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We consider nonlinear analogues of Parity-Tir/() symmetric linear systems exhibiting defocusing non-
linearities. We study the ground state and excited statak @blitons and vortices) of the system and report
the following remarkable features. For relatively weakues of the parametercontrolling the strength of the
‘PT-symmetric potential, excited states undergo (analyjidedctable) spontaneous symmetry breakingz as
is further increased, the ground state and first exciteé séatwell as branches of higher multi-soliton (multi-
vortex) states, collide in pairs and disappear in blue-skyrdations, in a way which is strongly reminiscent
of the linearP T -phase transition —thus termed the nonlin@df -phase transition. Past this critical point,
initialization of, e.g., the former ground state leads torganeously emerging solitons and vortices.

I. INTRODUCTION ground state and excited states, i.e., dark solitons and vor
tices. Our main findings for a prototypic&7 -symmetric
potential, which is harmonic in its real part and has a local-
ized imaginary part (parametrized by an amplitude paramete
ng are summarized as follows: 1) dark solitons are shown to be
subject to spontaneous symmetry-breaking (SSB) instiaisili

for smalle; 2) for higher values of, the ground state and the
first excited state (single dark soliton), as well as paiewis
89 2nd and 3rd, 4th and 5th etc.— higher excited states (re
spective multiple dark soliton states) are subject to aineaf

Over the past decade, and since its original inception [1, 2]
the theme ofP7-symmetric Hamiltonians has gained con-
siderable momentum in the physics and applied mathemati
communities. Such systems, respecting both Paftyand
Time-reversal T) symmetries —still exhibiting real spectra
while non-Hermitian— provided an intriguing alternative t
standard Hermitian quantum mechanics. Note that for a sta
dard Schrodinger type Hamiltonian with a generally comple - - ;
potentialU, thegPTysF;/mmetry dictates thatgthe potgntial spat- analogue of th@7-phase transition, colliding and disappear-

isfies the conditior/ () = U*(—x) [where(-)* stands for ing in a set of blue-sky bifurcations; 3) beyond this critica
complex conjugation] point, the system acts as a soliton generator, spontaryeousl

emitting dark multi-soliton structures. #4JI of these features

re(I:Deens'EIF;/Itg htgv?/ r:h[zt])rtig?ag Fiip::pseg(lncj)lfdsggha:‘?g::'r;lta‘;vgrsoﬁz%ave direct counterparts for vortices in two-dimensior! s
for the physical/experimental realization of systems deat ngs, |IIustrat|_ng the generic nature of these f|nd|ng_s.
ing thePT symmetry. However, this also added another ele-, The paper is organ_|zed as f.OHOWS.' In Sec. [l we _mtro_duce

. X ' " . the model and study its one-dimensional (1D) version; in the
ment in the interplay, namely nonlinearity. In that contéxé

considerations of Ref. [3] extended from bright and ga <ol S@Me section, analytical and numerical results for thécstat
tons to linear (Flo ue;c-Bloch) cigenmodes iﬁ eriod?c pote and dynamics of the ground state and dark solitons are pre-
. L q 9 P P sented; we also briefly touch upon the potential effects of
tials, examining how these coherent structures are aftfdnte

the genuinely complex. yePT-symmetric potentials. More noise in the gain profile. In Sec. lll, we discuss nonlinear
9 y complex, y y P : . PT-phase transitions occurring in the 1D setting and study
recently, experimental results were reported both in menli

ear optical systems [4, 5] and electronic analogs therdof [6 the dynamics of the system beyond the relevant criticaltpoin

These, in turn, have riggered a wide range of theoretioalkst In Sec. IV, we generalize our findings in the two-dimensional
ies on nonlinear lattices with either linear [7-15] or nanli (2D) setting, studying vortex states and their nonlirr-

ear [16-18]PT-symmetric potentials and, more recently, on phase transitions. Finally, in Sec. V, we present a sumntary o

harmonicP T -symmetric potentials [19]. our results.
While the above volume of work has examined numerous
features extending from bright solitons to defect moded, an ||, MODEL, GROUND STATE AND DARK SOLITONS
from gap solitons tgP7 -lattices, the consideration of defo-
cusing nonlinearities, and especially of dark solitonsieen Our model, motivated by the above nonlinear optical con-

extremely limited (see, e.g., Ref. [20]). Little attentitand siderations (but also by ones pertinent to nonlinear phenom

again chiefly in the focusing nonlinearity case [3]) has alsoena in Bose-Einstein condensates (BECs) [21]), will be, for
been paid toP7-symmetric systems in higher-dimensional

