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We consider nonlinear analogues of Parity-Time (PT ) symmetric linear systems exhibiting defocusing non-
linearities. We study the ground state and excited states (dark solitons and vortices) of the system and report
the following remarkable features. For relatively weak values of the parameterε controlling the strength of the
PT -symmetric potential, excited states undergo (analytically tractable) spontaneous symmetry breaking; asε

is further increased, the ground state and first excited state, as well as branches of higher multi-soliton (multi-
vortex) states, collide in pairs and disappear in blue-sky bifurcations, in a way which is strongly reminiscent
of the linearPT -phase transition —thus termed the nonlinearPT -phase transition. Past this critical point,
initialization of, e.g., the former ground state leads to spontaneously emerging solitons and vortices.

I. INTRODUCTION

Over the past decade, and since its original inception [1, 2],
the theme ofPT -symmetric Hamiltonians has gained con-
siderable momentum in the physics and applied mathematics
communities. Such systems, respecting both Parity (P) and
Time-reversal (T ) symmetries —still exhibiting real spectra
while non-Hermitian— provided an intriguing alternative to
standard Hermitian quantum mechanics. Note that for a stan-
dard Schrödinger type Hamiltonian with a generally complex
potentialU , thePT symmetry dictates that the potential sat-
isfies the conditionU(x) = U∗(−x) [where(·)∗ stands for
complex conjugation].

Despite the theoretical appeal of such models, it was only
recently shown [3] that optics could be an ideal playground
for the physical/experimental realization of systems featur-
ing thePT symmetry. However, this also added another ele-
ment in the interplay, namely nonlinearity. In that context, the
considerations of Ref. [3] extended from bright and gap soli-
tons to linear (Floquet-Bloch) eigenmodes in periodic poten-
tials, examining how these coherent structures are affected by
the genuinely complex, yetPT -symmetric potentials. More
recently, experimental results were reported both in nonlin-
ear optical systems [4, 5] and electronic analogs thereof [6].
These, in turn, have triggered a wide range of theoretical stud-
ies on nonlinear lattices with either linear [7–15] or nonlin-
ear [16–18]PT -symmetric potentials and, more recently, on
harmonicPT -symmetric potentials [19].

While the above volume of work has examined numerous
features extending from bright solitons to defect modes, and
from gap solitons toPT -lattices, the consideration of defo-
cusing nonlinearities, and especially of dark solitons hasbeen
extremely limited (see, e.g., Ref. [20]). Little attention(and
again chiefly in the focusing nonlinearity case [3]) has also
been paid toPT -symmetric systems in higher-dimensional
settings and the corresponding interplay with nonlinear states
such as vortices.

In the present work, we study systems withPT -symmetric
Hamiltonians exhibiting defocusing nonlinearities, and focus
on the existence, stability and dynamical properties of the

ground state and excited states, i.e., dark solitons and vor-
tices. Our main findings for a prototypicalPT -symmetric
potential, which is harmonic in its real part and has a local-
ized imaginary part (parametrized by an amplitude parameter
ε) are summarized as follows: 1) dark solitons are shown to be
subject to spontaneous symmetry-breaking (SSB) instabilities
for smallε; 2) for higher values ofε, the ground state and the
first excited state (single dark soliton), as well as pairwise —
e.g., 2nd and 3rd, 4th and 5th etc.— higher excited states (re-
spective multiple dark soliton states) are subject to a nonlinear
analogue of thePT -phase transition, colliding and disappear-
ing in a set of blue-sky bifurcations; 3) beyond this critical
point, the system acts as a soliton generator, spontaneously
emitting dark multi-soliton structures. 4)All of these features
have direct counterparts for vortices in two-dimensional set-
tings, illustrating the generic nature of these findings.

The paper is organized as follows. In Sec. II we introduce
the model and study its one-dimensional (1D) version; in the
same section, analytical and numerical results for the statics
and dynamics of the ground state and dark solitons are pre-
sented; we also briefly touch upon the potential effects of
noise in the gain profile. In Sec. III, we discuss nonlinear
PT -phase transitions occurring in the 1D setting and study
the dynamics of the system beyond the relevant critical point.
In Sec. IV, we generalize our findings in the two-dimensional
(2D) setting, studying vortex states and their nonlinearPT -
phase transitions. Finally, in Sec. V, we present a summary of
our results.

