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We present a diagrammatic technique for calculating quantum-detected nonlinear optical signals
using loop diagrams that act in the joint matter plus field space. This formalism, which is based
on time ordered superoperators keeps track of the entangled matter plus field state, making it most
suitable for spectroscopy applications. Photon counting is recast as a time and frequency convolution
of a bare signal, which is given by a correlation function of matter, and a gating spectrogram.

I. INTRODUCTION

Rapid progress in pulse shaping technology [1–6] has
made it possible to control the temporal as well as the
spectral profiles of optical fields. The external optical
field induces a polarization in matter that results in the
electromagnetic response that is registered by the detec-
tion setup [7]. Time-resolved detection is natural when
the incoming pulsed fields are much shorter than the rel-
evant molecular time scales [3–5]. A frequency-resolved
detection is used [6] for stationary fields.

A semiclassical formalism for describing the photon
counting process was first derived by Mandel [8–10]. The
full quantum mechanical description of the field and pho-
ton detection was developed by Glauber [11]. An ideal
photon detector is a device that measures the radiation
field intensity at a single point in space. The size of such a
detector should be much smaller than spatial variations
of the field. The response of an idealized time-domain
photon detector does not depend on the frequency of the
radiation.

The standard Glauber’s theory of photon counting [11–
13] is formulated in the radiation field space. It is based
on the two-point field correlation function, convoluted
with time and frequency gating spectrogram of the de-
tector. This approach assumes that the detected field is
given. Thus, it does not address the matter information
and the way this field has been generated. Temporally
and spectrally resolved measurements can reveal impor-
tant matter information. Recent experimental results on
single photon spectroscopy of the single molecules [14–
16] call for an adequate microscopic foundation where
joint matter and field information could be retrieved by
a proper description of the detection process.

The resolution of simultaneous frequency and time do-
main measurements is limited by the Fourier uncertainty
∆ω∆t > 1. A naive calculation of signals without proper
time and frequency gating can work for slowly varying
spectrally broad optical fields but otherwise may yield
unphysical negative result [17]. In Ref. [18] the mixed
time-frequency representation for the coherent optical
measurements with interferometric or autocorrelation de-
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tection were calculated in terms of a mixed material re-
sponse functions and a Wigner distribution for the in-
coming pulses, the detected field and the gating device.
Multidimensional gated fluorescence signals for single-
molecule spectroscopy have been calculated in Ref. [19].

We consider signals generated by spontaneous emission
in modes that are initially in the vacuum state. Adopt-
ing terminology used in spectroscopy, these are homo-
dyne detected signals [20]. Note that in quantum op-
tics homodyne (heterodyne) signal is interferometric de-
tection with a local oscillator with the same (different)
frequency than the signal. In spectroscopy the term ho-
modyne (heterodyne) implies detection without (with) a
local oscillator.

Here we develop a microscopic diagrammatic approach
for calculating time-and-frequency gated photon count-
ing measurements. The observed signal is represented by
a convolution of the bare signal and detector spectrogram
that contains the time and frequency gate functions. The
bare signal is given by the product of two transition am-
plitude superoperators [21] (one for bra and one for ket
of the matter plus field joint density matrix), each cre-
ating a coherence in the field between states with zero
and one photon. By combining the transition amplitude
superoperators from both branches of the loop diagram
we obtain the photon occupation number that can be
detected. The detection process is described in the joint
space of the field and matter by a sum over pathways
each involving a pair of quantum modes with different
time orderings. The signal is recast using time ordered
superoperator products of matter and field. Ideal fre-
quency domain detection only requires a single mode [19].
However, maintaining any time resolution requires a su-
perposition of the field modes that contains the pathway
information. This information is not directly accessible
in the standard detection theory that works in the field
space alone [11]. Finally in contrast with standard detec-
tion theory the present approach only involves a super-
operator time ordering and does not require the normal
ordering.

