā, cp = εp−

√
ηcκA−1 . The term ofc1e−iω1t

andcpe−iωpt describe the output fields with the frequencies of
ω1 andωp respectively. The transmission of the probe field is
defined astp = cp/εp. Some previous works [30] have used
cp to study OMIT. It can be obtain that

tp = 1− 1+ i f (Ω)

κ/2− i(∆̄ + Ω) + 2∆̄ f (Ω)
ηcκ. (19)
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The term of−√ηcκA+1e−i(2ω1−ωp)t describes the Stokes pro-
cess, and has been studied in Ref. [6]. The term of
−√ηcκA−2e−i(2ωp−ω1)t describes the second-order upper side-
band process, in which the output field with the frequencyω1+

2Ω can be produced, while the term of−√ηcκA+2e−i(3ω1−2ωp)t

describes the second-order lower sideband process, in which
the output field with the frequencyω1 − 2Ω can be produced.
In what follows, we will give a discussion on the amplitude
of the second-order upper sideband. One also can discuss the
amplitude of the second-order lower sideband by using the
same method.

III. DISCUSSION

Now we turn to discuss the amplitude of the second-order
upper sideband varies withε1, or equivalentP1. After such
discussion we can find that the second-order sideband can also
be tuned by the strong control field.
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FIG. 3: (Color online) Calculation results of|tp|2 andη vary withΩ
under differentε1. In Fig. (a) and (b), we useP1=9.33µW, while in
Fig. (c) and (d), we useP1=149.3µW.

The amplitude of the input probe light isεp, while the
amplitude of the output field with second-order sideband is
| − √ηcκA−2 |. We defineη = | − √ηcκA−2/εp|, which is di-
mensionless, as the efficiency of the second-order sideband
process. It should be noted thatη, which we choose 20% here
for example, is just means that the amplitude of the output
second-order sideband is 20% of the amplitude of the input
probe light, while not the case of that 20% of the probe light
being shifted into the second-order sideband.

Figure 3 shows|tp|2 andη vary withΩ by using Eq. (16).
We useεp/ε1=0.05, and all of the other parameters are ex-
actly the same as Fig. 2. Figure 3 (a) and (b) shows|tp|2 and
η vary with Ω under the same control fieldP1=9.33µW. In
Fig. 3(a)|tp|2 is very low nearΩ/Ωm=1, which means that the
probe field is almost completely absorbed near the resonance
conditionΩ = −∆ = Ωm. It seems that|tp|2 reaches its mini-
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FIG. 4: (Color online) Calculation results of|tp|2 andη vary withΩ
under differentε1. In Fig. (a) and (b), we useP1=933.0µW, while in
Fig. (c) and (d), we useP1=3.7 mW. Other parameters are the same
as Fig. 2.
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FIG. 5: (Color online) Calculation results of the real and image part
of η under different control fieldε1. We useP1 = (a) 37.3µW, (b)
149.3µW, (c) 335.9µW, (d) 3.7 mW. Other parameters are the same
as Fig. 2.

mum atΩ = Ωm, however, if one zooms in sufficiently, there
is a local maximum atΩ = Ωm. From Fig. 3(b), it can be
known that generation ofω1 + 2Ω is obvious only when the
resonance conditionΩ = Ωm is reached. Figure 3 (c) and (d)
shows|tp|2 andη vary with Ω under a stronger control field
P1=149.3µW. Figure 3 (c) shows that there is a transparent
window near the resonance conditionΩ = Ωm, which, how-
ever, is not very deep. Figure 3 (d) showsη under the same
control field. It can be found thatη also become obvious near
Ω = Ωm. However, on an enlarged scale, a local minimum is
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shown.
Now we consider a stronger control field, for example,

