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In this work I apply a recently proposed improvement procedure, originally conceived to reduce
finite lattice spacing effects in transfer matrices for dilute Fermi systems, to tuning operators for the
calculation of observables. I construct, in particular, highly improved representations for the energy
and the contact, as a first step in an improvement program for finite-temperature calculations. I
illustrate the effects of improvement on those quantities with a ground-state lattice calculation at
unitarity.

PACS numbers: 03.75.Ss, 05.10.Ln, 12.38.Gc, 71.10.Fd

I. INTRODUCTION

One of the main sources of uncertainty in Monte Carlo
(MC) calculations of lattice field theories stems from fi-
nite lattice spacing effects [1]. This is true in particular of
non-relativistic systems at finite density, where the con-
tinuum limit is approached by taking the limit of dilute-
ness, such that the interparticle distance ∼ k−1

F (where
kF is the Fermi momentum) is much larger than the lat-
tice spacing l. This is achieved in practice by first con-
sidering large volumes at fixed particle density, and then
taking the zero-density limit. While this process is well
defined, it is cumbersome to carry out, in part because
calculations in large volumes require substantial amounts
of CPU time. It is therefore useful to consider alternative
approaches, based on effective field theory and renormal-
ization group concepts [2, 3], which treat lattice-spacing
effects by modifying the ultraviolet (UV) dynamics of the
theory. In such formulations, lattice-spacing effects are
eliminated at finite volume, even for densities that are
not low by conventional standards.
In recent work, Endres et al. [4, 5] proposed a novel

way to systematically reduce lattice-spacing effects in cal-
culations of non-relativistic fermions. The method en-
ables tuning of the lattice theory to high accuracy, such
that the low end of the continuum energy spectrum is
reproduced for the desired values of the two-body scat-
tering parameters in the effective range expansion:

p cot δ(p) = −1

a
+

1

2
reffp

2 +O(p4), (1)

where δ is the scattering phase shift, a is the scatter-
ing length, and reff is the effective range. The connec-
tion between the bare lattice theory (or rather its two-
body spectrum) and these physical parameters is given
by Lüscher’s formula [7], which relates the phase shift to
the energy E = p2/m of the two-body problem in a box
of side L:

p cot δ(p) =
1

πL
S (η) (2)

where η = pL
2π and

S (η) ≡ lim
Λ→∞

(

∑

n

Θ(Λ2 − n
2)

n2 − η2
− 4πΛ

)

, (3)

where the sum is over all 3D integer vectors (the evalu-
ation of S (η) is discussed in the Appendix), and Θ(x) is
the Heaviside function. Throughout this work, we shall
take units such that ~ = kB = m = 1, where m is the
mass of the fermions.
The two-body matching condition described above

completely specifies the physics of dilute systems, such as
those currently realized with ultracold atomic gases (see
e.g. Ref. [6] for a review of the experimental situation).
In this work we shall restrict ourselves to such systems,
neglecting the additional complications that arise for in-
stance at higher densities or for nuclear systems, where
three- and higher-body forces play an important role.
We shall briefly review the work of Ref. [4] below,

but it is useful to mention the main steps underlying
the method at this point. First, one writes down the
transfer matrix T , representing the two-body interaction
via a generalized Hubbard-Stratonovich (HS) transfor-
mation [8, 9]. The latter contains NO arbitrary coef-
ficients Cn. The matrix elements of T are then com-
puted in the subspace of two particles at vanishing total
momentum. The resulting matrix is then diagonalized
in the s-wave subspace (or rather its lattice equivalent),
and the HS coefficients Cn are tuned using an iterative
algorithm such that the eigenvalues of the proposed T
match exp(−τE), where τ is the temporal discretization
parameter and E are the energies dictated by Lüscher’s
formula, for the desired box size L and choice of scatter-
ing parameters.
In the case of the unitary limit, where by definition

p cot δ(p) ≡ 0, (4)

the above procedure yields considerable improvement in
the approach to the continuum. Indeed, with a single co-
efficient C0 (the simplest case, discussed in Sec. II) one
may tune the scattering length a, but the effective range
reff remains finite due to lattice-spacing artifacts. Natu-
rally, by introducing more parameters one may tune the
effective-range expansion in Eq. (1) to higher accuracy,
thus systematically eliminating the need for extrapola-
tions to the dilute limit and leaving only finite-volume
effects unaccounted for.
It is the main objective of this work to extend the ap-

proach of Ref. [4] to designing not only improved transfer
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matrices but also improved operators for the calculation
of observables. This is an important step toward reducing
lattice-spacing effects in finite-temperature calculations.
While these effects were studied at unitarity in Ref. [10]
for the Hubbard model using dynamical mean-field the-
ory, careful systematic studies in full-fledged MC calcu-
lations have only recently started to appear [4, 5, 11, 12]
and are still restricted to the ground state. Interestingly,
recent studies based on functional renormalization group
techniques [13] have also started to tackle the problem of
extrapolating to infinite volume and particle number in
the unitary limit.
In Sec. II we analyze a basic example, as a primer to

reviewing the more sophisticated formalism of Ref. [4],
which we explain briefly in Sec. III. In Sec. IV we
present the main developments of this work, with the cor-
responding illustrative results and conclusions appearing
in Sec. V. Finally, some of the less trivial numerical issues
are explained in the Appendix.