II. MODEL, GROUND STATE AND DARK SOLITONS

Our model, motivated by the above nonlinear optical con-
siderations (but also by ones pertinent to nonlinear phenom-
ena in Bose-Einstein condensates (BECs) [21]), will be, for
the 1D setting, as follows:

i∂tu = −1

2
∂2xu+ |u|2u+ [V (x) + iW (x)]u, (1)

whereu is the complex electric field envelope (or the macro-
scopic wavefunction in BECs),t denotes the propagation dis-
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tance (or time in BECs) andx is the transverse direction. For
a PT -symmetric Hamiltonian, the real and imaginary parts
of the potential must satisfyV (x) = V (−x) andW (x) =
−W (−x). Below we focus on the case of a real parabolic
potential

V (x) =
1

2
Ω2x2,

modeling the transverse distribution of the refractive index (or
the external trap in BECs), while the imaginary partW (x) is
considered to be an odd, localized function of spatial width
≪ Ω−1; as a prototypical example, we will consider

W (x) = εxe−x2/2. (2)

A generalization of this model in two-dimensions will be stud-
ied in Sec. IV.

Here, it is important to notice that the evolution of the
power (number of atoms in BECs),N =

∫

|u|2dx, is gov-
erned by the equation

dN/dt = 2

∫

|u|2W (x)dx. (3)

Thus, sinceW (x) is odd, if |u|2 is even thenN is conserved
(dN/dt = 0). Below, we show that this is the case for the
stationary states of the system that we will consider here, i.e.,
the ground state and excited states (dark solitons in 1D and
vortices in 2D).

A. Ground state

We first analyze the most fundamental state, namely the
ground state of the system, shown in Fig. 1. We seek sta-
tionary solutions of Eq. (1) in the formu = ub(x) exp(−iµt),
whereµ is the propagation constant (or the chemical potential
in BECs), while the background fieldub obeys the equation:

−1

2
∂2xub + |ub|2ub + [V (x) + iW (x)]ub − µub = 0. (4)

For a sufficiently small imaginary potential,W (x) = εW̃ (x)

[with max{|W̃ (x)|} = O(1)], whereε ≪ 1 [22], and when
the inverse widthΩ−1 of V (x) is sufficiently large,Ω ∼ ε,
we may find —in the Thomas-Fermi (TF) limit(f ′′ ≈ 0)—
an approximate solution of Eq. (1). This is of the form

ub = [
√
µ+ f (x)] exp[iφ(x)], (5)

where the amplitude and phasef(x) andφ(x) (considered to
be small, of orderO(ε2) andO(ε), respectively, near the trap
center) are given by:

f(x) = max

{

− 1

2
√
µ

(

V + 2W2
)

,−√
µ

}

, (6)

φ(x) = 2

∫

W dx. (7)
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FIG. 1: (Color online) Top panels: density (left) and phase (right) of
the numerically obtained TF background [solid (blue) line]compared
to the prediction of Eqs. (7) [dashed (orange) line]; the inset shows
the characteristic density dip induced byW (x) at the origin. Bottom
panel: contour plot showing the evolution of the density|u(x, t)|2

with an initial conditionu(x, 0) = ub(x). Parameter values are:µ =
3, Ω = 0.1 andε = 0.4. All depicted quantities are dimensionless.

whereW =
∫

Wdx (note that above integrals are indefinite
ones). Contrary to the conservative case (ε = 0) [21], this
TF background is characterized by a density dip located at
the center (x = 0) and a nontrivial phase distribution. Both
features are shown in the top panels of Fig. 1, where the
analytical result is compared with the numerical one, which
was obtained by means of a fixed-point algorithm (Newton’s
method). It is observed that the agreement between the two
is excellent. Furthermore, a linear stability —Bogoliubov-de
Gennes (BdG)— analysis (see, e.g., Ref. [23]) shows that the
backgroundub(x) is stable against small perturbations.

The stability of the analytically found ground state solution
has also been tested by means of direct numerical integration
of Eq. (1) using as an initial condition Eq. (5), and it has been
confirmed that it remains stable for long times, as shown in
the bottom panel of Fig. 1. Note that this occurs even for
relatively largeε (e.g., forε = 0.4 used in the figure). As is
observed, the ground state is practically stationary: it evolves
in time only for a small initial time interval, during which
the tails of the analytical solution slowly approach the ones
of the exact ground state solution. This is expected because
the spatial structure of the tails is different in the numerical
and approximate solutions —due to the cutoff structure of the
latter that becomes regularized— see, e.g., Ch. 6 of Ref. [24].