. S : . the 1D setting, as follows:
settings and the corresponding interplay with nonlinegtiest )
such as vortices. . i0pu = —=0%u + [u*u + [V (2) + iW (2)]u, Q)
In the present work, we study systems WRHA -symmetric 2

Hamiltonians exhibiting defocusing nonlinearities, andds  whereu is the complex electric field envelope (or the macro-
on the existence, stability and dynamical properties of thescopic wavefunction in BECs),denotes the propagation dis-



tance (or time in BECs) and s the transverse direction. For
a PT-symmetric Hamiltonian, the real and imaginary parts
of the potential must satisfy’ () = V(—z) andW(z) =
—W(—z). Below we focus on the case of a real parabolic
potential -40
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L . . . . . FIG. 1: (Color online) Top panels: density (left) and phasght) of
A generalization of this model in two-dimensions will bedtu e numerically obtained TF background [solid (blue) licefnpared

ied in Sec. IV. to the prediction of Egs. (7) [dashed (orange) line]; theeirshows
Here, it is important to notice that the evolution of the the characteristic density dip induced 1y(x) at the origin. Bottom
power (number of atoms in BECSN = [ |u|?dz, is gov-  panel: contour plot showing the evolution of the densitz, ¢)|*
erned by the equation with an initial conditionu(z, 0) = us(z). Parameter values arg:=
3,2 = 0.1 ande = 0.4. All depicted quantities are dimensionless.

dN/dt =2 / |u|*W (z)dz. 3

Thus, sincéV (z) is odd, if|u|? is even thenV is conserved

whereW = [ Wdx (note that above integrals are indefinite
ones). Contrary to the conservative case={ 0) [21], this

(dN/dt = 0). Below, we show that this is the case for the T packground is characterized by a density dip located at
stationary states of the system that we will consider hegg, i he center£ = 0) and a nontrivial phase distribution. Both

the ground state and excited states (dark solitons in 1D angsiures are shown in the top panels of Fig. 1, where the

vortices in 2D).

A. Ground state

analytical result is compared with the numerical one, which
was obtained by means of a fixed-point algorithm (Newton'’s
method). It is observed that the agreement between the two
is excellent. Furthermore, a linear stability —Bogoliubae
Gennes (BdG)— analysis (see, e.g., Ref. [23]) shows that the

We first analyze the most fundamental state, namely theackgroundu,(z) is stable against small perturbations.

ground state of the system, shown in Fig. 1. We seek sta- The stapility of the analytically found ground state sajati
tionary solutions of Eq. (1) in the forma = () exp(—iut),

wherey is the propagation constant (or the chemical potentiah¢ Eq. (1) using as an initial condition Eq. (5), and it hasrbee

in BECs), while the background field, obeys the equation:

1
—iaiub + up|*up + [V (z) 4+ iW (2)]up — pup = 0. (4)

For a sufficiently small imaginary potentidl/ (z) = W (z)

[with max{|[W (z)|} = O(1)], wheres < 1 [22], and when

the inverse widtH2~! of V() is sufficiently large ~ &,
we may find —in the Thomas-Fermi (TF) limiff” ~ 0)—
an approximate solution of Eq. (1). This is of the form

center) are given by:

up = [/ + f (z)] explio(z)], (5)

where the amplitude and phagér) and¢(x) (considered to
be small, of orde©(s?) andO(¢), respectively, near the trap

has also been tested by means of direct numerical integratio

confirmed that it remains stable for long times, as shown in
the bottom panel of Fig. 1. Note that this occurs even for
relatively larges (e.g., fore = 0.4 used in the figure). As is
observed, the ground state is practically stationary:dtves
in time only for a small initial time interval, during which
the tails of the analytical solution slowly approach the ©ne
of the exact ground state solution. This is expected because
the spatial structure of the tails is different in the nuro&ri
and approximate solutions —due to the cutoff structure ef th
latter that becomes regularized— see, e.g., Ch. 6 of Reff. [24
Beyond this initial transient (which is chiefly seeded by the
tail and not the core of the wave form), the profile remains
practically identical to the exact numerical solution in i@ev
spatial region —more tha90% of the TF radius,/2;:/€; in
fact, as we will show below, the relative error is of order of
O(1072) for e = O(10~1). Thus, indeed, the error is of