P1=933.0µW. Figure 4 (a) shows|tp|2 in such a control field.
There is a transparent window near the resonance condition
Ω = Ωm. The transparent window is obvious and much deeper
than the case of Fig. 3 (c). Figure 4(b) showsη varies with
Ω under the sameP1. Unlike the case shown in Fig. 3(b), in
Fig. 4(b)η reaches its local minimum within a frequency win-
dow corresponding to about the cavity linewidth atΩ/Ωm=1.
There is a narrow dip near the resonance conditionΩ = Ωm,
in whichη become very small. It means that when the OMIT
occur, the second-order sideband process is subdued. Such re-
sult can also be obtained in Fig. 4(c) and (d). In Fig. 4(c), a
control field ofP1=3.7 mW is used. Compared to the case in
Fig. 4(a), it can find that the transparent window is wider, and
the effect of OMIT is more obvious. Meanwhile, Figure 4(d)
shows that the dip is become wider. The value ofη at the dip
is not exactly zero sinceΓm is nonzero. Taken together Figure
3 and 4 shows that ifP1 is small, and the effect of OMIT does
not take place, then the probe field is almost completely ab-
sorbed near the resonance conditionΩ = Ωm, and meanwhile
the second-order sideband field achieves the maximum ampli-
tude atΩ = Ωm. For the case the effect of OMIT take place,
there is a transparent window for the probe field near the res-
onance conditionΩ = Ωm, while the second-order sideband
field reaches its local minimum within a frequency window
corresponding to about the cavity linewidth whenΩ/Ωm=1. It
is a suppressive window for the second-order sideband field.
As the power of the control field becomes larger, both the
transparent window for the probe field and the suppressive
window for the second-order sideband field are wider. The
real and image part ofAc ≡

√
ηcκA−2/εp under different con-

trol fields are shown in Fig. 5. It can find that both the real
and image part of

√
ηcκA−2/εp have essential changes during

the process of turning up the control field. Figure 6 shows the
calculation results of|tp|2 andη vary with the optical power
of the control field at the resonance conditionΩ = Ωm. |tp|2
increases with the optical power of the control field, whileη
is not. For the case that the optical power of the control field
is weaker than about 0.12 mW,η increases sharply with the
optical power of the control field.η reaches its maximum at
aboutP1 = 0.12 mW. For the case of a largerP1, η decreases
slowly with the optical power of the control field. All of the
results, obtained from Fig. 3-6, show that the amplitude of the
second-order sideband can be controlled by the strong field
ε1.

Up to now, we have shown that taking account of the non-
linear terms will lead higher-order sidebands in a generic op-
tomechanical system, and the amplitude of the second-order
sideband can also be tuned by the strong control field. How-
ever, the amplitude of the second-order sideband is very small.
Figure 4 shows that the efficiency of the second-order side-
band process is only about 2%. It means that the field at the
frequency ofω1 + 2Ω is significantly weaker than the probe
field. In what follows, we will show that the amplitude of the
second-order sideband can be obvious by tuning∆.

Figure 7 shows the numerical results of|tp|2 andη vary with
Ω by using different∆. In Fig. 7(a) and (b), we use∆=−Ωm,

0 0.5 1 1.5 2 2.5 3 3.5
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0.5

1

|t
p
|2

Optical Power (mW)

0

1

2
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(%
)

FIG. 6: (Color online) Calculation results of|tp|2 andη vary with the
optical power of the control field at the resonance conditionΩ = Ωm.
We useεp/ε1=0.05, and all of the other parameters are exact the
same as Fig. 2. The blue solid curve represents the calculation results
of |tp|2 while the green dashed curve represents the calculation results
of η.