Beyond this initial transient (which is chiefly seeded by the
tail and not the core of the wave form), the profile remains
practically identical to the exact numerical solution in a wide
spatial region —more than90% of the TF radius

√
2µ/Ω; in

fact, as we will show below, the relative error is of order of
O(10−2) for ε = O(10−1). Thus, indeed, the error is of
O(ε2) and stays bounded within that order of approximation
for extremely long evolution times; this indicates that, since
the system under consideration possesses gain-loss, this state
is indeed an attractor. This is, naturally, also the case at the
vicinity of the central region where the imaginary potential
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FIG. 2: (Color online) Top panel: contour plot showing the evolution
of the density difference∆ [cf. Eq. 8] as a function of time. Bottom
panel: the maximum value of∆ at the center. Parameter values are
the same as the ones in Fig. 1. All depicted quantities are dimension-
less.

W (x) acts: our approximate solution for the ground state,
Eqs. (5)-(7), predicts a localized dip in the density, with an
approximation of the orderO(ε2).

The validity of the above arguments is clearly illustrated by
the results shown in Fig. 2. In the top panel of this figure,
we show a contour plot illustrating the time evolution of the
density difference

∆(x, t) ≡ |unum(x, t)|2 − |u(x, t)|2, (8)

whereu(x, t) is the time evolution of the initial condition
u(x, 0) = ub(x) (i.e., our approximate analytical solution for
the ground state of the system), andunum(x) is the numeri-
cally found exact solution of the NLS Eq. (1). Since our ap-
proximation in deriving Eqs. (5)-(7) is valid up to orderO(ǫ2),
the deviation from the “exact” (numerical) solution shouldbe
of orderO(ε2). As shown in the bottom panel of Fig. 2, this
is the case indeed: the maximum of function∆ stays bounded
by a constant prefactor (of order unity) timesε2.

B. Dark solitons

Apart from the ground state, excited states of the system
—in the form of stationary dark solitons— can also be found
numerically, by means of the Newton’s method. In particular,
we decompose the field into the backgroundub and the soliton
υ(x, t), using the product ansatz:

ψ = ub(x)υ(x, t), (9)

where the functionυ(x, t) assumes —in the absence of the
imaginary potential (ε = 0)— a hyperbolic tangent profile
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FIG. 3: (Color online) Top: density (left) and phase (right)of a single
stationary dark soliton state. Parameters values are:µ = 3, Ω = 0.1
and ε = 0.3. Bottom: contour plot showing the small-amplitude
oscillation of a dark soliton forε < ε

(1)
cr . The dashed (white) line

depicts the analytical result of Eq. (5). Parameters are as in the top
panel, but forε = 0.04. All depicted quantities are dimensionless.

[23, 25]. Then, continuation inε results in a dark soliton state,
such as the one shown in the top panels of Fig. 3.

To describe analytically the dynamics of the dark soliton on
top of the TF background, we substitute Eq. (9) into Eq. (1)
and derive the equation:

i∂tυ +
1

2
∂2xυ − |ub|2

(

|υ|2 − 1
)

υ = −∂x ln(ub)∂xυ. (10)

Next, we substitute expressions (5)-(7) forub and simplify the
resulting equation forυ(x, t) by Taylor expanding the right-
hand side term as∂x ln(ub) ≈ 1

2∂xf(1+f +f
2+ . . .). Then,

keeping only leading-order terms, up to orderO(ε2) [recall
that the functionf(x) is of orderO(ε2)], and using the scale
transformationst → µt andx→ √

µx, we obtain the follow-
ing perturbed nonlinear Schrödinger (NLS) equation:

i∂tυ +
1

2
∂2xυ + υ(1− |υ|2) = µ−2P (υ), (11)

where the perturbationP (υ) is given by

P (υ)=(1−|υ|2)υ
(

V + 2W2
)

+υx

(

1

2
Vx − 2(W − i)W

)

.