_ b 2 O(e?) and stays bounded within that order of approximation
@) = max{ 2\/1t (V+ 205, \/ﬁ}’ © for extremely long evolution times; this indicates thatcs
the system under consideration possesses gain-losstatas s
is indeed an attractor. This is, naturally, also the caséet t
$lz) = 2/de' (7) vicinity of the central region where the imaginary potehtia
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‘ FIG. 3: (Color online) Top: density (left) and phase (righita single
0.02 stationary dark soliton state. Parameters values;are:3, 2 = 0.1
ande = 0.3. Bottom: contour plot showing the small-amplitude
% 100 200 300 400 oscillation of a dark soliton foe < ¢'. The dashed (white) line
t depicts the analytical result of Eq. (5). Parameters ara ései top

FIG. 2: (Color online) Top panel: contour plot showing theletion panel, but for = 0.04. All depicted quantities are dimensionless.

of the density differencé\ [cf. Eq. 8] as a function of time. Bottom
panel: the maximum value @k at the center. Parameter values are
the same as the ones in Fig. 1. All depicted quantities arermsion-
less.

[23, 25]. Then, continuation inresults in a dark soliton state,
such as the one shown in the top panels of Fig. 3.

To describe analytically the dynamics of the dark soliton on
top of the TF background, we substitute Eq. (9) into Eq. (1)
W (z) acts: our approximate solution for the ground state,and derive the equation:

Egs. (5)-(7), predicts a localized dip in the density, with a .
approximation of the ordef(£?). : o2 212 _

The validity of the above érg)uments is clearly illustratgd b 0w + 28“} s ([l = 1) v = =0z In(w)0,v. (10)
the results shown in Fig. 2. In the top panel of this figure,
we show a contour plot illustrating the time evolution of the
density difference

Next, we substitute expressions (5)-(7) fgrand simplify the

resulting equation for(z,t) by Taylor expanding the right-

hand side term a8, In(us) ~ 10, f(1+ f+ f*+...). Then,
Az, 1) = |tupum (2, 1)]? = |u(z, t)|?, (8) keeping only leading-order terms, up to orde(=2) [recall

that the functionf(x) is of orderO(£?)], and using the scale

whereu(z, ) is the time evolution of the initial condition transformations — pt andxz — /i, we obtain the follow-

u(z,0) = up(x) (i.e., our approximate analytical solution for ing perturbed nonlinear Schrodinger (NLS) equation:

the ground state of the system), amgd,,,,(x) is the numeri- .

cally found exact solution of the NLS Eq. (1). Since our ap- : 192 2y -2

proximation in deriving Egs. (5)-(7) is valid up to ord@f?), 0w + 2(9””” +oll = off) =7 P(v), (11)

the deviation from the “exact” (numerical) solution shobkl

of orderO(e?). As shown in the bottom panel of Fig. 2, this

is the case indeed: the maximum of functitsrstays bounded

where the perturbatioR (v) is given by

by a constant prefactor (of order unity) time’s P(v)=(1—[v*)v (V 4+ 2W?) 4, <%Vz —2(W — i)W> :
B. Dark solitons We now apply the perturbation theory for dark solitons (de-

tails can be found in the reviews [23, 25]). First we note that
Apart from the ground state, excited states of the systerfhe absence of the perturbatiai(v) = 0, Eqg. (11) possesses
—in the form of stationary dark solitons— can also be founda dark soliton solution of the form:
numerically, by means of the Newton’s method. In particular o
we decompose the field into the backgroup@nd the soliton v(x,t) = cosptanh{ +isingp,
v(z,t), using the product ansatz:

(12)

wheref = cos ¢ [z — zo(t)], with ¢ andzy = (sin @)t rep-
¥ = up(a)v(z, t), (9)  resenting the soliton phase angle and center of the sotiten,
spectively. Then, in the cad®(v) # 0, and in the framework
where the functionv(z, t) assumes —in the absence of the of the adiabatic approximation, the functional form of tbé-s
imaginary potential{ = 0)— a hyperbolic tangent profile ton of Eq. (11) is assumed to be unchanged, but its parameters
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~ 02 : : : ‘ — the latter, the stability of the dark soliton is studied byreo
%0_1 — sidering the anomalous mode eigenfrequengy(which is
[N associated with the dark soliton motion [23, 26]). If the gna

0 - inary part of this eigenfrequency is zero (nonzero) then the
’§ o4 | et soliton is stable (unstable). We have found that this eigenf
7_5’0.2 ________ ] quency is real foe < ¥ and, in this casey, coincides

o with the analytically found oscillation frequency,.. On the

0 0.1 0.2 0.3 0.4 0.5 0.6 (1) .

s other hand, for values > ¢.,’, the anomalous mode eigenfre-

guencyw, becomes imaginary, thus signaling the onset of the
FIG. 4: (Color online) The linear spectrum, as obtained micaly ~ spontaneous symmetry-breaking (SSB) instability of thix da
by the BAG analysis, of the single dark soliton branch¢for= 0.1 soliton, which displaces the dark soliton from the trap cen-
andy = 3: top (bottom) panel shows the real (imaginary) part of theter. The detailed dependencewaf on the amplitude of the
lowest eigenfrequenciesas a function of the amplitude The low- imaginary potentialV’, as found by the BdG analysis, is il-
est solid (orange) line in the top panel and the upper sol@n@e) |ystrated in Fig. 4. It is observed that the anomalous made

curve in the bottom panel depict, respectively, the realiaraginary ;.. o »
part of the anomalous mode eigenfrequengy The dashed (black) initially moves towards the origin, and past the criticalrgo

(1) i ioal i ; i ifacti
lines in both panels indicate the analytical result of EG)(1The  £er (Cf. th',n vertical line), becomes imaginary, manifesting
thin vertical line shows the point’, where the anomalous mode the soliton’s exponential instability. Importantly, asosm in

eigenfrequency becomes imaginary. All depicted quastiiee di-  Fig- 4, for smalle the agreement between the analytical pre-
mensionless. diction of Eq. (15) [dashed (black) line] and the BAG numeri-

cal result [lowest solid (orange) line] is excellent.

o andxg become unknown slowly-varying functions of time.

We find that the evolution of these parameters, which is de-

termined by the perturbation-induced change of the energy o C. Effect of noise-induced perturbations
the system [23, 25], is described by the following equations

Let us now consider an experimentally relevant situation,

dxg : ; ; . . :

o o o(t), (13)  where _the (localized) gain WhICh acts on _the system is associ
dop 1 ated with the presence of noise. This is important in order to
— = =0,V — /sech4(§) [tanh($)W? + WW] du, ensure the robustness of our results presented above st real
dt 2 tic cases wher@7-symmetry is not strictly enforced. In such

(14)  acase, an important question is if and how the noise-induced

where we have assumed almost black solitons, with sufP€rturbation affects the stability and dynamics of the grbu
ficiently small phase angles. This way, we can combinestate and the dark soliton. To address this question, wenessu

Egs. (13) and (14) and derive, for a givé¥i(z), an equa- that —in the simplest approximation— the gain side of the
tion of motion for the soliton center,. Hereafter, we specify Potentiallv (z) (for x > 0) now becomesV (z)[1 + o n(x)];

a Gaussian-shaped imaginary potential of the form (2). Notd€"€:7(x) is @ uniformly distributed noise of amplitude
that other choices, e.g¥ (x) = e sech?(x) tanh(z), have led Thus, generally, one expects from Eq. (3) that since theenois

to similar results. To examine the stability of the equiliion n(z) is not parity symmetricdN/dt # 0, i.e., for any time

atz, = 0, we Taylor expand Eq. (14), obtaining to leading instantt, the system will either.grovvd(N/dt > 0) or decay
order (dN/dt < 0). As a result, stationary states (such as the TF

background ground state or a single- or multiple-darktsoli

d?x 9 9 2\ 6 9 state) cannot generically exist, at least in the case diivels

gz~ Wosc 0, Wose ¥ (E) B (15) large noise amplitude.