II. GATED SIGNALS

To a good approximation we can represent an ideal
detector by two-level atom that is initially in the ground
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state b and is promoted to the excited state a by the
absorption of a photon (see Fig. 1A). In the same time,
the detection of a photon brings the field from its initial
state ψi to a final state ψf . The probability amplitude
for photon absorption at time t can be calculated in first-
order perturbation theory, which yields [11]

〈ψf |E(t)|ψi〉 · 〈a|d|b〉, (1)

where d is the dipole moment of the atom and E(t) =
E†(t) + E(t) is the electric field operator (we omit the
spatial dependence). Clearly, only the annihilation part
of the electric field contributes to the photon absorption
process. The transition probability to find the field in
state ψf at time t is given by the modulus square of the
transition amplitude∑

ψf

|〈ψf |E(t)|ψi〉|2 = 〈ψi|E†(t)
∑
ψf

|ψf 〉〈ψf |E(t)|ψi〉

= 〈ψi|E†(t)E(t)|ψi〉. (2)

Since the initial state of the field ψi is rarely known with
certainty, we must trace over all possible initial states
as determined by a density operator ρ. Thus, the out-
put of the idealized detector is more generally given by
tr
[
ρE†(t)E(t)

]
.

For simultaneous time-and-frequency resolved mea-
surement a frequency (spectral) gate must be combined
with time gate - a shutter that opens up for very short in-
terval of time. The combined detector with input located
at rG is represented by a time gate Ft centered at t̄ fol-
lowed by a frequency gate Ff centered at ω̄ [6]. First,
the time gate transforms the electric field E(rG, t) =∑
s Ês(rG, t) with Ês(rG, t) = E(rG, ωs)e

−iωst as follows:

E(t)(t̄; rG, t) = Ft(t, t̄)E(rG, t). (3)

Then, the frequency gate is applied E(tf)(t̄, ω̄; rG, ω) =
Ff (ω, ω̄)E(t)(t̄; rG, ω) to obtain the time-and-frequency-
gated field. We assume that the time gate is applied first.
Therefore, the combined detected field at the position rD
can be written as

E(tf)(t̄, ω̄; rD, t) =

∫ ∞
−∞

dt′Ff (t− t′, ω̄)Ft(t
′, t̄)E(rG, t

′),

(4)

where E(t) ≡∑s

√
2π~ωs/Ωâse−ωst (Ω is a mode quan-

tization volume) is understood. Similarly one can apply
the frequency gate first and obtain frequency-and-time-
gated field E(ft).

E(ft)(t̄, ω̄; rD, t) =

∫ ∞
−∞

dt′Ft(t, t̄)Ff (t− t′, ω̄)E(rG, t
′).

(5)

The following discussion will be based on Eq. (4). Eq.
(5) can be handled similarly.
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FIG. 1. (Color online) Schematic of time-and-frequency re-
solved measurement - A, loop diagram for the bare signal in
a gated measurement - B (for rules see Ref. [21]).

In order to maintain the bookkeeping for all interac-
tions and develop a perturbative expansion for signals
we describe the signal in terms of Liouville space “left”
and “right” superoperators. For each ordinary operator
A we define a pair of superoperators [22] ÂLX = AX,

ÂRX = XA, and Â− = ÂL−ÂR. To avoid the confusion
and distinguish the ordinary operators (e.g. A) from the
superoperator quantities we denote all superoperators by
“hat” (e.g. Â). The gated signal is given by

S(t̄, ω̄) =

∫ ∞
−∞

dt
∑
s,s′

〈Ê(tf)†
sR (t̄, ω̄; rD, t)Ê

(tf)
s′L (t̄, ω̄; rD, t)〉,

(6)
where the angular brackets denote 〈...〉 ≡ Tr[ρ(t)...]. The
density operator ρ(t) is defined in the joint field-matter
space of the entire system. Note, that Eq. (6) repre-
sents the observable signal, and is always positive since
it can be recast as a modulus square of an amplitude (Eq.
(2)).For clarity we hereafter omit the position depen-
dence in the fields assuming that propagation between
rG and rD is included in the spectral gate function.

A. Spectrogram-overlap representation

In the standard detection theory [6], the detected sig-
nal is given by a convolution of the spectrograms of the
detector and bare signal. The detector spectrogram is
an ordinary function of the gating parameters whereas
the bare signal is related to the field prior to detection.
We now show that when the process is described in the
joint matter plus field space the signal can be brought
to the same form, except that now the bare signal is
given by a correlation function of matter that further in-
cludes a sum over the detected modes. We denote this the
spectrogram-overlap (SO) representation of the signal. In
the next section we present an alternative spectrogram-
superoperator-overlap (SSO) representation that is more
suitable for the counting of multiple photons. We first
derive the signals in the time domain, which can be di-
rectly read of the diagram (Fig. 1B). We then recast



3

them using Wigner spectrograms, which depict simulta-
neously temporal and spectral profiles of the signal.