We now apply the perturbation theory for dark solitons (de-
tails can be found in the reviews [23, 25]). First we note thatin
the absence of the perturbation,P (υ) = 0, Eq. (11) possesses
a dark soliton solution of the form:

υ(x, t) = cosϕ tanh ξ + i sinϕ, (12)

whereξ ≡ cosϕ [x− x0(t)], with ϕ andx0 = (sinϕ)t rep-
resenting the soliton phase angle and center of the soliton,re-
spectively. Then, in the caseP (υ) 6= 0, and in the framework
of the adiabatic approximation, the functional form of the soli-
ton of Eq. (11) is assumed to be unchanged, but its parameters
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FIG. 4: (Color online) The linear spectrum, as obtained numerically
by the BdG analysis, of the single dark soliton branch forΩ = 0.1
andµ = 3: top (bottom) panel shows the real (imaginary) part of the
lowest eigenfrequenciesω as a function of the amplitudeε. The low-
est solid (orange) line in the top panel and the upper solid (orange)
curve in the bottom panel depict, respectively, the real andimaginary
part of the anomalous mode eigenfrequencyωα. The dashed (black)
lines in both panels indicate the analytical result of Eq. (15). The
thin vertical line shows the pointε(1)cr , where the anomalous mode
eigenfrequency becomes imaginary. All depicted quantities are di-
mensionless.

ϕ andx0 become unknown slowly-varying functions of time.
We find that the evolution of these parameters, which is de-
termined by the perturbation-induced change of the energy of
the system [23, 25], is described by the following equations:

dx0
dt

= sinϕ(t), (13)

dϕ

dt
= −1

2
∂xV −

∫

sech4(ξ)
[

tanh(ξ)W2 +WW
]

dx,

(14)

where we have assumed almost black solitons, with suf-
ficiently small phase angles. This way, we can combine
Eqs. (13) and (14) and derive, for a givenW (x), an equa-
tion of motion for the soliton centerx0. Hereafter, we specify
a Gaussian-shaped imaginary potential of the form (2). Note
that other choices, e.g.,W (x) = ε sech2(x) tanh(x), have led
to similar results. To examine the stability of the equilibrium
at x0 = 0, we Taylor expand Eq. (14), obtaining to leading
order

d2x0
dt2

= −ω2
osc x0, ω2

osc ≈
(

Ω√
2

)2

− 6

5
ε2. (15)

Equation (15) implies that if the amplitudeε of W (x) is less

than a critical value,ε(1)cr =
√

5/12Ω, then the soliton per-
forms oscillations in the complex potential with frequency
ωosc. Such a case is demonstrated in the bottom panel of
Fig. 3, where we show a dark soliton oscillating around the
trap center forε = 0.04 < ε

(1)
cr . The numerically found tra-

jectory, obtained by direct numerical integration of Eq. (1),
is compared with the analytical result of Eq. (15) [dashed
(white) line]; as is observed, the agreement between the two
is excellent.

On the other hand, Eq. (15) dictates that ifε > ε
(1)
cr then

the soliton will become unstable. The above prediction has
been confirmed numerically, both by means of direct simula-
tions and by employing a BdG analysis. In the framework of

the latter, the stability of the dark soliton is studied by con-
sidering the anomalous mode eigenfrequencyωα (which is
associated with the dark soliton motion [23, 26]). If the imag-
inary part of this eigenfrequency is zero (nonzero) then the
soliton is stable (unstable). We have found that this eigenfre-
quency is real forε < ε

(1)
cr and, in this case,ωα coincides

with the analytically found oscillation frequencyωosc. On the
other hand, for valuesε > ε

(1)
cr , the anomalous mode eigenfre-

quencyωα becomes imaginary, thus signaling the onset of the
spontaneous symmetry-breaking (SSB) instability of the dark
soliton, which displaces the dark soliton from the trap cen-
ter. The detailed dependence ofωα on the amplitudeε of the
imaginary potentialW , as found by the BdG analysis, is il-
lustrated in Fig. 4. It is observed that the anomalous modeωα

initially moves towards the origin, and past the critical point
ε
(1)
cr (cf. thin vertical line), becomes imaginary, manifesting

the soliton’s exponential instability. Importantly, as shown in
Fig. 4, for smallε the agreement between the analytical pre-
diction of Eq. (15) [dashed (black) line] and the BdG numeri-
cal result [lowest solid (orange) line] is excellent.

C. Effect of noise-induced perturbations

Let us now consider an experimentally relevant situation,
where the (localized) gain which acts on the system is associ-
ated with the presence of noise. This is important in order to
ensure the robustness of our results presented above in realis-
tic cases wherePT -symmetry is not strictly enforced. In such
a case, an important question is if and how the noise-induced
perturbation affects the stability and dynamics of the ground
state and the dark soliton. To address this question, we assume
that —in the simplest approximation— the gain side of the
potentialW (x) (for x > 0) now becomesW (x)[1 + δ n(x)];
here,n(x) is a uniformly distributed noise of amplitudeδ.
Thus, generally, one expects from Eq. (3) that since the noise
n(x) is not parity symmetric,dN/dt 6= 0, i.e., for any time
instantt, the system will either grow (dN/dt > 0) or decay
(dN/dt < 0). As a result, stationary states (such as the TF
background ground state or a single- or multiple-dark-soliton
state) cannot generically exist, at least in the case of relatively
large noise amplitude.

To investigate the significance of this effect of noise, we
have numerically integrated Eq. (1) with prototypical initial
conditions of relevance to our study including the TF back-
ground and the dark soliton, and have let the system to evolve
in the presence of noise perturbations. The results of our sim-
ulations can be summarized in the examples shown in Fig. 5,
where contour plots showing the evolution of the density of
the TF background (top panels) and a single dark soliton (bot-
tom panels) are given. It is observed that if the noise ampli-
tudeδ is sufficiently small (the valueδ = 0.1 was used in the
left panels of the figure) then the dynamics is practically unaf-
fected by the effect of noise (in fact, the effect of noise canbe
observed for larger values ofδ, as is explained below). Note
that in the case of the dark soliton, the noise induces the soli-
ton to perform small-amplitude oscillations (cf. inset in the
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FIG. 5: (Color online) Contour plots, showing the evolutionof the
density when noise is added to Eq. (1), on the gain side of the imag-
inary potential (x > 0). Top: for a relatively small amplitude noise,
δ = 0.1, the TF background evolves practically unaffected [left],
while for a larger noise,δ = 1 the background grows [right]. In
both top panelsε = 0.4. Bottom: a dark soliton, performs small
amplitude oscillations (see inset) after perturbed by a small ampli-
tude noise ofδ = 0.1 [left], while a dark soliton is oscillating with
a growing amplitude for a larger amplitude noise,δ = 1 [right].
The amplitude of the imaginary potential isε = 0.04, for both pan-
els, where in the absence of noise the soliton is stable [cf. Fig. (4)].
Other parameter values are:µ = 3, Ω = 0.1. All depicted quantities
are dimensionless.

bottom left panel of Fig. 5) which can be very well described
by Eq. (15). On the other hand, if the noise is strong enough
(as, e.g., withδ = 1 used in the right panels) then the ground
state either grows or decays, depending on the initial sign of
dN/dt (which depends, in turn, on the particular noise real-
ization), with an average growth rate determined by the pa-
rameterδ. Notice that, in this case of large-amplitude noise,
the dark soliton becomes thermodynamically unstable and is
displaced from the center, performing oscillations of growing
amplitude. The approximate evolution equation for the dark
soliton, Eq. (15), is not valid here, since the noise term be-
comes of the same orderε as the rest of the perturbation and
needs to be explicitly accounted for in the anti-damped dy-
namics of the solitary wave.

Overall, these results support that under weak noise per-
turbations, the phenomenology presented above (and below)
will persist. Yet, for strong random perturbations, the phe-
nomenology changes considerably and should be considered
separately in further detail.

III. NONLINEAR PT PHASE TRANSITIONS

Let us now return to the results of the BdG analysis pre-
sented in the previous section, and discuss in more detail what
happens beyond the SSB instability of the single dark soliton
state. As shown in Fig. 4, for values ofε > ε

(1)
cr the unsta-

ble imaginary eigenvalue makes a maximal excursion along
the imaginary line and returns to the origin at a second crit-
ical point,ε(2)cr = 0.62, finally colliding with it. The branch
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FIG. 6: (Color online) The powerN as function of the strengthε
of the imaginary potential, depicting the full bifurcationdiagram for
the ground state and excited states in 1D. The diagram encompasses
the pairwise blue-sky bifurcations/disappearances of thenonlinear
states, namely the ground state with the 1st excited state (single dark
soliton), the 2nd with the 3rd excited state (two- and three-dark-
solitons), the 4th with the 5th, and so on. Solid (dashed) lines indicate
dynamically stable (unstable) branches. Here,µ = 3 andΩ = 0.1.
All depicted quantities are dimensionless.