. L . . . To investigate the significance of this effect of noise, we
Equation (15) |mpI|eslthat if the amplitudeof I (z) is less have numerically integrated Eq. (1) with prototypical iilit
than a critical values!;) = \/5/12Q, then the soliton per-  conditions of relevance to our study including the TF back-
forms oscillations in the complex potential with frequency ground and the dark soliton, and have let the system to evolve
wose- Such a case is demonstrated in the bottom panel gh the presence of noise perturbations. The results of ow si
Fig. 3, where we show a dark soliton oscillating around theyjations can be summarized in the examples shown in Fig. 5,
trap center foe = 0.04 < 59). The numerically found tra- where contour plots showing the evolution of the density of
jectory, obtained by direct numerical integration of Eq), (1 the TF background (top panels) and a single dark solitor (bot
is compared with the analytical result of Eq. (15) [dashedom panels) are given. It is observed that if the noise ampli-
(white) line]; as is observed, the agreement between the twtudes is sufficiently small (the valué = 0.1 was used in the
is excellent. left panels of the figure) then the dynamics is practicallgfun

On the other hand, Eq. (15) dictates that if> e then  fected by the effect of noise (in fact, the effect of noise ban
the soliton will become unstable. The above prediction hagbserved for larger values 6f as is explained below). Note
been confirmed numerically, both by means of direct simulathat in the case of the dark soliton, the noise induces the sol
tions and by employing a BdG analysis. In the framework ofton to perform small-amplitude oscillations (cf. inset et

osc ™
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i FIG. 6: (Color online) The powelN as function of the strength
of the imaginary potential, depicting the full bifurcatidiagram for

400 400 the ground state and excited states in 1D. The diagram eraszep
the pairwise blue-sky bifurcations/disappearances ofnibh@inear
FIG. 5: (Color online) Contour plots, showing the evolutiohthe ~ States, namely the ground state with the 1st excited stagigsiark
density when noise is added to Eqg. (1), on the gain side oftlagi soliton), the 2nd with the 3rd excited state (two- and thilask-
inary potential ¢ > 0). Top: for a relatively small amplitude noise, solitons), the 4th with the 5th, and so on. Solid (dashe@}lindicate
§ = 0.1, the TF background evolves practically unaffected [left], dynamically stable (unstable) branches. Herex 3 andQ = 0.1.
while for a larger noise§ = 1 the background grows [right]. In All depicted quantities are dimensionless.
both top panele = 0.4. Bottom: a dark soliton, performs small
amplitude oscillations (see inset) after perturbed by allsamapli-
a growing amplitude for a larger amplitude noise~= 1 [right]. T4 petter understand how the branch ceases to exist, we first
B 2t P abserve (s 0p panel f Fig. ) at e densy proee
Other parameter values age:= 3, 2 = 0.1. All depicted quantities soliton becomes mcreasmgly shallc_)we_r (i.e., more g}egs_ .
are dimensionless. ¢ grows and the second critical point is approached. This is
due to the development of an increasingly stremgn imagi-
nary part of the solution. Furthermore, the stable backaggou
bottom left panel of Fig. 5) which can be very well described(ground state) solution, (x) [cf. Egs. (5)-(7) and top panel of
by Eq. (15). On the other hand, if the noise is strong enouglfrig. 1] develops andd imaginary part resembling a (progres-
(as, e.g., withh = 1 used in the right panels) then the ground sively darker) grey soliton. Finally, at = 2, the profiles
state either grows or decays, depending on the initial sfgn oof these modes become identical and disappear in a blue-sky
dN/dt (which depends, in turn, on the particular noise real-bifurcation through their collision. This is shown in Fig, 6
ization), with an average growth rate determined by the pawhere the powetrV is shown as a function of. The top
rameters. Notice that, in this case of large-amplitude noise,solid (blue) branch shows the stable ground stage which
the dark soliton becomes thermodynamically unstable and igltimately collides with the one soliton (first excited) tetat
displaced from the center, performing oscillations of grayv ¢ ~ 0.62 (for x = 3 andQ = 0.1).
amplitude. The approximate evolution equation for the dark |mportantly, we have confirmed that the above description
soliton, Eq. (15), is not valid here, since the noise term beholds also for higher excited states (multiple dark sol&on
comes of the same orderas the rest of the perturbation and |utions), as shown in Fig. 6: each pair of the higher excited
needs to be explicitly accounted for in the anti-damped dystates (2nd with 3rd, 4th with 5th, etc.) also disappears in a
namics of the solitary wave. blue-sky bifurcation. A general remark is that higher eadit
Overall, these results support that under weak noise pestates bifurcate for larger values of Remarkably, this can
turbations, the phenomenology presented above (and belowk thought of as aonlinear analogue of the P 7 transition,
will persist. Yet, for strong random perturbations, the phe in analogy with the pairwise collisions in Ref. [1] (see,.e.g
nomenology changes considerably and should be considerggly. 1 of that reference) for the linear setting [27].
separately in further detail. A relevant and interesting question concerns the dynamics
of the nonlinear states when subject to these (SSB and blue-
sky) bifurcations. To answer this, we numerically integcht
1. NONLINEAR PT7 PHASE TRANSITIONS Eqg. (1) and the relevant results are shown in Fig. 7. In the top
panels, we illustrate the dynamics of the dark soliton up®n i