II. A SIMPLE EXAMPLE

Before proceeding to a more detailed discussion, let us
analyze a simple case, to fix notation as well as ideas.
Consider the following lattice Hamiltonian:

Ĥ ≡
∑

k,s=↑,↓

k2

2m
â†s,k âs,k − g

∑

i

n̂↑,i n̂↓,i, (5)

where s denotes the spin projection, g is the bare lattice

coupling constant, and n̂s,i ≡ â†s,i âs,i denotes the num-
ber density operator at lattice position i for spin projec-
tion s. The value of g is tuned to the desired two-body
scattering properties by solving the two-body problem on
the lattice and finding the scattering amplitude, which in
this case can be done analytically.
The transfer matrix is then expressed approximately

in powers of the imaginary time step τ using a Suzuki-
Trotter decomposition, for instance as follows:

T ≡ e−τĤ ≃ e−
τT̂
2 e−τV̂ e−

τT̂
2 +O(τ2), (6)

where

T̂ ≡
∑

k

T̂↑ + T̂↓, T̂s ≡
∑

k

k2

2m
â†s,k âs,k, (7)

and V̂ ≡ − g
∑

i

n̂↑,i n̂↓,i. (8)

The kinetic energy factor in Eq. (6) is easy to treat, as it
is an exponential of a one-body operator which is diago-
nal in momentum space. Notice that we have chosen to
define the dispersion relation E = k2/2m in momentum
space, as opposed to defining it via a discrete representa-
tion of the Laplacian operator in coordinate space (which
is common in Hubbard-model type formulations).

On the other hand, the potential energy factor repre-
sents a challenge, as it is the exponential of a non-trivial
two-body operator (as the original Hamiltonian). It is
at this point that the HS transformation plays a central
role, allowing us to exchange the complexity of the two-
body operator for a path integral involving only one-body
operators. Specifically, we write

exp(−τV̂ ) =
∏

i

exp(τgn̂↑,i n̂↓,i) (9)

=

∫

Dσ
∏

i

(

1 +
√
A n̂↑,i sinσi

)(

1 +
√
A n̂↓,i sinσi

)

where A = 2(eτg − 1), Dσ =
∏

i dσi/(2π), and σi is an
external auxiliary field. In this way, one decouples the
transfer matrix for each spin, such that we may write

T =

∫

Dσ T↑[σ]T↓[σ] (10)

where, up to order τ2,

Ts[σ] = e−
τT̂s
2

∏

i

(

1 +
√
A n̂s,i sinσi

)

e−
τT̂s
2 , (11)

which in the one-particle subspace reduces to

Ts[σ] = e−
τT̂s
2

(

1 +
√
A
∑

i

n̂s,i sinσi

)

e−
τT̂s
2 . (12)

Notice that in Eq. (9) we have used a version of the
HS transform due to Lee [19], in which the auxiliary field
is continuous and compact (the integral is restricted to
the interval [−π, π]), as opposed to more conventional
versions that are discrete, or continuous but unbounded.
Apart from the path integral, at this point applying the
transfer matrix becomes a problem of applying a product
of one-body operators, which one can easily deal with.
All of the above steps are standard in the literature of

many-body MC calculations, except perhaps for the use
of a “perfect” dispersion relation defined in momentum
space, which has become more common only in recent
years [11, 15]. This feature can be regarded as a basic
kind of improvement, as it reduces lattice-spacing effects
relative to Hubbard-model approaches, where dE/dk →
0 at high momenta.
This example captures the main features of most mod-

ern many-fermion MC calculations. Nevertheless, the
simplicity of this approach is in some ways excessive,
largely because we only have one coupling constant at
our disposal. Indeed, should we desire to fix more than
one coefficient in the effective-range expansion, we would
need a richer bare interaction, and a correspondingly
more sophisticated HS transformation. In this simple
case, to reach for instance the unitary limit, we can tune
the scattering length, but we also need to consider very
dilute systems to avoid the effects of finite range induced
by the UV lattice cutoff π/l, as in that case one has
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reff ≃ 0.40l. Moreover, taking for example 80 particles in
a 103 lattice volume, which shall be our illustrative ex-
ample below, one finds kF reff ≃ 0.54, which is not nearly
as small as one would like.
As mentioned before, one can resort to alternative

approaches that modify the Hamiltonian by including
higher-order terms in a low-momentum expansion, tun-
ing the corresponding couplings to eliminate UV effects.
The latter strategy is essentially what Ref. [4] advocates,
following the spirit of the Lattice QCD program initiated
by Symanzik many years ago [3] to design improved effec-
tive actions that approach the continuum limit (see e.g.
Ref. [14]). Since it will be useful for the rest of this work,
we shall briefly review the method of Ref. [4] in the next
section.

III. IMPROVED TRANSFER MATRICES

The work of Ref. [4] tackles the problem of reducing
UV lattice effects by defining an improved transfer ma-
trix, using a generalized HS transformation and a low-
momentum expansion. This is accomplished by allowing
the constant A to have a non-trivial momentum depen-
dence. For simplicity, it is useful to take A(p) to be diag-
onal in momentum space. Following Ref. [4], we expand
A(p) using a set of operators as

A(p) =

NO−1
∑

n=0

CnOn(p), (13)

where one may choose to define, for convenience,

On(p) =
(

1− e−p
2
)n

, (14)

as done in Ref. [4] (up to an n-dependent constant in
front), or, as we shall use in the rest of this work,

On(p) = [2 sin(p/2)]
2n
. (15)