Starting with the gated signal (6), we define the bare
time domain signal in terms of superoperators using the
diagram shown in Fig. 1B

B(t′, τ) =∑
s,s′

〈T Ê†sR(t′ + τ/2)Ês′L(t′ − τ/2)e−
i
~
∫∞
−∞ Ĥ′−(T )dT 〉,

(7)

where B(t′, τ) is an ordinary function since the trace in
the right hand side of the Eq. (7) implies the expectation
value of the superoperators. The Hamiltonian superop-
erator is given by

Ĥ ′ν(t) = Ê†ν(t)V̂ν(t) +H.c, ν = L,R. (8)

T is our key bookkeeping device, which is responsible for
the positive time ordering of superoperators

T Êν(t1)Êν′(t2) = Êν(t1)Êν′(t2)θ(t1 − t2)

+ Êν′(t2)Êν(t1)θ(t2 − t1), (9)

where θ(t) is the Heaviside step function. We next define
the detector spectrogram

D(t̄, ω̄; t′, τ) =∫ ∞
−∞

dω

2π
e−iωτ |Ff (ω, ω̄)|2F ∗t (t′ + τ/2, t̄)Ft(t

′ − τ/2, t̄),
(10)

if the spectral gate applied first, using Eq. (5). The
detector spectrogram is alternatively given by

D(t̄, ω̄; t′, τ) =∫ ∞
−∞

dt|Ft(t, t̄)|2F ∗f (t− t′ − τ/2, ω̄)Ff (t− t′ + τ/2, ω̄).

(11)

Combining Eqs. (4) - (10) we obtain for the gated signal

S(t̄, ω̄) =

∫ ∞
−∞

dt′dτD(t̄, ω̄; t′, τ)B(t′, τ). (12)

The signal is given by the temporal overlap of the bare
signal and detector spectrogram. This is the conventional
form [6] introduced originally for the field space alone.
Eq. (7) contains explicitly the multiple pairs of radiation
modes s and s′ that can be revealed only in the joint field
plus matter space. Eventually this takes into account all
the field matter interactions that lead to the emission of
the detected field modes. We can freely vary the param-
eters of Ff and Ft. The spectrogram will always satisfy
the Fourier uncertainty ∆t∆ω > 1.

Wigner spectrograms provide a more intuitive time
and frequency representation of gated signals. The

Wigner spectrogram of the bare signal reads

WB(t′, ω′) =
∑
s,s′

∫ ∞
0

dτe−iω
′τ

× 〈T Ê†sR(t′ + τ/2)Ês′L(t′ − τ/2)e−
i
~
∫∞
−∞ Ĥ′−(T )dT 〉,

(13)

Similarly the detector’s spectrogram is given by

WD(t̄, ω̄; t′, ω′) =

∫ ∞
−∞

dω

2π
|Ff (ω, ω̄)|2Wt(t

′, ω′ − ω, t̄),
(14)

where

Wt(t
′, ω) =

∫ ∞
−∞

dτF ∗t (t′+τ/2, t̄)Ft(t
′−τ/2, t̄)eiωτ (15)

Combining Eqs. (13) - (15) we can recast Eq. (12) in the
form

S(t̄, ω̄) =

∫ ∞
−∞

dt′
dω′

2π
WD(t̄, ω̄; t′, ω′)WB(t′, ω′). (16)

The signal is given by the spectral and temporal overlap
of the bare signal and the detector spectrograms.

B. Spectrogram-superoperator-overlap
representation

So far we included the summation over the detected
field modes in the bare signal, while treating the de-
tection spectrogram as an ordinary function of gating
parameters. This representation works quite well for a
single detection. However for higher order correlation
measurements involving several photons, an easier book
keeping of the numerous field modes can be achieved
by redefining the detector spectrogram as a superoper-
ator. In this case the observed signal is represented by
the overlap of two spectrogram superoperators (SSO) in
time, frequency and field mode space. We first define
the reduced field density operator in the subspace of the
detected modes s and s′ Tr′[ρ(t)] = 〈ρ(t)〉′, where prime
represents the partial trace over the matter and field de-
grees of freedom excluding the s and s′ modes. Thus
the quantity that contains all the information about the
matter and field evolution up to detection point (see Fig.
1B) is the following two-time superoperator

B̂(s,s′)(t′, τ) = 〈T e− i
~
∫ t′−τ/2
−∞ Ĥ′L(T )dT e

i
~
∫ t′+τ/2
−∞ Ĥ′R(T )dT 〉′,

(17)
We next define the detector superoperator

D̂(s,s′)(t̄, ω̄; t′, τ) =

D(t̄, ω̄; t′, τ)Ês′L(t′ − τ/2)Ê†sR(t′ + τ/2), (18)

where D(t̄, ω̄; t′, τ) is defined in Eq. (10). Combining
Eqs. (17) - (18) we obtain for the signal
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S(t̄, ω̄) =

∫ ∞
−∞

dt′dτ
∑
s,s′

× Trs,s′
[
D̂(s,s′)(t̄, ω̄; t′, τ)B̂(s,s′)(t′, τ)

]
. (19)

The detected signal is represented by an overlap between
detector spectrogram D̂(s,s′) and bare signal B̂(s,s′) su-
peroperators.

Similarly, one can recast the results of SSO in the
Wigner representation. To that end we introduce the
Wigner superoperator for the bare signal

Ŵ
(s,s′)
B (t′, ω′) =∫ ∞
−∞

dτe−iω
′τ 〈T e− i

~
∫ t′−τ/2
−∞ Ĥ′L(T )dT e

i
~
∫ t′+τ/2
−∞ Ĥ′R(T )dT 〉′,

(20)

and for the detector

Ŵ
(s,s′)
D (t̄, ω̄; t′, ω′) =∫ ∞
−∞

dω

2π
WD(t̄, ω̄; t′, ω)Ŵ

(s,s′)
E (t′, ω − ω′), (21)

where WD(t̄, ω̄; t′, τ) is defined in Eq. (14) and Wigner
superoperator for the field modes s and s′ reads

ŴE(t′, ω) =

∫ ∞
−∞

dτeiωτ Ês′L(t′ − τ/2)Ê†sR(t′ + τ/2)

(22)

Combining Eqs. (20) - (22) we obtain the final SSO ex-
pression for the signal

S(t̄, ω̄) =

∫ ∞
−∞

dt′
dω′

2π

∑
s,s′

× Trs,s′
[
Ŵ

(s,s′)
D (t̄, ω̄; t′, ω′)Ŵ (s,s′)

B (t′, ω′)
]
. (23)

The detected signal is given by the trace of a convolution

of two Wigner superoperators for the detector Ŵ
(s,s′)
D

and bare signal Ŵ
(s,s′)
B .

III. THE BARE SIGNAL

The bare signal contains all relevant information for
calculating photon counting measurement. Below we
present several schemes for calculating the bare signal,
using superoperator diagrammatic techniques. This will
be done using both SO and SSO representations.

The bare signal is given by the closed path time-loop
diagram shown in Fig. 1[22]. We assume arbitrary field-
matter evolution starting from the matter ground state g
that promotes the system up to some excited state. Then
the system emits a photon with frequency ωs that leaves
the matter in the state e. This photon is later absorbed
by the detector.

A. The bare signal expressed as a product of two
transition amplitudes

We first calculate the time dependent bare signal (7)
in the interaction picture where we factorize the detected
field and matter correlation functions(

− i
~

)2 ∫ t′+τ/2

−∞
dt1

∫ t′−τ/2

−∞
dt′1〈T V̂L(t′1)V̂ †R(t1)〉

× 〈T Ê†sR(t′ + τ/2)Ês′L(t′ − τ/2)Ê†s′L(t′1)ÊsR(t1)〉.
(24)

Since both Ês′L and ÊsR are initially in the vacuum state,
the field correlation function reads

〈Ê†sR(t′ + τ/2)Ês′L(t′ − τ/2)Ê†s′L(t′1)ÊsR(t1)〉

=

(
2π~
Ω

)2

ωsω
′
se
iωs(t

′+τ/2−t1)−iω′s(t′−τ/2−t′1) (25)

In the absence of dissipation (unitary evolution) we
can factorize the matter correlation function as

〈T V̂L(t′1)V̂ †R(t1)〉 =
∑
e

〈〈V̂L(t′1)|ge〉〉〈〈ge|V̂ †R(t1)〉〉 =

∑
e

〈〈e(t′ + τ/2)g|V̂L(t′1)T+ exp

[
− i
~

∫ t′1

−∞
Ĥ ′L(T )dT

]
|gg〉〉

× 〈〈gg|V̂ †R(t1)T− exp

[
i

~

∫ t1

−∞
Ĥ ′R(T )dT

]
|e(t′ + τ/2)g〉〉,

(26)

where we denote 〈〈eg|Â|gg〉〉 ≡ Tr[|g〉〈e|Â|g〉〈g|]. We
next define the transition amplitude

Teg(t) = − i
~
∑
s

2π~ωs
Ω

∫ t

−∞
dt′1e

−iωs(t−t′1)−iωegt

×〈〈e(t)g|V̂L(t′1)T exp

(
− i
~

∫ t′1

−∞
Ĥ ′L(T )dT

)
|gg〉〉 (27)

Since all interactions are from the left (L), we can also
write the transition amplitude using ordinary operators
in Hilbert space

Teg(t) = − i
~
∑
s

2π~ωs
Ω

∫ t

−∞
dt′1e

−iωs(t−t′1)−iωegt

×〈e(t)|V (t′1)T exp

(
− i
~

∫ t′1

−∞
H ′(T )dT

)
|g〉 (28)

This gives for the bare signal (7)

B(t′, τ) =−
∑
e

Teg(t
′ − τ/2)T ∗eg(t

′ + τ/2). (29)

The corresponding Wigner function is given by
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WB(t′, ω′) =−
∑
e

∫ ∞
0

dτe−iω
′τ

×Teg(t′ − τ/2)T ∗eg(t
′ + τ/2). (30)

Together with the gated spectrogram (10) the bare
signal (29) represents the time and frequency resolved
gated signal. The final result can be recast in Hilbert
space without using superoperators. The Wigner repre-
sentation is very convenient and intuitive for time-and-
frequency resolved measurements. The drawback is that
for general photon correlation measurements, the defini-
tion of the signals and spectrograms will require a deriva-
tion for each new type of measurement. This is not very
convenient for higher order correlation measurements,
where we would like to introduce a modular detection
anytime we need. This will be done next.

Note, that in the presence of a bath, the signal (30) is
no longer given by a product of two amplitudes. Teg(t)
is then an operator in the space of the bath degrees of
freedom. Therefore, Eq. (30) yields

WB(t′, ω′) =−
∑
e

∫ ∞
0

dτe−iω
′τ

×〈Teg(t′ − τ/2)T ∗eg(t
′ + τ/2)〉, (31)

where 〈...〉 corresponds to averaging over the bath degrees
of freedom.

B. Transition amplitude superoperator

We start with the bare signal superoperator (17). Sim-
ilar to Eq. (24) we factorize the matter correlation func-
tion(

− i
~

)2 ∫ t′+τ/2

−∞
dt1

∫ t′−τ/2

−∞
dt′1〈T V̂L(t′1)V̂ †R(t1)〉′

Ê†s′L(t′1)ÊsR(t1). (32)

The matter correlation function can be further factorized
into a product of two amplitudes according to Eq. (26).
We next define the transition superoperator. For the ket

T̂
(s′)
eg,L(t) = − i

~

∫ t

−∞
dt′1Ê

†
s′L(t′1)e−iωegt

×〈〈e(t)g|V̂L(t′1)T exp

(
− i
~

∫ t′1

−∞
Ĥ ′L(T )dT

)
|gg〉〉, (33)

and for the bra

T̂
(s)†
eg,R(t) =

i

~

∫ t

−∞
dt1ÊsR(t1)eiωegt

×〈〈gg|V̂R(t1)T exp

(
i

~

∫ t1

−∞
Ĥ ′R(T )dT

)
|e(t)g〉〉. (34)
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FIG. 2. (Color online) Loop diagram for correlated two pho-
tons measurement. Dashed lines represent the the dynamics
of the system driven by the field modes. τi and τs can be
either positive or negative giving rise to four terms in Eq.
(37).

Note that Eq. (33) represents a transition amplitude
that includes all the field-matter interaction, but exclud-
ing the detection. On the other hand Teg(t) in Eq. (27)

Teg(t) =
∑
s

Trs[Ês(t)T̂
(s)
eg (t)] (35)

does include the detection.

The bare signal superoperator is thus given by

B̂(s,s′)(t′, τ) = −
∑
e

T̂
(s′)
eg,L(t′ − τ/2)T̂

(s)†
eg,R(t′ + τ/2).

(36)

The corresponding Wigner superoperator reads

Ŵ
(s,s′)
B (t′, ω′) =−

∑
e

∫ ∞
−∞

dτe−iω
′τ

T̂
(s′)
eg,L(t′ − τ/2)T̂

(s)†
eg,R(t′ + τ/2). (37)

Together with Eqs. (18) and (19), the bare signal
spectrogram superoperator (36) represents the time-and-
frequency resolved gated signals. Note that the bare su-
peroperator (36) depends explicitly on the initial and fi-
nal states of matter. In addition the convolution of two
amplitudes Teg reveals the multiple pathways between
these initial and final states that allows to observe them
through the simultaneous time and frequency resolution.
Both the bare and the detector spectrograms contain
the superoperator of the field s and s′ modes. This fol-
lows immediately from the diagrammatic representation
of Fig. 1B. As was done in Eq. (31) bath correlations
can be added to Eq. (37).



6

IV. LIMITING CASES: TIME OR FREQUENCY
RESOLVED SIGNALS

We now consider two limiting cases. In the absence of a
frequency gate, then Ff (ω, ω̄) = 1 we get WD(ω̄, t̄; t, τ) =
δ(τ)F ∗t (t+τ/2, t̄)Ft(t−τ/2, t̄). For the narrow time gate
|Ft(t, t̄)|2 = δ(t − t̄) we then obtain the time resolved
measurement

S(ω̄, t̄) = −
∑
e

|Teg(t̄)|2. (38)

In the opposite limit if there is no time gate, i.e.
Ft(t, t̄) = 1, and the frequency gate is very narrow,

such that Ff (t, ω̄) =
√
γ

π e
−iω̄t−γtθ(t) at γ → 0, then

WD(ω̄, t̄; t, τ) = e−iω̄τ . In this case we obtain the fre-
quency resolved measurement

S(ω̄, t̄) = −
∑
e

|Teg(ω̄)|2, (39)

where Teg(ω) =
∫∞
−∞ dteiωtTeg(t). Eqs. (38) and (39)

indicate that if the measurement is either purely time or
purely frequency resolved, the signal can be expressed in
terms of the modulus square of a transition amplitude.
Interference can then occur only within Teg in Hilbert
space but not between the two amplitudes. Simultane-
ous time and frequency gating also involves interference
between the two amplitudes; the pathway is in the joint
ket plus bra density matrix space. In the presence of a
bath, the signal can be written as a correlation function
in the space of bath coordinates 〈T ∗eg(t̄)Teg(t̄)〉 for Eq.
(38) and 〈T ∗eg(ω̄)Teg(ω̄)〉 for Eq. (39).

V. MULTIPLE DETECTIONS

The present formalism is modular and may be easily
extended to any number of detection events. To that
end it is more convenient to use the time domain, rather
than Wigner representation. For coincidence counting of
two photons measured by first detector with parameters
ω̄i, t̄i followed by second detector characterized by ω̄s, t̄s
the time-and-frequency resolved measurement in SO rep-
resentation is given by

S(t̄s, ω̄s; t̄i, ω̄i) =

∫ ∞
−∞

dt′sdτs

∫ ∞
−∞

dt′idτi

×D(s)(t̄s, ω̄s; t
′
s, τs)D

(i)(t̄i, ω̄i; t
′
i, τ
′
i)B(t′s, τs; t

′
i, τ
′
i)
(40)

where the detector spectrogram for mode ν = i, s reads

D(t̄ν , ω̄ν ; t′ν , τν) =

∫ ∞
−∞

dων
2π

e−iωντν

× |Ff (ων , ω̄ν)|2F ∗t (t′ν + τν/2, t̄ν)Ft(t
′
ν − τν/2, t̄ν). (41)

The bare signal is given by

B(t′s, τs; t
′
i, τi) =

−
∑
e

Teg(t
′
s − τs/2, t′i − τi/2)T ∗eg(t

′
s + τs/2, t

′
i + τi/2).

(42)

The transition amplitude for the ket reads

Teg(ts, ti) =

(
− i
~

)2 ∫ ts

−∞
dt′1

∫ ti

−∞
dt′2e

−iωegts

×〈〈e(ts)g|V̂L(t′1)V̂L(t′2)

×T exp

(
− i
~

∫ max[t′1,t
′
2]

−∞
Ĥ ′L(T )dT

)
|gg〉〉, (43)

and for the bra

T ∗eg(ts, ti) =

(
i

~

)2 ∫ ts

−∞
dt1

∫ ti

−∞
dt2e

iωegts

×〈〈gg|V̂ †R(t1)V̂ †R(t2)

×T exp

(
i

~

∫ max[t1,t2]

−∞
Ĥ ′R(T )dT

)
|e(ts)g〉〉. (44)

Similarly, one can derive multiple detection measure-
ment using SSO formalism. The coincidence signal is
given by

S(t̄s, ω̄s; t̄i, ω̄i) =

∫ ∞
−∞

dt′sdτs

∫ ∞
−∞

dt′idτi
∑
s,s′

∑
i,i′

× Trs,s′,i,i′
[
D̂(s,s′)(t̄s, ω̄s; t

′
s, τs)D̂(i,i′)(t̄i, ω̄i; t

′
i, τi)

×B̂(s,s′,i,i′)(t′s, τs; t
′
i, τi)

]
, (45)

where the detector spectrogram superoperator reads

D̂(ν,ν′)(t̄ν , ω̄ν ; t′ν , τν) =

D(t̄ν , ω̄ν ; t′ν , τν)Êν′L(t′ν − τν/2)Ê†νR(t′ν + τν/2) (46)

and the detection spectrogram D(t̄ν , ω̄ν ; t′ν , τν) is defined
in Eq. (41). The bare signal superoperator yields

B̂(s,s′,i,i′)(t′s, τs; t
′
i, τi) =−

∑
e

T̂
(s′,i′)
egL (t′s − τs/2, t′i − τi/2)

× T̂ (s,i)†
egR (t′s + τs/2, t

′
i + τi/2),

(47)

where the transition superoperator for the left branch,
the ket is

T̂
(s′,i′)
egL (ts, ti) =

(
− i
~

)2 ∫ ts

−∞
dt′1

∫ ti

−∞
dt′2e

−iωegts

×Ê†s′L(t′1)Ê†i′L(t′2)〈〈e(ts)g|V̂L(t′1)V̂L(t′2)

×T exp

(
− i
~

∫ max[t′1,t
′
2]

−∞
Ĥ ′L(T )dT

)
|gg〉〉. (48)
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and for the bra (right branch)

T̂
(s,i)†
egR (ts, ti) =

(
i

~

)2 ∫ ts

−∞
dt1

∫ ti

−∞
dt2e

iωegts

×ÊsR(t1)ÊiR(t2)〈〈gg|V̂ †R(t1)V̂ †R(t2)

×T exp

(
i

~

∫ max[t1,t2]

−∞
Ĥ ′R(T )dT

)
|e(ts)g〉〉. (49)

Note, that in the presence of a bath bare signal (42) and
(47) will contain the correlation function of two transition
operators in the bath space similarly to Eq. (31).

VI. CONCLUSIONS

We have developed a diagrammatic approach in the
joint matter plus field space for calculating time-and-
frequency gated photon counting measurements. Unlike
standard detection theory the present approach does not
require the normal ordering of the field operators, it only

employs superoperator time ordering. The result is given
by the temporal and spectral overlap of the bare and de-
tector spectrograms. The detector is governed by the
time and frequency gates. The bare signal is represented
by the product of two transition amplitudes, each corre-
sponding to the side of the loop diagram. The transition
amplitude superoperator creates a coherence in the field
between states with zero and one photon. The detection
of photons occurs by combining two transition amplitude
superoperators - one for bra and one for ket in the joint
field plus matter space. The detection involves an inter-
ference of two pathways with different time orderings.
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