Let us now return to the results of the BdG analysis pre-destabilization at = =%, When the SSB is manifested, the
sented in the previous section, and discuss in more detail whsoliton is either spontaneously ejected towards the losy s
happens beyond the SSB instability of the single dark solito (and typically found to localize therein, while the backgna
state. As shown in Fig. 4, for values of> ggp the unsta- grows in amplitude and widens) or moves to the gain side,
ble imaginary eigenvalue makes a maximal excursion alongxecuting oscillations thereafter.
the imaginary line and returns to the origin at a second crit- On the other hand, past = 2 using, as an initial

ical point, gﬁ‘? = 0.62, finally colliding with it. The branch condition the form of the TF backgr’ound (bottom panels of
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FIG. 7: (Color online) Bifurcation-induced dynamics. Toanels:
manifestations of the SSB destabilization scenarios fouratable
dark soliton past = ). Bottom panels: soliton generator, spon-

taneously leading to two or four solitons from the groundestsed
fore > e?. The parameters age = 3 andQ2 = 0.1 ande = 0.3
(top row),e = 0.64 (bottom left), ande = 0.7 (bottom right). All

depicted quantities are dimensionless.

FIG. 8: (Color online) The 2D generalization. (a) Bifurcatidia-
gram for the 2D stationary nonlinear (vortex and DS strifia)es.
Stable (unstable) branches, as per the corresponding Bdlgsan
are depicted with solid (dashed) lines. (b) Series of defkift) and
phase (right) configurations along the branch with even ramolp
vortices corresponding to the circles in panel (a) [from tofbot-
tom]. (c) Same as (b) for the branch starting with one vorted a
connecting with three vortices corresponding to the squiereanel
(a) [from top to bottom]. (d) Same as (b) for the branch startwith

Fig. 7), we have found that a dark soliton train is spontathree symmetric vortices and ending with four vortices espond-

neously formed, with an increasingly larger number of soli-

tons as larger values efare used. This can be intuitively con-

ing to the triangles in panel (a) [from top to bottom]. Paréeneal-
ues arey, = 2 and2 = 0.2. The field of view for the configurations

nected to the observation of Fig. 7 that higher excited multiis [-10.5,10.5] x [-10.5, 10.5]. All depicted quantities are dimen-

soliton states persist for largerthan lower ones. Again, it
is typically observed that the solitons are nucleated aay st
in the vicinity of the global minimum of¥ (), which corre-
sponds to the “lossy” side of the imaginary potential.

IV. TWO-DIMENSIONAL GENERALIZATIONS

Finally, we consider the case of a ZBT-symmetric po-
tential with a real parabolic part

1
Vie.y) = 39" +37),

and an oddWV (—z, —y) = —W (x, y)] imaginary part

W(z,y) =e(a +y)e @I/,

sionless.