Notice that this last expression contains only even pow-

ers of p =
√

p2, and is therefore an analytic function of
the momentum p. Both of the above choices for On(p)
behave as ∼ p2n at low momenta. For the purposes of
Monte Carlo calculations, the operator A(p) can be com-
puted once and for all at the beginning of the calculation,
and is applied at each time slice using Fourier transforms.
In order to determine the coefficients Cn, we find the

explicit form of T for two particles, which upon integrat-
ing the auxiliary field is given in momentum space by

T2(p↑p↓; q↑q↓) = e−
τT (p)

2

[

δp
↑
q
↑
δp

↓
q
↓

+

√

A(p↑)
√

A(p↓)

2V
δp

↑
+p

↓
,q

↑
+q

↓



 e−
τT (q)

2 , (16)

where V is the lattice volume and T (k) = (k2
↑ + k2

↓)/2m.
One cannot fail to notice that the above transfer matrix is

not Galilean invariant. We elaborate on this issue in the
appendices. In this work we shall take Λ = π(1 − 10−5),
following the steps of Ref. [4]. The operators in Eqs. (14)
and (15) are defined to be constant above p2 = Λ2, and
the kinetic energy factor exp(−τT/2) is defined to vanish
above that boundary, such that there is no propagation
for p2 ≥ Λ2.
Evaluating T2 in the center-of-mass frame, we have

T2(pr; qr) = e−
τp2r
2m

[

δprqr
+
A(pr)

2V

]

e−
τq2r
2m , (17)

where pr and qr are incoming and outgoing relative mo-
menta. By diagonalizing this expression, we may identify
the eigenvalues of T2 with e−τE , where E are the two-
particle eigenvalues of the Hamiltonian we are implicitly
defining.
One may then tune the Cn such that this energy spec-

trum matches the one required by Lüscher’s formula
for the lowest NO eigenvalues, given the desired val-
ues of the scattering parameters in Eq. (1), and using
E = p2/m = η2(2π)2/(mL2). Specifically, if we are inter-
ested in describing the unitary limit, the eigenvalues are
determined by the zeros of the function S(η) in Eq. (3).
The actual fitting of the Cn can be performed iteratively,
as described in detail in Ref. [4]. Notice, in particular,
that our expression for T2 ceases to be Hermitian when
we promote A to be an operator. Therefore, one needs to

use T †
2 T2 rather than T2 to diagonalize and fit the eigen-

values, as well as for the actual Monte Carlo calculations.
The results of our fits for Cn are shown in Table I. The

quality of the improvement can be assessed by plotting
p cot δ(p) as a function of η2, which is shown in Fig. 1
for Nx = 20, τ = 0.05, and NO = 1 − 5. As can be
appreciated in the figure, the same effect is achieved as
in Ref. [4]: as the order of the expansion is increased,
the transfer matrix is accurately tuned to unitarity up to
progressively higher momenta.

IV. IMPROVED OBSERVABLES

The above procedure represents a significant step for-
ward in mitigating lattice-spacing effects in MC calcula-
tions, especially considering that it requires only a small

TABLE I: Results of fitting the coefficients Cn (see Sec. III)
to the low-energy spectrum of the two-body problem at res-
onance, in a box of side Nx = 16, for an imaginary time step
τ = 0.05, in lattice units.

NO C0 C1 C2 C3 C4

1 0.68419 – – – –
2 0.53153 0.07896 – – –
3 0.49278 0.04366 0.01807 – –
4 0.47217 0.03711 0.00784 0.00467 –
5 0.45853 0.03331 0.00718 0.00132 0.00129



4

FIG. 1: (Color online) Plot of p cot δ(p), in lattice units, as
a function of η2 = E2/p

2
0 (where p0 ≡ 2π/L), for Nx = 20,

τ = 0.05, and levels of improvement NO = 1−5, for a Galilean
non-invariant definition of the transfer matrix (for NO > 2).

coding investment for its implementation in extant MC
codes, and it results in minimal computational overhead.
A somewhat unsettling issue remains, however, partic-

ularly in connection with improving finite temperature
lattice calculations, such as those of Refs. [15–17]. In-
deed, in those calculations, as well as in similar ground-
state approaches, the transfer matrix is not the only ob-
ject carrying lattice-spacing effects: the operators used
to compute expectation values also suffer from the same
problems. The situation may appear problematic at first
sight, as the improvement strategy defined above does
not directly define improved operators that we could use
to compute observables at finite temperature.
On the other hand, in conventional formulations,

knowledge of the explicit τ dependence of the transfer
matrix (as in the simple example described in Sec. II) al-
lows us to take a derivative that brings the Hamiltonian
down from the exponent (c.f. Eqs. (10) and (11)), which
results in a practical expression for the calculation of the
energy [26].
To fix ideas, let us consider the grand canonical ensem-

ble (see also Ref. [15, 18]), where the partition function
satisfies, by definition,

Z = e−βΩ. (18)

Averages of observables can be extracted from knowledge
of Z through derivatives, and in particular the energy is
obtained by means of

−∂ logZ
∂β

= E − µN. (19)

When using the formalism derived in Sec. II, we have
(assuming the system is unpolarized)

Z = Tr
[

T Nτ
]

=

∫

Dσ det [1 + U [σ]]2 , (20)

where

T Nτ =

∫

Dσ
∏

t

T↑[σt]T↓[σt], (21)

β = τNτ , (22)

and where now σ is to be regarded as a space-time varying
field, and σt is σ restricted to the t-th imaginary-time
slice. The determinant is to be taken in the subspace of
one-particle states, and

U [σ] ≡
∏

t

T↑[σt]. (23)

As the derivative in Eq. (19) becomes now a derivative
with respect to τ , it is clear that all we require is knowing
how to differentiate Ts with respect to τ , because

−∂ logZ
∂τ

=
1

Z

∫

Dσ det [1 + U ]2 Tr
[

∂U/∂τ
1 + U

]

, (24)

where

∂U
∂τ

=
∑

t0

∏

t>t0

T↑[σt]
∂T↑[σt0 ]
∂τ

∏

t<t0

T↑[σt]. (25)

We shall take the point of view that differentiation
of partition functions with respect to parameters in the
Hamiltonian is the proper way to obtain expectation val-
ues of operators. We shall then generalize the improve-
ment procedure of Ref. [4] to design highly improved op-
erators (in particular for the energy and the contact) and
accomplish this by taking formal derivatives of the trans-
fer matrix and writing them in an operator expansion, fit-
ting the expansion coefficients to reproduce the low end
of the exact two-particle spectra. By ”highly improved”
we mean improvements that go well beyond tuning the
first two coefficients in the effective-range expansion.
While in the above example we have focused on the

calculation of the energy, which we resume in the next
section, similar derivations apply for the calculation of
the contact, as we shall see in Sec. IVB.

A. Energy

In the simple case presented in Sec. II, the calculation
of the first τ derivative results in the following expression:

−∂Ts[σ]
∂τ

= e−
τT̂s
2 (K̂ + Ûτ )e

−
τT̂s
2 (26)

where K̂ is the following anticommutator

K̂ ≡
{

T̂s
2
, (1 +

√
A
∑

i

n̂s,i sinσi)

}

, (27)

and

Ûτ ≡ −∂
√
A

∂τ

∑

i

n̂s,i sinσi. (28)
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The derivative of
√
A with respect to τ appearing in

Eq. (28) is known analytically in this case. When using
improved transfer matrices, however, that derivative is
somewhat harder to compute, as we only know the co-
efficients Cn in Eq. (13) as a result of a numerical fit,
which complicates the calculation of ∂Cn/∂τ .
Here we extend the procedure of Endres et al. to fitting

the coefficients in the expansion of the derivative of A(p).
There are at least two advantages in following this route
over computing the derivatives via finite differences. In
the first place, the fitting procedure can provide a much
more accurate determination of the expansion coefficients
of the derivative, with less effort. (That being said, fi-
nite differences do provide a useful starting point for the
fitting routine.) Secondly, this route allows one to use
different operators for different observables, regardless of
what is used for A(p) itself. This feature can potentially
be very convenient: different observables are in general
sensitive to different regions of momentum space, such
that there is no a priori reason why a given set of opera-
tors On should be universally useful.
The main idea behind the method remains the same as

in Ref. [4]. Lüscher’s formula provides us with the exact
two-particle spectrum, such that the eigenvalues of the
exact two-particle transfer matrix and its τ derivative(s)
are known:

−∂T
exact
2

∂τ
= E2 exp (−τE2) (29)

where E2 are the exact two-particle energies in a contin-
uous box [27].
In order to match this spectrum, we take the derivative

of Eq. (17) with respect to τ , evaluated between eigen-
states |E〉 of the proposed transfer matrix T2. We thus
obtain, using the Feynman-Hellmann theorem,

−∂〈E |T2|E〉
∂τ

= 〈E |e−
τp2r
2m [K2 + U2] e

−
τq2r
2m |E〉, (30)

where

K2 ≡
[

p2r
2m

+
q2r
2m

] [

δprqr
+
A(pr)

2V

]

(31)

and

U2 ≡ − 1

2V

∂A(pr)

∂τ
=

1

2V

Nmax−1
∑

n=0

DnOn(pr). (32)

The rest of the recipe consists in taking the right-hand
side of Eq. (30) and fitting the coefficients Dn such that
the firstNmax eigenvalues of the exact expression Eq. (29)
(which correspond to the lowest eigenvalues prescribed by
Lüscher’s formula) are reproduced. We may assume at
this point that the coefficients Cn are known, such that
the eigenvectors |E〉 are fixed when we set out to find
the Dn. In that case, the Dn are determined by a linear
system of equations of order Nmax ×Nmax:

Nmax−1
∑

n=0

MEnDn = YE (33)

TABLE II: Results of fitting the coefficients Dn (see Sec. IV)
to the low-energy spectrum of the two-body problem at res-
onance, in a box of side Nx = 16, for an imaginary time step
τ = 0.05, in lattice units.

NO D0 D1 D2 D3 D4

1 -14.76869 – – – –
2 -11.54894 -1.74519 – – –
3 -10.74506 -0.96946 -0.40164 – –
4 -10.31974 -0.82605 -0.17494 -0.10404 –
5 -10.03874 -0.74266 -0.16064 0.02948 -0.02878

FIG. 2: (Color online) Logarithmic plot of the difference be-
tween the exact spectrum of the two-body problem Eq. (29) at
unitarity, and the approximate spectrum obtained with vari-
ous levels of improvement NO = 1 − 5, relative to the exact
spectrum (see text for details), as a function of η2 = E2/p

2
0,

where p0 ≡ 2π/L. The original data are discrete; the lines
are intended as a guide to the eyes. These results correspond
to a lattice of side Nx = 20 and temporal spacing τ = 0.05.

where

MEn =
1

2V
〈E |On|E〉 (34)

and

YE = E exp (−τE)− 〈E |e−
τp2r
2m K2e

−
τq2r
2m |E〉 (35)

Once the coefficients Dn have been determined, one
can use Eq. (28) in a lattice calculation simply by replac-
ing A→ A(p), and taking ∂Cn/∂τ = Dn. The results of
the fits for Cn, Dn are shown in Tables I and II.
As a first illustration of the level of improvement that

can be achieved for the energy, Fig. 2 shows the difference
between the approximate spectrum with various levels of
improvement Eapprox and the exact spectrum Eexact, as
a function of η2, through the quantity Log(|∆E|), where
∆E = (Eapprox −Eexact)/Eexact. As expected, with each
new parameter a new eigenvalue is reproduced, with the
concomitant reduction in the error.



6

Surprisingly, the approximations perform well consid-
erably beyond the lowest eigenvalues that are fit. Indeed,
with each new level of improvement we see, apart from
a dramatic reduction in the error for the target eigenval-
ues, an extra reduction in the error that is evident even
beyond η2 ≃ 30.

B. Contact

One of the many ways to define the contact C (see
Refs. [20, 21]) is through the derivative of the energy
with respect to the inverse scattering length:

∂E

∂a−1
= − ~

2

4πm
C. (36)

Since E may be obtained directly from the logarithm of
the partition function, we are again in a situation where
we require a derivative of the transfer matrix with respect
to a parameter, in this case a−1. The generalization of
the above definition to finite temperature in the grand
canonical ensemble is
(

∂Ω

∂a−1

)

T,µ

= − 1

β

(

∂ logZ
∂a−1

)

T,µ

= − ~
2

4πm
C, (37)

where Ω is the grand thermodynamic potential, T is the
temperature and µ is the chemical potential.
In many-body lattice calculations, using these defini-

tions involves the following expression:

∂Ts[σ]
∂a−1

= e−
τT̂s
2 Ûa−1e−

τT̂s
2 (38)

where

Ûa−1 ≡ ∂
√
A

∂a−1

∑

i

n̂s,i sinσi. (39)

The first step towards using these expressions in com-
bination with the improvement procedure is to take a
formal derivative of T with respect to a−1 in the two-
particle space, which we can treat exactly:

∂T exact
2

∂a−1
= −τ ∂E2

∂a−1
exp (−τE2) . (40)

In order to compute the change in the exact two-particle
energy E2 due to a small change in the inverse scattering
length, we use the fact that the energies are implicitly
defined as solutions of Eq. (2), which implies

∂E2

∂a−1
= −4π3

L

(

dS
dη2

)−1

(41)

where η2 = E2L
2/(2π)2, and the derivative on the right-

hand side is to be evaluated at the corresponding solution
of Eq. (2). Table IV in the Appendix shows the first 30
roots of S(η) and the corresponding values of dS/dη2.

TABLE III: Results of fitting the coefficients Fn (see Sec. IV)
to the low-energy spectrum of the two-body problem at res-
onance, in a box of side Nx = 16, for an imaginary time step
τ = 0.05, in lattice units.

NO F0 F1 F2 F3 F4

1 0.36773 – – – –
2 0.14532 0.07568 – – –
3 0.11370 0.02220 0.01957 – –
4 0.09659 0.01695 0.00415 0.00538 –
5 0.08205 0.01278 0.00406 -0.00023 0.00180

In the derivation of Eq. (41), we have assumed that all
the effective-range parameters other than the scattering
length are kept constant.
Having the exact target spectrum, we proceed by find-

ing the corresponding expression in terms of the HS
function A(p), which we obtain using Eq. (17) and the
Feynman-Hellmann theorem:

∂〈E|T2|E〉
∂a−1

= 〈E|e−
τp2r
2m

1

2V

∂A(pr)

∂a−1
e−

τq2r
2m |E〉, (42)

where, as before, we expand in terms of our chosen set of
operators,

∂A(pr)

∂a−1
=

Nmax
∑

n=0

FnOn(pr), (43)

and we determine the coefficients Fn by fitting the diag-
onal matrix elements in the right-hand side of Eq. (42)
to the exact spectrum of Eqs. (40) and (41). As with the
energy, the fitting procedure can be reduced to solving a
set of linear equations of order Nmax×Nmax. Illustrative
results of such a fit are shown in Table III.
As with the energy, a first glimpse at the level of im-

provement that can be obtained at this point. This is
shown in Fig. 3, where we display the difference ∆C be-
tween the spectrum with various levels of improvement
and the exact spectrum, divided by the latter. As in
Fig. 2, each new parameter allows one to fit a new eigen-
value to high accuracy, matching the desired physics be-
yond the lowest momentum.
Unlike in Fig. 2, the improvement for eigenvalues be-

yond those explicitly fit is limited, breaking down after
the eighth or ninth eigenvalue. From that point on to-
ward higher energies, little improvement, if any, is ob-
served as the order of the expansion is increased. This
behavior is only unexpected in the light of Fig. 2, where
the situation is (surprisingly) much more favorable. Pos-
sibly, part of the reason for this behavior is that the tar-
get spectra for the energy and the transfer matrix are
monotonic (either increasing or decreasing) at low ener-
gies, whereas the one for the contact is closer to a random
sequence (see Table IV in the Appendix).
On the other hand, as mentioned before, there is no

reason to believe that a given choice of operators will be
equally useful for all observables. It is therefore natural
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FIG. 3: (Color online) Logarithmic plot of the difference be-
tween the exact two-body spectrum Eq. (40) at unitarity,
and the spectrum obtained with various levels of improve-
ment NO = 1− 5, relative to the exact spectrum (see text for
details), as a function of η2 = E2/p

2
0, where p0 ≡ 2π/L. The

original data are discrete; the lines are intended as a guide to
the eyes. These results correspond to a lattice of side Nx = 16
and temporal spacing τ = 0.05.

to suspect that a different set of operators could yield a
better expansion for the contact. This possibility remains
to be studied.

C. Extrapolation to the ground state

Taking a Slater-determinant state |ψ0〉 as a starting
point, it is easy to see that the probability sum in ground-
state calculations, for a temporal extent β can be written
as

Z0(β) =
∑

k

Ake
−βEk , (44)

where Ek are the exact energy eigenvalues and

Ak ≡ |〈ψ0|Ek〉|2. (45)

Taking a derivative of logZ0(β) with respect to τ it is
easy to see that in the large-β limit one can write

E(β) ≡ −∂ logZ0(β)

∂β
→ E0 + bEe

−βδ, (46)

where E0 is the ground-state energy, δ = E1 − E0, and

bE =
A1

A0

(E1 − E0). (47)

Similarly, taking a derivative with respect to a−1 one
can see that the first few leading contributions to the
asymptotic behavior at large β are given by

C(β) ≡ 4πm

~2β

∂ logZ0(β)

∂a−1
→ C0+bC1β

−1+bC2e
−βδ (48)

where C0 is the ground-state contact,

bC1 =
4πm

~2

∂ logA0

∂a−1
, (49)

bC2 = −4πm

~2

A1

A0

(

∂E1

∂a−1
− ∂E0

∂a−1

)

. (50)

We shall use these expressions to motivate the extrapo-
lations to the β → ∞ limit below.

V. ILLUSTRATIVE RESULTS AND

CONCLUSIONS

To illustrate the effect of improved operators in real-
istic lattice calculations, this section presents the results
of ground-state MC calculations of the energy and the
contact, for an unpolarized system at unitarity.
Results are shown for 80 particles (40 per spin) in a

volume of 103 lattice points, for various levels of im-
provement NO = 1 − 4. In each case, calculations were
performed for time directions of extent βǫF = 2.0 − 8.0
(corresponding to Nτ roughly between 40 and 200), sub-
sequently extrapolating to the β → ∞ limit. We have
taken τ = 0.05 in lattice units, and a Slater determinant
of plane waves as the starting guess for the ground-state
wavefunction. For each value of β, we obtained approxi-
mately 400 samples of the auxiliary field σ. The statistics
is enhanced by a factor of 20 − 100 by the fact that the
operators we have defined utilize every other time slice.
Some obvious fluctuations remain, as evident from some
degree of jaggedness in the data. This can be resolved by
increasing the statistics, but it does not affect our main
conclusions.

FIG. 4: (Color online) Energy, in units of EFG = 3

5
NǫF , as

a function of the extent of the time direction βǫF = τNτ ǫF ,
for 80 particles and levels of improvement NO = 1 − 4.

Once the improvements are turned on, i.e. for NO =
2 − 4, we see that the change from kF reff ≃ 0.54 to
kF reff = 0 results in a considerable reduction in the
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FIG. 5: (Color online) Contact, in units of NkF , where kF =

(3π2N/V )1/3 is the Fermi momentum, as a function of the
extent of the time direction βǫF = τNτ ǫF , for 80 particles
and levels of improvement NO = 1 − 4. Also shown are fits
to the NO = 1 and NO = 4 datasets using the first two terms
in the asymptotic form of the previous section (see text for
details).

energy. Our extrapolations to the ground state yield
ξ ≡ E/EFG = 0.467(2) for the unimproved case, and
ξ = 0.402(1), 0.399(2), 0.399(2) for NO = 2, 3, 4, respec-
tively. This change, of roughly 15%, is in line with
our expectations based on the large-scale calculations of
Ref. [11]. While these results are still roughly 5% greater
than those of Ref. [11], which found ξ ≈ 0.38, it is re-
markable that this can be achieved with a 103 lattice.
The remaining effects must be a combination of finite
volume and finite imaginary-time step τ effects.
A similar situation is observed for the contact. Using

the extrapolation formula of the previous section at lead-
ing plus next-to leading order, we obtain C/(NkF ) =
3.17(3) in the unimproved case, and C/(NkF ) =
3.31(4), 3.34(4) and 3.30(4) for NO = 2, 3, 4, respectively.
(We have discarded three data points at the lowest val-
ues of βǫF for the purpose of capturing the asymptotic
behavior at large β; the fits are stable against further
removal of points at low βǫF ). While the latter extrapo-
lations clearly overlap when taking the uncertainty into
account, they do not overlap with the unimproved case,
which is clearly consistent with what we see in Fig. 5 at
large β. The remaining systematic errors, likely due to
volume effects for the most part, appear to be only as
large as 3%, if we consider the most recent estimates of
the contact in the ground state (≈ 3.39, see Ref. [24]).
As in the case of the energy, it is remarkable that such a
small volume as 103 already yields a result that is quite
close to the best current estimate.
In conclusion, we have presented a methodology based

on the work of Refs. [4, 5], whereby one can generate not
only improved transfer matrices but also improved opera-
tors, which account for finite-range effects in a systematic
fashion. The improvement program can be carried out in

a Galilean invariant or in a Galilean non-invariant way.
We have chosen the latter because it provides a better
approach to the unitary limit. As shown in Appendix B,
the difference in the eigenvalues of the invariant and non-
invariant transfer matrices is very small, such that the
effect can be safely considered to be negligible. This
is likely due to the fact that the lattice already breaks
Galilean invariance. With the chosen improvements in
place, we see a large change for the energy but a rather
small change for the contact. Indeed, once finite-range
effects are under control, the dominant contribution to
systematic uncertainties is expected to be given by finite-
volume effects. If so, the latter appear to be relatively
small both for the energy (roughly 5%) as well as for the
contact (roughly 3%).
While we have focused on the unitary limit, the tun-

ing procedure for the transfer matrix and the operators
can easily be applied to systems away from unitarity as
well as away from the zero effective-range limit. In com-
bination with hybrid Monte Carlo (HMC) techniques,
which have recently made it possible to access larger
volumes than ever before (as large as 203), we expect
the method presented here to provide a powerful strat-
egy to tackle the non-relativistic many-fermion problem.
This applies in particular to finite-temperature calcula-
tions where lowering the ultraviolet cutoff (while keeping
effective-range effects under control) reduces the size of
the basis, speeding up the computations considerably.
In this regard, it should also be pointed out that im-

proving the transfer matrix affects the performance of the
HMC algorithm only marginally. Indeed, the scaling with
system size (particle number, spacetime volume) remains
unchanged when increasing NO. Only the prefactor in
the scaling law increases somewhat (by about 20− 25%)
due to the need for extra Fourier transforms when apply-
ing the operator A(p). Aside from this, the force in the
molecular dynamics (MD) part of the HMC algorithm
becomes somewhat larger when A(p) is improved, such
that somewhat smaller MD time steps (not to be con-
fused with τ) are needed. In short, the performance of
the HMC algorithm is largely unaffected by the use of
improved transfer matrices.
Finally, we would like to stress that the operator pro-

posed here for the calculation of the contact (based on
the derivative of the two-body energy, in turn computed
using Eq. (41)) constitutes a novel way to calculate C in
MC calculations. This method should be contrasted with
others based on extracting the derivative of the equation
of state via finite differences, using the momentum distri-
bution, or using the pair distribution function. Each of
these will, in general, behave differently in terms of their
systematic effects.
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Appendix A: Evaluation of S(η).

There are many ways to evaluate the function S(η) ef-
ficiently. The one that I have found easiest to implement
and understand is essentially the one communicated to
me by Shina Tan, which I reproduce here, with some
minor modifications that I have found useful.
The first step is to enhance the convergence of the sum

by introducing an exponential factor and separating the
singularity in the tail (see Ref. [22]):

∑

|n|<Λ

1

n2 − η2
=
∑

|n|<Λ

1− e−x(n2−η2)

n2 − η2
+
∑

|n|<Λ

e−x(n2−η2)

n2 − η2
,

(A1)
where n = |n|, the sums are over all triplets of integers
n, and x is a small positive parameter. The second sum
has no convergence problems, in fact it converges very
quickly, so we shall put it aside by defining

S̃(η, x) ≡ lim
Λ→∞

∑

|n|<Λ

e−x(n2−η2)

n2 − η2
. (A2)

The first sum, on the other hand, converges just as
slowly as the original one (once we subtract the 4πΛ
term). Let us then analyze this first sum. For 0 < x≪ 1,
we may approximate it very accurately in terms of an in-
tegral:

∑

|n|<Λ

1− e−x(n2−η2)

n2 − η2
≃ 4π

∫ Λ

0

dn
n2
(

1− e−x(n2−η2)
)

n2 − η2
,

(A3)
where we have used the spherical symmetry of the inte-
grand. Writing

n2

n2 − η2
= 1 +

η2

n2 − η2
, (A4)

we separate the integrals into two terms. First,

4π

∫ Λ

0

dn
(

1− e−x(n2−η2)
)

= 4πΛ− 4πexη
2

∫ Λ

0

dn e−xn2

,

(A5)

TABLE IV: First 30 roots of S(η), and dS/dη2 evaluated at
those roots.
k η2

k dS/dη2

k

1 -0.0959007 123.82387
2 0.4728943 39.75514
3 1.4415913 82.36519
4 2.6270076 106.24712
5 3.5366199 84.23133
6 4.2517060 161.88763
7 5.5377008 212.49220
8 7.1962632 62.95336
9 8.2879537 231.79580
10 9.5345314 247.82611
11 10.5505341 233.82976
12 11.7014957 185.61411
13 12.3102392 183.65019
14 13.3831152 316.68684
15 15.3537375 82.86757
16 16.1218253 506.59914
17 17.5325415 371.40245
18 18.6053932 308.00372
19 19.5186394 255.97969
20 20.4033187 329.98905
21 21.6944179 394.81924
22 23.0194727 94.98929
23 24.3306210 342.25749
24 25.3016129 526.27127
25 26.6803600 514.90705
26 27.8780019 150.20773
27 29.6156511 548.38017
28 31.3536974 114.02114
29 32.1958982 443.21169
30 33.4483351 452.78989

where the 4πΛ cancels with the −4πΛ term in Eq. (3),

and the integral in the second term is equal to 1/2
√

π/x
in the limit Λ → ∞. Second, we have

I ≡ 4π

∫ Λ

0

dn
η2
(

1− e−x(n2−η2)
)

n2 − η2
. (A6)

To treat this term we write

1− e−x(n2−η2) = x(n2 − η2)

∫ 1

0

dy e−xy(n2−η2) (A7)

and exchange the order of integration of y and n, to ob-
tain

I = 4πxη2
∫ 1

0

dy exyη
2

∫ Λ

0

dn e−xyn2

, (A8)

all of which can be easily evaluated in the limit Λ → ∞,
where the full result can be written as

S(η) = S̃(η, x)− 2π3/2

√
x

(

exη
2 − 2xη2

∫ 1

0

dt exη
2t2
)

, (A9)

which is to be evaluated for 0 < x≪ 1.
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With the above expressions at hand, it is straightfor-
ward to find the first derivative of S with respect to η2:

dS
dη2

=
dS̃
dη2

−2π3/2
√
x

(

exη
2 − 2

∫ 1

0

dt exη
2t2(1 + xη2t2)

)

,

(A10)
where

dS̃
dη2

= xS̃(η) + lim
Λ→∞

∑

|n|<Λ

e−x(n2−η2)

(n2 − η2)2
. (A11)

Table IV shows the first 30 roots of S(η), along with
the corresponding values of the derivative dS/dη2.

Appendix B: Galilean invariance vs. non-invariance.

One cannot fail to notice that not only is the transfer
matrix of Eq. (16) not symmetric, an issue we managed
to deal with above, it is also not fully Galilean invari-
ant. Indeed, while translation and rotation invariance
are preserved (in their discrete forms set by the lattice),
Galilean-boost symmetry is broken. This is because we
have assumed that A was promoted to an operator that
acts on everything that appears to its right.
On the other hand, if we assume that A acts on the

auxiliary field only, as in Ref. [4], one arrives directly
at a local, Galilean-invariant lattice theory. Indeed, in
that case Eq. (16) changes form in a very simple manner,
namely the function A(p↑) is replaced by A(p↑−q↑), and
similarly for the other spin. The function A has then a
clear physical significance as the momentum transfer in
a two-body collision.

FIG. 6: (Color online) Plot of p cot δ(p), in lattice units, as
a function of η2 = E2/p

2
0 (where p0 ≡ 2π/L), for Nx = 20,

τ = 0.05, and levels of improvement NO = 1−5, for a Galilean
invariant definition of the transfer matrix.

Apart from the obvious desirability of Galilean invari-
ance, these observations seem to indicate that one should

choose this form over the non-invariant version. How-
ever, when comparing the approach to the unitary point
based on improvements, as shown in Figs. 1 and 6, it is
clear that the non-invariant version is much superior to
its invariant counterpart. Furthermore, comparing with
the results of Ref. [4], it seems clear that one would need
much larger lattices in the Galilean invariant version to
make Fig. 6 look like Fig. 1, which we have checked with
our codes. (Note that Fig. 2 in Ref. [4] presents the same
kind of plot but corresponding to a much larger lattice
size, namely Nx = 32.)

The reason for this difference is likely due to the fact
that (discrete) Galilean invariance is only respected in an
infinite lattice volume. Indeed, in any finite lattice the
center-of-mass and relative motions are actually not sep-
arable. Boosting to frames of different total momentum
will, in general, result in Hilbert spaces of vastly different
dimensions for the subspace of relative motion. In par-
ticular, the zero total momentum Hilbert space, used to
tune our two-body interaction, has by far the highest di-
mension. Based on this assessment, we decided to focus
on the non-invariant form in this work.

Should one choose to implement the Galilean invariant
form instead, as in Ref. [4], there are two technical de-
tails that should not be overlooked. First, in Eq. (16) the
function A(p↑) becomes A(p↑−q↑) and therefore needs to
be evaluated outside the single-particle momentum lat-
tice where we originally defined it (c.f. Eq. (13)). The
extension to the larger domain should be done respecting
the periodicity of the momentum lattice.

Second, if such a periodicity is to be reconciled with
the continuum form of the non-interacting dispersion re-
lation, which we assumed to be E = p2/2m, we should
impose a spherically symmetric cutoff Λ in momentum
space. This last condition should have little impact on
the results in practice, as long as the systems under con-
sideration are somewhat dilute. From the point of view of
computational performance, however, such a restriction
on phase space results in important gains, particularly
at finite temperature, where all the elements in the basis
are evolved in imaginary time.

Regardless of the form of the action, it is possible to
evaluate the degree to which Galilean invariance is bro-
ken by taking the improved transfer matrix and com-
puting its eigenvalues in a moving frame. As long as
Galilean invariance is respected, inserting the eigenval-
ues into the Rummukainen-Gottlieb formula [25] should
yield the same scattering phase shift as Lüscher’s for-
mula. This will of course include breaking effects coming
from both the action and the lattice itself.

Here, we limit ourselves to comparing the eigenvalues
obtained from the invariant and non-invariant formula-
tions, in various frames. In Fig. 7 we show a plot of
the relative eigenvalue difference |∆En/En| between the
Galilean invariant and non-invariant improved transfer
matrices, evaluated in various moving frames (i.e. non-
zero center-of-mass momentum). As can be appreciated
in that plot, the difference between the invariant and non-
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FIG. 7: (Color online) Logarithmic plot of the relative eigen-
value difference |∆En/En| between the Galilean invariant and
non-invariant improved transfer matrices, as a function of the
eigenvalue index n, in various moving frames. The quantity
PCM denotes the center-of-mass momentum, in units of 2π/L.
This data set corresponds to Nx = 18, τ = 0.05, NO = 3.

invariant improvements is extremely small, which shows
that one can use the non-invariant version of the improve-
ment program without introducing a noticeable system-
atic effect.
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