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We study the decoherence of spin squeezing under non-Markovian channels, and consider an
ensemble of N independent spin-1/2 particles with exchange symmetry. Each spin interacts with
its own bath, and the baths are independent and identical. For this kind of open system, the spin
squeezing under decoherence can be investigated from the dynamics of the local expectations. The
reduced dynamics is obtained by the exact hierarchy equation method. The numerical results show
that the spin squeezing may display both sudden and asymptotic vanishing, however the revival
phenomenon does not happen. In contrast, the concurrence shows multiple sudden vanishing and
revival phenomena.

PACS numbers: 03.67.Mn, 03.65.Ud, 03.65.Yz

I. INTRODUCTION

Spin squeezing has attracted much attention for
decades [1–8]. An important application of spin squeez-
ing is to detect quantum entanglement [9–11]. As a
multipartite entanglement witness, spin squeezing is rel-
atively easy to be generated and measured [2, 12–14].
Many efforts have been devoted to find relations be-
tween spin squeezing and entanglement [1–7, 15–17]. An-
other application of spin squeezing is to improve the pre-
cision of measurements. For example, spin squeezing
plays an important role in making more precise atomic
clock [2, 6, 18, 19] and gravitational-wave interferome-
ters [20–22], and so on.
Spin-squeezed states are useful resources for quantum

information processing. However, in practice, decoher-
ence is inevitable and harmful to spin squeezing and en-
tanglement [23–29]. Generally, when the system-bath
coupling strength is weak enough, the decoherence is
studied by using the master equation method, which is
derived by employing the Born approximation [23, 24].
Besides, the Markov approximation can be applied if the
time scale of the bath is much shorter than that of the
system. To overcome the above approximations, a set of
hierarchical equations were established by Tanimura et

al [30–36]. It provides an exact way to obtain the re-
duced dynamics of system [37–49]. However, for numeri-
cal reasons, it is hard to treat systems with large number
of particles straightforwardly. Here, we show that for
the open system we consider, we can reduce the multi-
particle dynamics into a two-particle one, and then we
efficiently use the hierarchy equation method to make
numerical calculations.
As we know, spin squeezing is a multipartite entangle-

ment witness. Reference [50] has shown that for a many-
particle system with exchange symmetry, the spin squeez-
ing parameters of the total system can be expressed in
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terms of local expectations and correlations. Here, we
consider such an ensemble of N independent spin-1/2
particles. Each particle interacts with its own bath, and
the baths are independent and identical. Thus, the ex-
change symmetry is not affected by the decoherence, and
the spin squeezing parameters of the open system can also
be expressed by the dynamics of the local expectations
and correlations. For the system under consideration,
we find that the dynamics of any two particles is gov-
erned only by the local Hamiltonian of the two particles
and their baths. Then, we use the hierarchy equation
method to calculate the dynamics of the local expecta-
tions and correlations. Reference [50] has also shown that
the spin squeezing has close relation with pairwise entan-
glement if the state of the collective spin system lies in
the J = N/2 sector, where J is the collective angular
momentum of the system. Therefore, since the state of
the system will not lie in J = N/2 sector anymore under
decoherence, the ability of spin squeezing in detecting
pairwise entanglement needs to be further studied and
clarified.
This paper is organized as follows. In Sec. II, we in-

troduce the Hamiltonian and the initial state of the open
system. The definition of the spin squeezing parameters
is given in Sec. III, and we also discuss the symmetry
of the system and reduce the multi-qubit dynamics into
the two-qubit one. In Sec. IV, we introduce the hierar-
chy method and give an alternative form of the hierarchy
equation. We numerically calculate spin squeezing pa-
rameters and the rescaled concurrence of the open sys-
tem under decoherence and compare their behaviors in
Sec. V. At last, a summary is given in Sec. VI.

II. HAMILTONIAN AND INITIAL STATE

Spin-boson model is one of the most important theo-
retical models in the study of dissipation and decoherence
in quantum systems [51–53]. The model is composed of
a two-level system and a bath of harmonic oscillators.
Although the model is simple, it is fundamental and use-
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ful in the study of physics of open quantum systems.
Here, we consider a generalized spin-boson model, which
contains an ensemble of N independent spin-1/2 parti-
cles with exchange symmetry, and each particle interacts
with its own bosonic bath. The N baths are independent
and identical. The Hamiltonian of the total system is (~
= 1)

H = HS +HB +HSB

=

N
∑

α=1

ω0

2
σαz +

∑

k

ωkb
†
kbk +

N
∑

α=1

∑

k

gαkσαx

(

b†k + bk

)

, (1)

where the first term is the Hamiltonian of the system
with σkα(α = x, y, z) the Pauli matrices for the k-th spin
and ω0 the frequency for all qubits. The second term

describes the bosonic bath, where bk and b†k are the cre-
ation and annihilation operators of the k-th mode with
frequency ωk. The system-bath coupling is characterized
by the third term with gαk the coupling strength for qubit
α. Here, we study N independent baths, i.e., the bath
can be divided into N parts, and gαk is only non-zero
when mode k belongs to the α-th part.
The initial state of the total system is set to be a prod-

uct state

ρT (0) = ρS(0)⊗ ρB(0), (2)

which the system and bath are uncorrelated. The bath
is in a thermal state

ρB(0) =
∏

k

exp(−βωkb
†
kbk)

Zk
(3)

with the inverse temperature β = 1/(kBT ) and partition

function Zk = Tr exp(−βωkb
†
kbk) for mode k , and in

this paper we take kB = 1. For ρS(0) = |Ψ(0)〉〈Ψ(0)|, we
choose a standard one-axis twisted state [1]

|Ψ(0)〉 = e−iθJ2

x/2|1...1〉 (4)

with

Jα =
1

2

N
∑

k=1

σkα (5)

the total angular momentum operators and |1...1〉 the
ground state of Jz. This state is prepared by the one-
axis twisted Hamiltonian H = χJ2

x , with the coupling
constant χ , and θ = 2χt the twist angle. For our case,
the system of N spin-1/2 behaves like an effective large
spin N/2.

III. SPIN SQUEEZING AND REDUCING THE

MULTI-QUBIT DYNAMICS INTO A

TWO-QUBIT ONE

In this section, we give the definitions of two spin
squeezing parameters. By discussing the symmetry of

the open system under consideration, we know that the
spin squeezing can be expressed by the local expectations
and correlations. Since we can reduce the multi-qubit dy-
namics into a two-qubit one, the spin squeezing can then
be calculated by the dynamics of the local expectations
and correlations.

A. Spin squeezing definitions

There are various measures of spin squeezing related
to various inequality criteria [1–3, 5, 8], and we consider
two of them as follows:

ξ2KU =
4(∆J⊥)

2
min

N
, (6)

ξ2T =
λmin

〈 ~J2〉 − N
2

. (7)

Here, the minimization in the first equation is over all
the directions denoted by ⊥, which are perpendicular to

the mean spin direction 〈 ~J〉/|〈 ~J〉|. λmin in the second
equation is the minimal eigenvalue of the matrix

Γ = (N − 1)γ +C, (8)

where

γkl = Ckl − 〈Jk〉〈Jl〉, k, l ∈ {x, y, z}, (9)

is the covariance matrix and

Ckl =
1

2
〈JlJk + JkJl〉, (10)

is the global correlation matrix. The parameters ξ2KU was
defined by Kitagawa and Ueda [1], and ξ2T was defined by
Tóth et al. [5]. If ξ2T < 1, spin squeezing occurs, and we
can safely say that the multipartite state is entangled [5,
8].
From the definitions, we know that the spin squeez-

ing parameters are based on the expectations and corre-
lations of the collective operators. For the limitation of
the hierarchy equation method, it is hard to calculate the
decoherence of many-particle system straightforwardly.

B. Simplification of the spin squeezing parameters

Since the baths are independent and identical, the ex-
change symmetry is not affected by decoherence. There-
fore, the global expectations or correlations of collective
operators can be written as [50]

〈Jα〉 =
N

2
〈σ1α〉, (11)

〈J2
α〉 =

N

4
+

N(N − 1)

4
〈σ1ασ2α〉, (12)

〈[Jα, Jβ]+〉 =
N(N − 1)

4
〈[σ1α, σ2β ]+〉, (α 6= β), (13)
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which only depend on the expectation values of the local
Pauli operators, e.g., 〈σ1ασ2β〉 and 〈σ1α〉.
The initial one-axis twisted state we use here has a

parity symmetry leading to 〈Jx〉 = 〈Jy〉 = 0, namely the
mean-spin direction is along the z-axis. Moreover, the
mean-spin direction do not change during decoherence.
The proof is given as follows.
The Hamiltonian (1) displays only one symmetry, i.e.,

the parity symmetry. The parity operator is given by

Π = Π1 ⊗Π2

= (−1)N ⊗ (−1)
∑

k
a†

k
ak

= (−1)N+
∑

k a†

k
ak , (14)

whereN = Jz+N/2 describes the numbers of excitations
of up spins. Obviously, we have

ΠHΠ = H, (15)

Π1ρS(0)Π1 = ρS(0), (16)

Π2ρB(0)Π2 = ρB(0), (17)

ΠρT (0)Π = ρT (0), (18)

namely, the Hamiltonian and the initial state have a fixed
parity. Since the exchange symmetry leads to 〈Jx〉 =
N〈σ1x〉/2, we obtain

〈σ1x〉 = Tr
[

σ1xU(t)ρT (0)U
†(t)
]

= Tr
{

σ1xΠ
[

ΠU(t)Π
][

ΠρT (0)Π
][

ΠU †(t)Π
]

Π
}

= Tr
[

σ1xΠU(t)ρT (0)U
†(t)Π

]

= Tr
[

Πσ1xΠU(t)ρT (0)U
†(t)
]

= −〈σ1x〉, (19)

which leads to 〈Jx〉 = 0. Similarly, 〈Jy〉 = 〈JyJz〉 =
〈JxJz〉 = 0 can be proved. Therefore, during the evolu-
tion the mean spin direction is always along the z-axis. In
this case, the spin squeezing parameters reduce to [7, 28]

ξ2KU = 1 + 2(N − 1)(〈σ1+σ2−〉 − |〈σ1−σ2−〉|), (20)

ξ2T =
min

{

ξ2KU , ς
2
}

(1− 1/N)〈~σ1 · ~σ2〉+ 1/N
, (21)

where

ς2 = 1 + (N − 1) (〈σ1zσ2z〉 − 〈σ1z〉〈σ2z〉) . (22)

For convenience, hereafter we use

ζ2k = max(0, 1− ξ2k), k ∈ {KU,T}, (23)

to characterize spin squeezing. With the above definition,
spin squeezing occurs when ζ2k > 0.
Now we only need to calculate the dynamics of the

local expectations and correlations of the spins, and the
spin squeezing parameters are greatly simplified. Further
more, we will prove that the reduced dynamics is only
governed by the Hamiltonian of the two particles and
their baths.

C. Reducing the multi-qubit dynamics into a

two-qubit one

Now we prove that we can reduce the multi-qubit dy-
namics into a two-qubit one. Generally, we consider a
system written as follows

H =

N
∑

i=1

H(i), H(i) = H
(i)
S +H

(i)
B +H

(i)
SB. (24)

H
(i)
S and H

(i)
B represent the Hamiltonian of a single par-

ticle and its bath respectively, and their couplings are

expressed by H
(i)
SB. Obviously, each of the particles in-

teracts with its own bath. The particles do not have
interaction with each other, and the baths are indepen-
dent. Equation (1) belongs to this case.
The time-evolution operator of the total system can be

written as

U(t) = e−iHt =
∏

i

e−iHit =
∏

i

ui(t), (25)

where ui(t) = e−iHit. Then, the total density matrix at
time t is given by

ρT (t) = U(t)ρT(0)U
†(t), (26)

which can be formally written as

ρT (t) = U(t)ρT (0)U
†(t)

=
∏

i

ui(t)ρT (0)
∏

i

u†
i (t). (27)

Here we assume that the initial state is a product state
written as

ρT (0) = ρS(0)⊗ ρB(0). (28)

By tracing out the baths and N − 2 particles of the sys-
tem, we obtain the reduced density matrix of any two
particles

ρ12S (t)

= Tr{B1,2}

[

Tr{S3...NB3...N}

(

N
∏

i=1

ui(t)ρT (0)

N
∏

i=1

u†
i (t)

)]

= Tr{B1,2}

[

Tr{S3...NB3...N}

(

2
∏

i=1

ui(t)ρT (0)

2
∏

i=1

u†
i (t)

)]

= Tr{B1,2}

[

2
∏

i=1

ui(t)
(

ρ12S (0)⊗ ρ12B (0)
)

2
∏

i=1

u†
i (t)

]

,

(29)

where the second equality follows from the fact

Tr2 [(A1 ⊗A2) ρ12 (B1 ⊗B2)]

= Tr2 [A1 ⊗ (B2A2)ρ12 (B1 ⊗ I2)] , (30)

and the last equality is obtained by substituting the ini-
tial product state (28). ρ12S (0) = Tr{S3...N}ρS(0) and
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ρ12B (0) = Tr{B3...N}ρB(0) in the equation are the reduced
density matrices of the initial state for the system and
bath respectively.
Eq (29) tells that the evolution of any two particles is

governed only by the local Hamiltonian of the two par-
ticles and their baths [54]. It is noted that we can reach
this conclusion even when the initial state of the system
or the baths are entangled states. Therefore, the multi-
qubit dynamics reduces to a two-qubit one. Then we use
the hierarchy equation method to calculate the reduced
dynamics the system, and the dynamics of the local ex-
pectations and correlations in Eqs. (20)-(22) can also be
obtained.
Here we emphasize that the reducing process is ob-

tained without using exchange symmetry, which means
that the particles are not necessarily identical, and so do
the baths. Also, the proof can be easily extended to any
finite number of particles.

IV. HIERARCHY EQUATIONS AND INITIAL

TWO-QUBIT REDUCED DENSITY MATRIX

To start with the numerical calculations, we introduce
the hierarchy equation method [36, 37] and discuss the
spin squeezing parameters of the initial state in this sec-
tion. For comparison, the definition of a rescaled concur-
rence is also given.

A. Hierarchy equations

We choose the Drude-Lorentz spectrum,

J (ω) =
2

π

ωλγ

ω2 + γ2
, (31)

where γ represents the width of the spectral distribution
of the bath mode, and λ can be viewed as the system-
bath coupling strength. The bath correlation function
for the bath operator

Bα(t) =
∑

k

gαk

(

b†ke
iωkt + bke

−iωkt
)

(32)

is given by [37]

〈Bα(t)Bα (τ)〉 =
∞
∑

n=0

cne
−νn|t−τ |, (33)

where

νn =
2πn

β
(1 − δn0) + γδn0, (34)

is the k-th Matsubara frequency, and

cn =
4λγ

β

νn
ν2n − γ2

(1− δn0) + λγ

[

cot

(

βγ

2

)

− i

]

δn0

(35)

are the expansion coefficients.
With the Drude-Lorentz spectrum, the hierarchy equa-

tions become

ρ̇~n = −
[

iH×
S + (~n1 + ~n2) · ~ν

]

ρ~n

−
2
∑

α=1

M
∑

k=0

(

2λ

βγ
− iλ−

M
∑

k=0

ck
νk

)

V ×
α V ×

α ρ~n

−i

2
∑

α=1

M
∑

k=0

nαk (ckVαρ~n−~eαk
− c∗kρ~n−~eαk

Vα)

−i

2
∑

α=1

M
∑

k=0

V ×
α ρ~n+~eαk

, (36)

where

~n = (~n1, ~n2) = (n10, ..., n1M , n20, ..., n2M ) (37)

is a 2(M +1)-dimensional vector, a concatenation of two
(M +1)-dimensional vectors ~n1 and ~n2. The vectors ~ν =
(ν0, ...νM ) and ~eαk are defined as 2(M + 1)-dimensional
vectors with only 1 in the αk place and 0s in other places.
Note that this equation is slightly different and essentially
the same as that given in Ref. [37].

B. Initial two-qubit reduced density matrix

To solve Eq. (36), we need to know the initial state.
Since the mean spin of the initial state (4) is along the
z-direction, the two-qubit reduced density matrix can be
written as a block-diagonal form [7],

ρ12 =

(

v+ u∗

u v−

)

⊕
(

w y
y w

)

, (38)

in the basis {|00〉, |11〉, |01〉, |10〉}, where

v± = (1± 2〈σ1z〉+ 〈σ1zσ2z〉) /4, (39)

w = (1− 〈σ1zσ2z〉) /4, (40)

u = 〈σ1−σ2−〉, (41)

y = 〈σ1+σ2−〉. (42)

We notice that if 〈σ1+σ2−〉, 〈σ1−σ2−〉, 〈σ1z〉, and
〈σ1zσ2z〉 are known, the density matrix is determined.
For the one-axis twisted state, we have [7]

〈σz〉 = − cosN−1

(

θ

2

)

, (43)

〈σ1zσ2z〉 =
1

2

(

1 + cosN−2 θ
)

, (44)

〈σ1+σ2−〉 =
1

8

(

1− cosN−2 θ
)

, (45)

〈σ1−σ2−〉 = −1

8

(

1− cosN−2 θ
)

− i

2
sin

(

θ

2

)

cosN−2

(

θ

2

)

. (46)
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Employing the equations above, we obtain the initial two-
qubit reduced density matrix in Eq. (38). Then we use
Eq. (36) to calculate the dynamics of the reduced density
matrix numercially.
Meanwhile, we can also use Eqs. (43)-(46) to discuss

the spin squeezing parameters for the initial state. For
the initial state (4), we obtain

ζ2KU(0) = ζ2T(0) =
1

4

{[

(1− cosN−2 θ)2 + 16 sin2
(

θ

2

)

× cos2N−4

(

θ

2

)]1/2

− 1 + cosN−2 θ

}

, (47)

which implies that the two spin squeezing parameters for
the initial state coincide.
It is known that spin squeezing has close relation with

concurrence if the state of the collective spin system lies
in the J = N/2 sector [50], such as the initial state of the
system. During the decoherence, the state of the system
does not lie in J = N/2 sector anymore. It is necessary
to compare the behaviors of spin squeezing and pairwise
entanglement.
The concurrence is defined as [55]

C = max(0, λ1 − λ2 − λ3 − λ4), (48)

where λ1 ≥ λ2 ≥ λ3 ≥ λ4 are the square roots of eigen-
values of ρ̃ρ. Here ρ is the reduced density matrix of the
system, and

ρ̃ = (σy ⊗ σy)ρ
∗(σy ⊗ σy), (49)

where ρ∗ is the conjugate of ρ.
For the reduced density matrix of (38), the concurrence

is given by [56]

C = 2max
{

0, |u| − w, y −√
v+v−

}

. (50)

Therefore, we can also obtain the concurrence of the ini-
tial state by employing Eqs. (39)-(46).
For convenience, here we use a rescaled concurrence

Cr = (N − 1)C, (51)

and thus Cr(0) = ζ2KU(0) = ζ2T(0). Then we know that
the two spin squeezing parameters and the rescaled con-
currence are the same for the initial state.

V. SPIN SQUEEZING AND CONCURRENCE

UNDER DECOHERENCE

The initial one-axis twisted state considered in this
work is a symmetric state which can be expressed as a
superposition of symmetric Dicke states. In other words,
the N qubits behave effectively like a large spin N/2.
After decoherence, not only the symmetric Dicke states
will be populated, but also states with lower symme-
try. Therefore, it is not sufficient to describe the sys-
tem with only an (N + 1)-dimensional space. However,
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FIG. 1. (Color online) Time evolution of the spin squeezing
parameters ζ2KU, ζ2T, and the rescaled concurrence Cr as a
function of dimensionless quantity ω0t for (a) N = 10 and
(b) N = 20. The inverse temperature is taken as β = 4/ω0.
The insets in the figures show the magnifications in the re-
gion where ζ2KU nearly vanishes. The horizontal x axes are
logarithmic, but the inset x axes are linear.
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FIG. 2. (Color online) Time evolution of the rescaled concur-
rence as a function of dimensionless quantity ω0t for different
values of the inverse temperature β. Here, we choose N = 10.

the exchange symmetry is not affected by the decoher-
ence. In other words, a state with exchange symmetry
does not necessarily belong to the maximally-symmetric
space [57]. Now by employing the hierarchy equation
method, we calculate the spin squeezing parameters and
the rescaled concurrence under decoherence, and com-
pare the behaviors of them.
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FIG. 3. (Color online) Time evolution of the spin squeezing
parameter ζ2KU as a function of dimensionless quantity ω0t
for different values of β, with N = 10. The inset shows the
magnification in the region when t is large.

As an example, we set the initial state given in Eq. (47)
with θ = π/10. The parameters of the Drude-Lorentz
spectrum in Eq. (31) are chosen to be λ = 0.03ω0 and γ =
0.15ω0. In this section, we study the effects of the particle
number N and bath temperature T on the dynamics of
spin squeezing and concurrence.
Figures 1a and 1b show the time evolution of ζ2KU, ζ

2
T

and Cr with two different particle number N = 10 and
N = 20. The inverse temperature is set to be β = 4/ω0.
The figures show that the decay rate of Cr increases with
N . Although the rescaled concurrence of the initial state
for N = 20 is larger than that for N = 10, it vanishes
earlier. Also, the revival, after a sudden vanishing, be-
comes weaker with increasing N . Both ζ2KU and ζ2T decay
in an oscillatory way. We observe that ζ2T vanishes sud-
denly, while interestingly, ζ2KU decays to zero asymptoti-
cally (t → ∞) as shown in the insets. Comparing Figs. 1a
and 1b , we find that for spin squeezing, the vanishing
time changes little with increasing N .
Now we focus on the effects of the bath temperature

on the dynamics of spin squeezing and rescaled concur-
rence, which are shown by Figs. 2-4. These figures are
plotted with a fixed particle number N = 10 and dif-
ferent temperature T . Here we choose the inverse tem-
perature β = 4/ω0, 3/ω0, 2.5/ω0, 2/ω0, and we specially
take β = 0.5/ω0 for ζ2KU. Firstly, let us discuss the time
evolutions of Cr which are shown in Fig. 2. As expected,
Cr is suppressed with increasing temperature. When we
choose a low temperature, such as β = 4/ω0, Cr decays
with multiple revivals. When the temperature increases,
the revivals become weaker. Cr even vanishes completely
without revival when β = 1/ω0.
The spin squeezing is also suppressed with increas-

ing T . As shown in Fig. 3, ζ2KU decays without sudden
vanishing and approaches zero asymptotically (t → ∞)

when temperature is not high enough, which is shown
in the inset. Interestingly, when temperature reaches to
β = 0.5/ω0, ζ2KU decays to zero quickly and suddenly
without revival. The behavior is quite different with Cr.
While ζ2T decays and suddenly vanishes even with low
temperature as shown in Fig. 4, which is similar to Cr.
From the comparison, although they have close rela-

tions, we find that spin squeezing is not a satisfactory
indicator of pairwise entanglement under decoherence for
the open system. Also, it is noted that instead of decreas-
ing monotonically, the spin squeezing and concurrence
both decay with oscillations. There is a theorem that
entanglement does not increase under local operations
and classical communications (LOCC). However, the os-
cillations of the concurrence do not violate the theorem.
Actually, only the process from t0 (t0 = 0) → t (t > 0) is
an LOCC, while the process from an intermediate time
t′ (t′ > 0) to t (t > t′) is not an LOCC. As we know,
a process is called an LOCC only if it can be expressed
as [58]

ρ →
∑

µ

KµρK
†
µ, (52)

where Kµ = ⊗N
i=1l

i
µ are the Kraus operators, and liµ is

a local operation on particle i, with
∑

µ l
i
µ
†
liµ ≤ 1. It

is evident that, if the dynamics of an open system can
be expressed as Eq. (52), the system and bath should be
initially separated. Obviously, process from t0 → t in
our work is an LOCC, since Eq. (2) is a product state.
As we can see from Figs. 1 and 2, the concurrence at
t (t > 0) is less than that at t0, which implies that the
theorem is not violated. However, since our method does
not involve Born-Markov approximation, the system and
bath are correlated during the evolution. Therefore, in
general, a process from t′ → t can not be expressed as
Eq. (52), and it is not an LOCC. Detailed discussions
have given in [54, 59].

VI. CONCLUSION

In this work, we consider an ensemble of N spin-1/2
particles interacting with identical independent bosonic
heat baths. The one-axis twisted state is chosen to be the
initial state. The mean spin direction of the initial state
is along the z-axis, and it does not change during the
decoherence dynamics. For the open system we consider,
we proved that the multi-qubit dynamics can be reduced
into a two-qubit one. Then we use the hierarchy equation
method to study the spin squeezing and concurrence un-
der decoherence. This is an exact method without using
rotating-wave and the Born-Markov approximations.
From the numerical results, we find that the decay rate

of the rescaled concurrence increases with the particle
number N as well as the bath temperature T , and the
revivals become weaker over time. For the spin squeezing,
it is suppressed with increasing temperature as expected,
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FIG. 4. (Color online) Time evolution of the spin squeezing
parameter ζ2T as a function of dimensionless quantity ω0t for
different values of β, with N = 10.

while the vanishing time changes little with N . The spin
squeezing parameter ζ2KU vanishes asymptotically with
low bath temperature and disappear suddenly when bath
temperature is high enough. Interestingly, ζ2T vanishes
suddenly even when bath temperature is low, which is
similar to Cr.
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[49] J. Strümpfer and K. Schulten, J. Chem. Phys. 131,

225101 (2009); J. Chem. Phys. 134, 095102 (2011).
[50] X. Wang and K. Mølmer, Eur. Phys. J. D 18, 385 (2002).

[51] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A.
Fisher, A. Garg, and W. Zwerger, Rev. Mod. Phys. 59,
1 (1987).

[52] U. Weiss, Quantum Dissipative System (World Scientific,
Singapore, 1999).

[53] A. W. Chin, Phys. Rev. B76, 201307 (R) (2007).
[54] B. Bellomo, R. Lo Franco, and G. Compagno, Phys. Rev.

Lett.99, 160502 (2007); Phys. Rev. A77, 032342 (2008).
[55] W. K. Wootters, Phys. Rev. