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We study quantum spin mixing in a mixture of two spin-1 condensates including coherent inter-
species mixing processes, using condensates of 87Rb and 23Na atoms in the ground lower hyperfine
F = 1 manifold as prototype examples. Adopting the single spatial mode approximation for each
of the two spinor condensates, we find the mixing dynamics reduce to that of three coupled non-
rigid pendulums with clear physical interpretation. With suitably prepared initial states, the spin
mixing dynamics allow for the determination of interspecies singlet-pairing as well as spin-exchange
interaction parameters.
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I. INTRODUCTION

A topical area in physics today concerns the control
and manipulation of the spinor degrees of freedom asso-
ciated with electrons or atoms. Two highly visible sub-
fields attracting tremendous theoretical and experimen-
tal interests are spintronics in condensed matter systems
[1] and spinor atomic quantum gases [2]. The latter be-
comes possible due to optical trapping, which provides
equal confinement for all Zeeman states within a fixed
manifold of hyperfine spin F . As a result, spin-related
phenomena are exhibited and detected in cold atoms, in-
cluding various quantum phases [3–8] and quantum mag-
netism studies [9], the observations of spin domain for-
mation [10, 11], as well as the dynamics of spin mixing
[5], and spin squeezing [12, 13], etc.
According to the formulation of spinor Bose-Einstein

condensate [3–8], its mean field order parameter in the
hyperfine F state is generally described by a spinor of
2F + 1 components, strongly influenced by the atom-
atom interaction. Within the low energy limit of inter-
ests to atomic quantum gases, when described by con-
tact interactions, effective atomic interactions must stay
invariant with respect to both spatial and spin rotation,
a property for isotropic interaction when only s-wave is
involved. Depending on the value of the spin-dependent
interaction parameters, the ground state of a spinor con-
densate can be ferromagnetic or anti-ferromagnetic (po-
lar) for F = 1 [3–5], while an additional cyclic phase ap-
pears when F = 2 [6–8]. Higher spin cases are generally
more complicated and so far with limited experimental
accesses.
Law et al. pioneered the study of atomic spin mix-

ing [5]. They adopted numerical approaches and stud-
ied quantum spin mixing dynamics in the absence of an
external magnetic (B-) field [5]. Subsequent theoretical
and experimental efforts have contributed to observations
and controls of coherent quantum spin mixing dynamics,
tasks rarely feasible in other quantum many body sys-
tems [14–22].
In the semiclassical picture, using mean-field approxi-

mation and adopting the single spatial mode approxima-
tion (SMA) [5, 23], coherent spin mixing dynamics in a
spin-1 condensate is described by a nonrigid pendulum,
displaying periodic oscillations and resonance behavior
in an external B-field [24, 25]. This picture proves to
be widely popular with experimentalists and has been
very successful [14–19]. Analogous efforts were applied
to spin-2 condensates, for instance, in the higher hyper-
fine manifold of the ground state 87Rb atoms [19–22]. An
interesting application suggested by Saito et al. [26] pro-
vides a practical method for determining the unknown
spin coupling parameters (polar or cyclic) relying on the
mixing dynamics with suitably prepared initial states.

In recent years, several groups studied intensively mix-
tures of atomic spinor condensates [27–33]. Many inter-
esting properties for mixture spinor condensates are by
now reasonably well understood, both for when an exter-
nal B-field is absent or present. Like in the treatment for
a single species spinor condensate, the semiclassical mean
field approximation is usually adopted for the mixture,
while the full quantum approach is limited to atom num-
ber dynamics in a few restricted spatial modes of spinor
condensates. The ground state properties for the mix-
ture, is found to a large extent, determined by the yet un-
known interspecies spin exchange interaction parameter.
If it is antiferromagnetic and is sufficiently strong, inter-
esting phases, such as highly fragmented ground states,
could arise [29, 30]. Additionally, there exists a so-called
broken-axisymmetry phase when an external B-field is
present [31]. Within the degenerate internal state ap-
proximation [34], which considers atomic interaction po-
tentials as a appropriately weighted contribution from
potential curves associated with the coupled electronic
spins of the two valence electrons: one for each atom
(alkali atoms as considered here) [27, 35, 36], the inter-
species singlet-pairing interaction vanishes as all inter-
species interaction parameters are determined by a total
of only two scattering lengths for the electronic singlet
and triplet channels respectively. This approximation
provides a zeroth order estimates for the 87Rb and 23Na
atom mixture we study. Experiences with spin exchange
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interactions within each species show otherwise, i.e., the
need for more atomic interaction parameters.
We therefore propose to study analogous spin mixing

dynamics as considered before in the F = 2 spinor con-
densates to calibrate the interspecies spin-exchange and
singlet-pairing interactions with suitably prepared initial
states [26].

II. THE MODEL OF A BINARY SPIN-1

CONDENSATE MIXTURE

The binary mixtures of atomic spin-1 condensates have
been discussed in several earlier studies [28–31]. In addi-
tion to the individual Hamiltonian for each species of the
two spinor condensates, additional contact interactions
exist between the two species which can be decomposed
into spin-independent and spin-dependent terms as well,
described by V12(~r1−~r2) = 1

2 (α+βF1 ·F2+γP0)δ(~r1−~r2)
[29, 30] with appropriate interactions parameters α, β
and γ [29, 30]. Take spin-1 condensates of 87Rb and
23Na atoms as examples, the total Hamiltonian is then
given by

Ĥ = Ĥ1 + Ĥ2 + Ĥ12,

Ĥ1 =

∫

dr

{

Ψ̂†
m

(

− h̄2

2M1
∇2 + V o

1 − p1m+ q1m
2
)

Ψ̂m

+
α1

2
Ψ̂†

i Ψ̂
†
jΨ̂jΨ̂i +

β1
2
Ψ̂†

i Ψ̂
†
kF1ij · F1klΨ̂lΨ̂j

}

,

Ĥ2 =

∫

dr

{

Φ̂†
m

(

− h̄2

2M2
∇2 + V o

2 − p2m+ q2m
2
)

Φ̂m

+
α2

2
Φ̂†

i Φ̂
†
jΦ̂jΦ̂i +

β2
2
Φ̂†

i Φ̂
†
kF2ij · F2klΦ̂lΦ̂j

}

,

Ĥ12 =
1

2

∫

dr
{

αΨ̂†
i Φ̂

†
jΦ̂jΨ̂i + βΨ̂†

i Φ̂
†
kF1ij ·F2klΦ̂lΨ̂j

+
1

3
γ (−)i+jΨ̂†

i Φ̂
†
−iΨ̂jΦ̂−j

}

, (1)

where Ĥ1 and Ĥ2 describe a single species system of 87Rb
and 23Na atoms respectively with the interspecies inter-
action described by H12. V

o
1 ,M1, p1, and q1 (V

o
2 ,M2, p2,

and q2) respectively denote the optical trap, atomic mass,
linear, and quadratic Zeeman shifts of a 87Rb (23Na)
atom. Both the nuclear spins and the valence electron
spins are the same for the two species. In the subspace of
hyperfine spin F = 1, the linear Zeeman shifts for both
87Rb and 23Na atoms are thus almost equal: p1 ≃ p2
(≡ p). Ψ̂i(~r) (Φ̂i(~r)) annihilate a 87Rb (23Na) atom at
the position ~r.
The F = 1 states for both 87Rb and 23Na atoms are

well studied, and their respective atomic collision param-
eters are known precisely. References [37, 38] provide re-
spectively the numerical values for the a0 and a2 param-
eters of the F = 1 state for 87Rb and 23Na atoms, which
then gives α1/2 and β1/2. While a number of experimen-
tal and theoretical studies have previously addressed col-

lisions between 87Rb and 23Na atoms [35, 36], the most
recent one by A. Pashov et al. [36] provides a well con-
verged data set for singlet and triplet scattering lengths
of as = 70(a0) and at = 109(a0). This can be used to
predict the required set of atomic intraspecies collision
parameters α, β, and γ, although the actual process is
complicated and therefore yet to be completed. What is
certain concerns the value of spin exchange interaction
γ, it will be actually strong, instead of being weak or
vanishing. Thus our study described below provides a
worthy alternative approach.

FIG. 1: (Color online). A schematic illustration for the three
coupled nonrigid pendulums, with three pairs of canonical

variables: (n
(1)
0 , η1), (n

(2)
0 , η2), and (m3 = m1 −m2, η3). The

first two pairs describe intraspecies spin mixing dynamics,
while the remaining third pair denotes interspecies spin mix-
ing dynamics.

We adopt the mean-field approximation and define
for each condensate species a mode function ψ(~r)/φ(~r),
justified by the fact spin independent density interac-
tion terms are usually much stronger than spin de-
pendent ones. We therefore take Ψi(~r) ≡ 〈Ψ̂i(~r)〉 =
√

n
(1)
j eiθjψ(~r) and Φi(~r) ≡ 〈Φ̂i(~r)〉 =

√

n
(2)
j eiϕjφ(~r).

The spin dynamics are then governed by the spin-
dependent energy functional

E =
∑

j=1,2

Ej + E12,

Ej = −pjmj + qj(nj − n
(j)
0 ) +

1

2
β′
jm

2
j

+β′
jn

(j)
0

[
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(j)
0 ) +

√
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(j)
0 )2 −m2

j cos ηj

]

,

E12 =
1

2
β′m1m2 +

1

6
γ′(n

(1)
1 n

(2)
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(1)
−1n

(2)
1 )

+
1

3
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√

n
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(2)
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3
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√

n
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(2)
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2

)
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3
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√
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−1 cos(
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−1 cos(
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)

+β′
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n
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(1)
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(2)
0 cos(

η1 − η2 − η3
2

), (2)
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where n1,2 =
∑

j n
(1,2)
j , m1,2 = n

(1,2)
1 − n

(1,2)
−1 , η1 = θ1 +

θ−1−2θ0, η2 = ϕ1+ϕ−1−2ϕ0, and η3 = θ−1−θ1+ϕ1−
ϕ−1. The interaction parameters are now redefined to ab-
sorb the relevant multipliers: β′

1 = β1
∫

|ψ(~r)|4d~r, β′
2 =

β2
∫

|φ(~r)|4d~r, and (β′, γ′) = (β, γ)
∫

|ψ(~r)|2|φ(~r)|2d~r.
We note that

∫

|ψ(~r)|2d~r =
∫

|φ(~r)|2d~r = 1. When the
two species are immersible, the overlap between ψ(~r) and
φ(~r) is significantly reduced, leading to diminished β′ and
γ′, essentially reducing the system to two stand-alone
spin-1 condensates.
Although complicated in form, the above Hamilto-

nian gives rise to dynamics that can be interpreted sim-
ply in terms of three coupled nonrigid pendulums, with

three pairs of canonical conjugate variables: (n
(1)
0 , η1),

(n
(2)
0 , η2), and (m3 = m1 −m2, η3). Their corresponding

equations of motion are given by

ṅ
(1)
0 = − 2

h̄

∂E
∂η1

, η̇1 =
2

h̄

∂E
∂n

(1)
0

,

ṅ
(2)
0 = − 2

h̄

∂E
∂η2

, η̇2 =
2

h̄

∂E
∂n

(2)
0

,

ṁ3 = − 4

h̄

∂E
∂η3

, η̇3 =
4

h̄

∂E
∂m3

, (3)

as illustrated schematically in Fig. 1.

III. DETERMINING INTERSPECIES

SPIN-DEPENDENT INTERACTIONS

When discussing spin mixing in a spin-2 condensate,
Saito et al. [26] proposed a scheme to determine the
value of intra-species spin singlet-pairing interaction by

choosing an elementary process (M
(1)
F =)0+(M

(2)
F =)0

↔ 2 + (−2) which occurs only when the spin singlet-
pairing interaction is non-vanishing. With a suitably
chosen initial state of zero magnetization, the mixing dy-
namics is governed by coupled first-order ordinary differ-
ential equations, which contain unknown parameters like
singlet-pairing interactions and quadratic Zeeman shifts.
The analytic solutions can then be compared with the
experimental measured dynamics to determine the un-
known atomic interaction parameters.
The present study show that analogous approach can

be taken to determine the values of interspecies spin-
exchange and singlet-pairing interaction parameters: β′

and γ′, for a binary mixture of spin-1 87Rb and 23Na
atom condensates, by making use of selected elementary
collision processes. In order to determine β′ and γ′, from
the Hamiltonian of Eq. (1), we know their relevant col-
lision processes can be categorized into three types with
respective interaction strengths:

(i) β: Ψ1 +Φ0 ↔ Ψ0 +Φ1, Ψ−1 +Φ0 ↔ Ψ0 +Φ−1;

(ii) β−γ/3: Ψ1+Φ−1 ↔ Ψ0+Φ0, Ψ−1+Φ1 ↔ Ψ0+Φ0;

(iii) γ: Ψ1 +Φ−1 ↔ Ψ−1 +Φ1.

Elementary processes in the first and third types are
driven only by interspecies spin-exchange interaction or
by the singlet-pairing interaction. Therefore they are po-
tential candidates for determining β′ and γ′ respectively.
As a result, our proposal for their determination consists
of two steps.

In the first step, we try to determine γ′ from spin
mixing dynamics based on the elementary process of the
third type by preparing an initial state,

Ψ =









√

n
(1)
1 eiθ1

0
√

n
(1)
−1e

iθ
−1









ψ, Φj =









√

n
(2)
1 eiϕ1

0
√

n
(2)
−1e

iϕ
−1









φ. (4)

The reason why we first choose Ψ1+Φ−1 ↔ Ψ−1+Φ1 is
because this elementary process is decoupled from the in-
traspecies spin-exchange processes: Ψ1+Ψ−1 ↔ Ψ0+Ψ0

and Φ1 + Φ−1 ↔ Φ0 + Φ0 when the quadratic Zeeman
shifts qj are tuned to large negative values, for instance
with off-resonant microwave field [39, 40], or to large pos-
itive values with an enhanced uniform B-field. Therefore,
the population of the MF = 0 state remains at zero, and
the spin mixing dynamics of Eq. (3) reduce to the fol-
lowing pair of equations,

ṁ3 =
γ′

12h̄

√

[4n2
1 − (m+m3)2][4n2

2 − (m−m3)2]

× sin η3,

η̇3 =
β′
1 − β′

2

h̄
m+

β′
1 + β′

2 − β′ + γ′/6

h̄
m3

− γ′

6h̄

2(n2
1 + n2

2)m3 − 2(n2
1 − n2

2)m+m2m3 −m3
3

√

[4n2
1 − (m+m3)2][4n2

2 − (m−m3)2]

× cosη3. (5)

Based on the dynamics following Eq. (5), we can deduce
the sign of γ′ from subsequent spin mixing dynamics. By
preparing an initial state with sin η3 > 0, we infer γ′ > 0
if m3 increases during the initial short time period of the
spin mixing dynamics; whereas if it decreases, we know
γ′ < 0. To determine γ′, we can prepare a suitable initial
state, for example, η3 = π/2 and m1 = m2 = 0, which
leads to

(ṁ3)
2 =

γ′2

144h̄2

[

(m2
3 − 4n2

1)(m
2
3 − 4n2

2)− C2m4
3

]

, (6)

with C = |6(β′
1 + β′

2 − β′)/γ′ + 1|. If C < 1, ṁ3 = 0
gives four roots −x2, −x1, x1, and x2, where x1/2 =
√

2
(

n2
1 + n2

2 ∓
√

(n2
1 − n2

2)
2 + 4C2n2

1n
2
2

)

/(1− C2). For

C ≥ 1, however, only two solutions−x1 and x1 exist. The
solution for the mixing dynamics is expressed in terms of
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FIG. 2: (Color online). Population dynamics for every spin
component. In the left panels of (a)-(c), the interspecies in-
teraction parameters used are β′ = 5|β′

1| and γ′ = 2|β′

1|. For
the panels of (d)-(f), β′ = 5|β′

1| and γ′ = −2|β′

1| are used. (a)
For 87Rb atoms, where the blue solid line, red dashed line,
and black dotted-dash line represent the MF = 1, 0,−1 com-
ponents, respectively. (b) As in (a), but for 23Na atoms. (c)
Time dependent m3 with blue solid line and red square sym-
bols denote numerical and analytical solutions respectively.
(d) As (a), but with γ′ = −2|β′

1|. (e) As in (b), but with
γ′ = −2|β′

1|. (f) As in (c), but with γ′ = −2|β′

1|.

the Jacobian elliptic functions sn(.) and cn(.) as

m3(t) = x1 sn

(

x2γ
′t
√
1− C2

12h̄
,
x1
x2

)

, for C ≤ 1,

m3(t) = x1 cn

(

K
( x1
√

x21 + x23

)

− γ′t
√

(x21 + x23)(C2 − 1)

12h̄
,

x1
√

x21 + x23

)

, for C ≥ 1, (7)

where K(.) is the complete elliptic in-
tegral of the first kind, and x3 =
√

2
(

n2
1 + n2

2 +
√

(n2
1 − n2

2)
2 + 4C2n2

1n
2
2

)

/(C2 − 1).

Next, comparing to the analytic formulae of Eq. (7) for
the subsequent spin mixing dynamics, we can determine
the value of γ′. First, we evaluate C from the experi-
mentally measured oscillation amplitude x1 of m3(t) as
C2 = x21 − 4n2

1 − 4n2
2 + 16n2

1n
2
2/x

2
1. Second, based on

the known parameters C, x1, x2, and x3, and experimen-
tally measured oscillation period of m3(t), we could then
deduce the value of γ′.
In Fig. 2, we illustrate our numerical results which con-

firm the stability of the third type elementary interaction
processes and the validity of the analytic solutions Eq.
(7). The initial state is taken as Ψ = ψ

√
n1(1, 0, 1)

T/
√
2,

Φ = φ
√
n2(1, 0,−i)T/

√
2, with n1 = n2 = n and n =

2 × 104. We further choose β′
1/h̄ = −22.4893× 10−4Hz

and β′
2/h̄ = 303.816 × 10−4Hz. A noise at the level

of 10−5 in the population of the MF = 0 spin state
for both atomic species is also included. The B-field is
set at a large enough value to suppress the intraspecies
spin-exchange process with the quadratic Zeeman shifts
satisfying q1 = 40|β′

1|n and q2 = q1∆E1/∆E2, where
∆E1 and ∆E2 are the hyperfine splittings of 87Rb and
23Na atoms respectively. In Fig. 2(a-c), β′ = 5|β′

1| and
γ′ = 2|β′

1| are used, while β′ = 5|β′
1| and γ′ = −2|β′

1|
are used for Fig. 2 (d-f). The time evolution for each
condensate species is shown in Fig. 2(a,d) and (b,e) re-
spectively for 87Rb and 23Na atoms. We indeed confirm
that intraspecies spin mixing dynamics are suppressed
by the large quadratic Zeeman shifts as there is essen-
tially no atomic population remaining in the MF = 0
spin component eventually. The evolutions for m3 are
shown in Fig. 2(c) and (f), they also confirm our pre-
dictions based on the insights gained from the analytical
solutions that m3 increases/decreases in the beginning
when γ′ > 0/γ′ < 0. The numerical simulations denoted
by solid blue lines agree well with the analytical solutions
of Eq. (7) denoted by red square symbols. We further

note that ṅ
(1)
1 = −ṅ(1)

−1 = −ṅ(2)
1 = ṅ

(1)
2 = ṁ3/4 with

the initial state used in this case. As a result, we can
determine the sign of γ′ from the population of any spin
component or species.
In the second step, we determine the value of β′, mak-

ing used of the results from the first step. From the
known value of C after the first step, β′ becomes par-
tially determined to within the following two choices

β′
∓ = β′

1 + β′
2 ∓ (C ∓ 1)γ′/6. (8)

To fully determine β′, we can choose a related elementary
interaction process, for example, the elementary process
as described in the first type Ψ1 + Φ0 ↔ Ψ0 + Φ1, and
prepare the initial state

Ψ =









√

n
(1)
1 eiθ1

√

n
(1)
0 eiθ0

0









ψ, Φ =









√

n
(2)
1 eiϕ1

√

n
(2)
0 eiϕ0

0









φ. (9)

As before we can isolate the elementary collision process
from other ones by suppressing intraspecies spin mixing
dynamics, such as using a sufficiently strong uniform ex-
ternal magnetic field to guarantee Ψ−1 = Φ−1 = 0. The
interspecies spin mixing process is only induced by the
β′ term, thus the spin mixing dynamics is governed by
the evolution of m3 through

ṁ3 = − β′

2h̄

√

(m2 −m2
3)(2n1 −m−m3)(2n2 −m+m3)

× sin
η1 − η2 − η3

2
,

η̇3 =
β′
1 − β′

2

h̄
m+

β′
1 + β′

2 − β′

h̄
m3 +

γ′

6h̄
m3

− β′

2h̄

m3

√

(2n1 −m−m3)(2n2 −m+m3)
√

m2 −m2
3

. (10)
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β′ can then be fully determined as follows. First we
can infer the sign of β′ from the initial stage of the
time evolution for m3, as in the earlier section on de-
termining the sign of γ′. For an initial state with
Ψ = ψ

√
n1(1, 1, 0)

T/
√
2 and Φ = φ

√
n2(1,−i, 0)T/

√
2,

where (η1 − η2 − η3)/2 = θ1 − θ0 − ϕ1 + ϕ0 = −π/2,
we confirm β′ > 0 (β′ < 0) if m3 initially increases (de-
creases). The actual value of β′ is determined by com-
paring the analytic or numerical solutions using the two
choices of β′ from Eq. (8) to experimental measurements.
Again we assume n1 = n2 = n = 2 × 104, β′

1/h̄ =
−22.4893 × 10−4Hz, β′

2/h̄ = 303.816 × 10−4Hz, β′ =
5|β′

1|, γ′ = 2|β′
1|, q1 = 30|β′

1|n, and q2 = q1∆E2/∆E1,
with the analytic solution for m3

m3(t) =
x1(x2 − x4) + (x1 − x2)x4x

2

(x2 − x4) + (x1 − x2)x2
,

x = sn
(

d4 − t
√

d3/d2, d1)
)

, (11)

where xj=1,2,3,4 are the four roots of ṁ3 = 0, ar-
ranged in descending order x1 > 0 > x2 > x3 > x4,
and d1 =

√

(x1 − x2)(x3 − x4)/(x1 − x3)/(x2 − x4),

d2 = 2/
√

(x1 − x3)(x2 − x4), d3 = [4β′2 −
(β′

1 + β′
2 + β′ + γ′/3)2]/16h̄2, and d4 =

F(arcsin
√

−(x2 − x4)x1/(x1 − x2)/x4, d1), with F(.)
the elliptic integral of the first kind.
Figure 3 shows population dynamics for all spin com-

ponents. Due to the large yet unequal quadratic Zeeman
shifts q1 and q2, suppression of the intraspecies spin mix-
ing dynamics leads to a suppressed amplitude for the
interspecies spin-exchange dynamics. As a result, the
quadratic Zeeman shifts cannot be tuned to too large a
value, causing nonzero population in the MF = −1 spin
component especially for 23Na atoms as is illustrated in
Fig. 3(d).
The other related elementary channels can be em-

ployed as well to determine the interspecies spin-
exchange interaction. Among them, two are capable of
determining the combined parameter β′−γ′/3, which can
be used further aided by a determination of the sign of
β′ − γ′/3.
Before conclusion, we hope to stress that the special

mixture illustrated in this study involves a spin-1 conden-
sate with ferromagnetic interaction (87Rb) and a polar
spin-1 condensate (23Na) with antiferromagnetic interac-
tion. More generally the procedure we suggest for deter-
mine the interspecies interaction parameters remains ap-
plicable for mixtures with two spin-1 ferromagnetic con-
densates or two antiferromagnetic condensates.

IV. CONCLUSION

We discuss coherent spin mixing dynamics for a binary
mixture of spin-1 condensates. Under mean field approx-
imations, the dynamics are found to reduce to a simple
one corresponding to three coupled nonrigid pendulums,
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FIG. 3: (Color online). Population dynamics for all spin
components, with the interspecies interaction parameters
β′ = 5|β′

1| and γ′ = 2|β′

1|, and the quadratic Zeeman shifts
q1 = 30|β′

1|n and q2 = q1∆E2/∆E1. (a) For 87Rb atoms,
where the blue solid line and red dashed line represent the
MF = 1, 0 components, respectively. (b) As in (a), but for
the MF = −1 component in black dotted dash line. (c)/(d)
as in (a)/(b) respectively, but for 23Na atoms. (e) Time evo-
lution of m3, where blue solid line and red square symbols
denote numerical and analytical solutions respectively.

one for each of the two spin-1 condensates as modeled
previously for a single stand-alone spin-1 condensate [25],
and a third one for the difference in the magnetization
between the two atomic species. By tuning quadratic
Zeeman shift to a large enough value, intraspecies spin
mixing dynamics can be suppressed, resulting in a pure
interspecies spin mixing dynamics. Using suitably pre-
pared initial states with zero population in the MF = 0
for both species, we can determine the value of the in-
terspecies singlet-pairing interaction by comparing ana-
lytic formulae for the dynamics to experimental measure-
ments, and at the same time we can partially determine
the value of the interspecies spin-exchange interaction
parameter β′. Next, starting with an alternative initial
state containing no population in the MF = −1 state for
both atomic species, and using the two possible values
for β′ partially determined in the first step, we can nu-
merically or analytically solve the dynamics and compare
them with experimental measurements to determine the
correct value of β′.
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