and the results are the same as Fig. 4 (c) and (d). In this
case, the efficiency of the second-order sideband process is
only about 2%. When we change∆, the trough of|tp|2 also
changes. In Fig. 7(c) we find that the trough of|tp|2 is lo-
cated atΩ/Ωm ≈1.4. There is a dip atΩ/Ωm =1, and it means
that the probe field is absorbed greatly in this case. Figure
7(d) shows that there is an obvious second-order sideband at
Ω/Ωm =1, the efficiency of the second-order sideband process
is about 15%. Similar results also can be obtained in Fig. 7(e)
and (f). It should be noted that Fig. 7 (c) to (f) is not the sit-
uation of OMIT. Obviously, there are two absorption peaks in
Fig. 7(c) and (e). The first absorption peak is near the reso-
nance condition of the moving mirrorΩ = Ωm, while the sec-
ond one is near the resonance condition of the cavityΩ = −∆̄.
If the resonance condition of the moving mirror is the same as
the resonance condition of the cavity, the destructive interfer-
ence between the probe field photons and the sideband exci-
tations of the control field, which are induced by the mechan-
ical oscillation, causes a tunable transparency window. The
detailed process is as follows: The control and probe fields
induce a radiation-pressure force oscillating at the frequency
Ω, which is the beat frequency between the control and probe
fields. IfΩ is close to the resonance frequency of the moving
mirrorΩm, the mirror starts to oscillate coherently. As a result,
Stokes and anti-Stokes fields will emerge. If the resonance
condition of the moving mirror is the same as the resonance
condition of the cavity, the anti-Stokes field is resonantlyen-
hanced. So that the probe laser interfere with the anti-Stokes
sideband leads a tunable transparency window[30, 33, 41]. If
we choose∆ is off-resonance with the anti-Stokes field, here
we take∆=−1.4Ωm as an example, then the anti-Stokes field is
subdued, and the effect of OMIT is disappeared. However, the
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FIG. 7: (Color online) Calculation results of|tp|2 andη vary withΩ
underε1=100.0MHz. We use∆=−Ωm in Fig. (a) and (b),∆=−1.4Ωm

in Fig. (c) and (d), while∆=−1.8Ωm in Fig. (e) and (f). Other
parameters are the same as Fig. 2.

density of states of the cavity field at the second-order side-
band is larger than the density of the case∆=−Ωm, so we get
a higherη.

The physical interpretation of why the efficiency of the
second-order sideband has a local minimum on resonance
is that the upconverted first-order sideband process is weak
when the OMIT occur, because the destructive interference
between the probe field and the anti-Stokes field leads that the
cavity field at the frequencyΩ is very weak. A mathematical
interpretation of why the efficiency of the second-order side-
band has a local minimum on resonance can be made by using
Eq. (16), which is made up of two terms as having been shown
before: the direct second-order sideband term and the upcon-
verted first-order sideband term. If consideringΩ/Ωm ≈1,
f (2)(Ω) can be estimated to be the order of∼ 10−12. So the
first term, which describes the two-phonon upconverted pro-
cess of the control field, is much smaller than the second term.
Then Eq. (16) can be simplified as

A−2 ≈
GA−1 X1

∆̄ + 2Ω + iκ/2
. (20)

It can be obtained that if∆=−Ωm and when the OMIT oc-
cur, then|A−2 | will reaches the local minimum within a fre-
quency window corresponding to about the cavity linewidth
whenΩ/Ωm=1 because both the|A−1 | and X1 reach the lo-
cal minimum in this case. A possible interpretation of the
obvious second-order sideband for the case∆ ≈ -1.5Ωm is
that the density of states of the cavity field at the first- and
second-order sidebands is equal when∆ ≈ -1.5Ωm. There-
fore two-step scattering into the second-order sideband isren-
dered more probable than it would otherwise be. This result
also can be obtained by using the simplified expression of Eq.
(16). When we tuning∆, the effect of OMIT will disappear,
and both|A−1 | andX1 become larger. More importantly,̄∆+2Ω
in the denominator of Eq. (20) is smaller, so it leads an obvi-
ous second-order sideband.

IV. CONCLUSION

The propagation of electromagnetic fields in various system
is a wide range of issues [41–57]. Optomechanical system is
a promising approach to manipulate the propagation of light
[41, 49, 50]. In this work, we show that an generic optome-
chanical system driven by a pump field with frequencyω1 and
a weak probe field with frequencyωp can lead to generation
of second-order sideband signalsω1 ± 2Ω by taking account
nonlinear terms. We give an effective method to calculate the
amplitude of such fields. We find that the second-order side-
bands can also be tuned by the strong control field. There are
some connections between OMIT and the second-order side-
band process. When the OMIT occur, the second-order side-
band process is subdued. We also show that the amplitude of
the second-order sideband can be controlled by the detuning
∆.
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