unstable, having been destabilized through an SSB bifurca-

tion at ane = 5&? > 0 value (below which for > 0 the
dipole is stable —see portion of red solid line in the figure).
As this branch is followed (from top to bottom in the figure),
a series of bifurcations occur where the existing vortiaes a
drawn to the periphery of the cloud, a dip in the center deep-
ens leading eventually to a new vortex pair emerging (i.e., a
higher excited state). In this manner the branches aién
number of vortices are all connected. As more and more vor-
tex pairs emerge, the cloud “saturates” and can no longer fit
in new vortex pairs finally colliding with a dark soliton gig
(see lower blue branch in the figure). This overall bifuncgti
structure of even vortex numbers —witlr a> —s symmetry
where the solutions are just flipped by, y) — (—z, —y)—

is depicted, with density and phase profiles, in the series of

The bifurcation of the nonlinear structures emerging in 2Dpanels of Fig. 8(b).

follows a similar, but also more complex, pattern than in the  As for the bifurcation scenario afdd number of vortices,

corresponding 1D setting. Figure 8 depicts the full bifarca the first excited state bearing a single vortex at the orifgin (
tion scenario for solutions bearing no vortices (the TF back: — () is stable for small values ef while it again sustains an

ground cloud), one to six vortices, and the dark solitorpstri

SSB bifurcation for larget. As ¢ increases the vortex moves

As in 1D, the TF background is stable in all its domain of towards the periphery of the cloud and a dip at the center of

existence and collides, in a blue-sky bifurcation, for ayéar

the cloud deepens until a vortex pair emerges from it. This

enough value of, with an excited state. However, in contrast scenario connects the one-vortex branch withayenmetric
to the 1D case where this collision happens with the first eXthree-vortex § — + vortex tripole) branch, as it is depicted

cited state, in 2D the collision occurs with teecond excited

with the top (magenta and green) lines in panel 8(a) and the

state, due to the absence of net topological charge in suchgries of snapshots in panels 8(c). As it is evident from the fi
vortex-dipole (see top-right red curve) bearing two opfosi yre, the asymmetric three-vortex branch eventually catsnec
charge vortices emerging from the central dip of the TF backwith the symmetric one for values ef— 0. A similar bifur-

ground. At this critical point = 55;? the dipole branch is

cation occurs with the symmetric three-vortex branch, Whic



becomes asymmetric with a deepening dip at the center whees a nonlinear analogue of tii&/ transition that eventually

a vortex pair emerges (at the same time that a vortex is logerminates both the ground state and the dark soliton branch

at the periphery), connecting in this way with the four-eart yielding purely gain-loss dynamics within the system. $ami

branch [see series of snapshots in panels 8(d)]. bifurcation phenomena and dynamics of mobility or of spon-
As for the dynamics of unstable steady states, we have olianeous emergence of dynamical patterns forming out of the

served —in analogy with the 1D case— that (a) a single vortexiestabilization of the nonlinear states were identifiedhio-t

tends to migrate towards the minimum of the lossy side of thelimensional settings, for vortices.

potential, while the remaining vortices (if present) penil- These investiaations. we believe. pave the way for studvin
most circular orbits at the periphery of the cloud where they, investigations, w IEVE, pav way udying

) 2 _ . PT-symmetric systems in the context of defocusing nonlin-
are eventually absorbed; and (b) past ec;”, usingasanini- - gaiities and of higher dimensional systems, which are some

tial condition the form of the TF background, also producesy the natural extensions of tHe7-symmetric literature. A

the spontaneous formation of an increasing number of Vorzanqnical set of investigations which is still missing oencs

tices for larger values af (namely, a “vortex generator”). Itis  a offects of such potentials in three-dimensional cantin
worth mentioning that the precise structure of the bifuoat . higher dimensional lattice contexts, as well as the manip
diagram depends of the values of the propagation congtant 4tjon of nonlinear states emerging in these systems. Amoth
and the trap strengtl. For weakex? and/or largey: the ex-  gjeyant possibility arising from our considerations hierés

tent of the TF b_ackgr(_)und will be larger allowing for a longer 4 study of inexacP7-symmetric nonlinear systems and
bifurcating chain of higher-order vortex states. Nonetbsl  hejr comparison to exact ones, as well as the consideration
the displayed SSB instabilities and phenomenology and thgg e interplay of the nonlinearity with merely loss (rathe

nonIin_earPT tr_ansition_ involving the cascade of blue-sky bi- han gain-loss) in the passie7™ nonlinear settings. These
furcations (notice that in the 2D case the order is reversdd a {1, ames will be pursued in future works.
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