of single soliton solutions disappears past this critical point.
To better understand how the branch ceases to exist, we first
observe (see top panel of Fig. 3) that the density profile of the
soliton becomes increasingly shallower (i.e., more “grey”) as
ε grows and the second critical point is approached. This is
due to the development of an increasingly strongeven imagi-
nary part of the solution. Furthermore, the stable background
(ground state) solutionub(x) [cf. Eqs. (5)-(7) and top panel of
Fig. 1] develops anodd imaginary part resembling a (progres-
sively darker) grey soliton. Finally, atε = ε

(2)
cr , the profiles

of these modes become identical and disappear in a blue-sky
bifurcation through their collision. This is shown in Fig. 6,
where the powerN is shown as a function ofε. The top
solid (blue) branch shows the stable ground state,ub, which
ultimately collides with the one soliton (first excited) state at
ε ≈ 0.62 (for µ = 3 andΩ = 0.1).

Importantly, we have confirmed that the above description
holds also for higher excited states (multiple dark solitonso-
lutions), as shown in Fig. 6: each pair of the higher excited
states (2nd with 3rd, 4th with 5th, etc.) also disappears in a
blue-sky bifurcation. A general remark is that higher excited
states bifurcate for larger values ofε. Remarkably, this can
be thought of as anonlinear analogue of thePT transition,
in analogy with the pairwise collisions in Ref. [1] (see, e.g.,
Fig. 1 of that reference) for the linear setting [27].

A relevant and interesting question concerns the dynamics
of the nonlinear states when subject to these (SSB and blue-
sky) bifurcations. To answer this, we numerically integrated
Eq. (1) and the relevant results are shown in Fig. 7. In the top
panels, we illustrate the dynamics of the dark soliton upon its
destabilization atε = ε

(1)
cr . When the SSB is manifested, the

soliton is either spontaneously ejected towards the lossy side
(and typically found to localize therein, while the background
grows in amplitude and widens) or moves to the gain side,
executing oscillations thereafter.

On the other hand, pastε = ε
(2)
cr , using, as an initial

condition the form of the TF background (bottom panels of
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cr . The parameters areµ = 3 andΩ = 0.1 andε = 0.3

(top row),ε = 0.64 (bottom left), andε = 0.7 (bottom right). All
depicted quantities are dimensionless.

Fig. 7), we have found that a dark soliton train is sponta-
neously formed, with an increasingly larger number of soli-
tons as larger values ofε are used. This can be intuitively con-
nected to the observation of Fig. 7 that higher excited multi-
soliton states persist for largerε than lower ones. Again, it
is typically observed that the solitons are nucleated and stay
in the vicinity of the global minimum ofW (x), which corre-
sponds to the “lossy” side of the imaginary potential.

IV. TWO-DIMENSIONAL GENERALIZATIONS

Finally, we consider the case of a 2DPT -symmetric po-
tential with a real parabolic part

V (x, y) =
1

2
Ω2(x2 + y2),

and an odd [W (−x,−y) = −W (x, y)] imaginary part

W (x, y) = ε(x+ y)e−(x2+y2)/4.

The bifurcation of the nonlinear structures emerging in 2D
follows a similar, but also more complex, pattern than in the
corresponding 1D setting. Figure 8 depicts the full bifurca-
tion scenario for solutions bearing no vortices (the TF back-
ground cloud), one to six vortices, and the dark soliton stripe.
As in 1D, the TF background is stable in all its domain of
existence and collides, in a blue-sky bifurcation, for a large
enough value ofε, with an excited state. However, in contrast
to the 1D case where this collision happens with the first ex-
cited state, in 2D the collision occurs with thesecond excited
state, due to the absence of net topological charge in such a
vortex-dipole (see top-right red curve) bearing two opposite
charge vortices emerging from the central dip of the TF back-
ground. At this critical pointε = ε

(2)
cr the dipole branch is
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FIG. 8: (Color online) The 2D generalization. (a) Bifurcation dia-
gram for the 2D stationary nonlinear (vortex and DS stripe) states.
Stable (unstable) branches, as per the corresponding BdG analysis,
are depicted with solid (dashed) lines. (b) Series of density (left) and
phase (right) configurations along the branch with even number of
vortices corresponding to the circles in panel (a) [from topto bot-
tom]. (c) Same as (b) for the branch starting with one vortex and
connecting with three vortices corresponding to the squares in panel
(a) [from top to bottom]. (d) Same as (b) for the branch starting with
three symmetric vortices and ending with four vortices correspond-
ing to the triangles in panel (a) [from top to bottom]. Parameter val-
ues are:µ = 2 andΩ = 0.2. The field of view for the configurations
is [−10.5, 10.5] × [−10.5, 10.5]. All depicted quantities are dimen-
sionless.

unstable, having been destabilized through an SSB bifurca-
tion at anε = ε

(1)
cr > 0 value (below which forε > 0 the

dipole is stable —see portion of red solid line in the figure).
As this branch is followed (from top to bottom in the figure),
a series of bifurcations occur where the existing vortices are
drawn to the periphery of the cloud, a dip in the center deep-
ens leading eventually to a new vortex pair emerging (i.e., a
higher excited state). In this manner the branches witheven
number of vortices are all connected. As more and more vor-
tex pairs emerge, the cloud “saturates” and can no longer fit
in new vortex pairs finally colliding with a dark soliton stripe
(see lower blue branch in the figure). This overall bifurcating
structure of even vortex numbers —with aε→ −ε symmetry
where the solutions are just flipped by(x, y) → (−x,−y)—
is depicted, with density and phase profiles, in the series of
panels of Fig. 8(b).

As for the bifurcation scenario ofodd number of vortices,
the first excited state bearing a single vortex at the origin (for
ε = 0) is stable for small values ofε, while it again sustains an
SSB bifurcation for largerε. As ε increases the vortex moves
towards the periphery of the cloud and a dip at the center of
the cloud deepens until a vortex pair emerges from it. This
scenario connects the one-vortex branch with theasymmetric
three-vortex (+ − + vortex tripole) branch, as it is depicted
with the top (magenta and green) lines in panel 8(a) and the
series of snapshots in panels 8(c). As it is evident from the fig-
ure, the asymmetric three-vortex branch eventually connects
with the symmetric one for values ofε → 0. A similar bifur-
cation occurs with the symmetric three-vortex branch, which
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becomes asymmetric with a deepening dip at the center where
a vortex pair emerges (at the same time that a vortex is lost
at the periphery), connecting in this way with the four-vortex
branch [see series of snapshots in panels 8(d)].

As for the dynamics of unstable steady states, we have ob-
served —in analogy with the 1D case— that (a) a single vortex
tends to migrate towards the minimum of the lossy side of the
potential, while the remaining vortices (if present) perform al-
most circular orbits at the periphery of the cloud where they
are eventually absorbed; and (b) pastε = ε

(2)
cr , using as an ini-

tial condition the form of the TF background, also produces
the spontaneous formation of an increasing number of vor-
tices for larger values ofε (namely, a “vortex generator”). It is
worth mentioning that the precise structure of the bifurcation
diagram depends of the values of the propagation constantµ
and the trap strengthΩ. For weakerΩ and/or largerµ the ex-
tent of the TF background will be larger allowing for a longer
bifurcating chain of higher-order vortex states. Nonetheless,
the displayed SSB instabilities and phenomenology and the
nonlinearPT transition involving the cascade of blue-sky bi-
furcations (notice that in the 2D case the order is reversed and
the largestε bifurcation is that involving the TF and the dipole
states) appear to be universal in confiningPT -symmetric po-
tentials.

V. CONCLUSIONS

In the present work, we have developed some fundamen-
tal insights stemming from the interplay of defocusing non-
linearity andPT -symmetric confining potentials. We iden-
tified both a symmetry-breaking bifurcation destabilizingthe
dark solitons that leads to non-stationary dynamics, as well

as a nonlinear analogue of thePT transition that eventually
terminates both the ground state and the dark soliton branch,
yielding purely gain-loss dynamics within the system. Similar
bifurcation phenomena and dynamics of mobility or of spon-
taneous emergence of dynamical patterns forming out of the
destabilization of the nonlinear states were identified in two-
dimensional settings, for vortices.

These investigations, we believe, pave the way for studying
PT -symmetric systems in the context of defocusing nonlin-
earities and of higher dimensional systems, which are some
of the natural extensions of thePT -symmetric literature. A
canonical set of investigations which is still missing concerns
the effects of such potentials in three-dimensional continuum
or higher dimensional lattice contexts, as well as the manipu-
lation of nonlinear states emerging in these systems. Another
relevant possibility arising from our considerations herein is
the study of inexactPT -symmetric nonlinear systems and
their comparison to exact ones, as well as the consideration
of the interplay of the nonlinearity with merely loss (rather
than gain-loss) in the passive-PT nonlinear settings. These
themes will be pursued in future works.
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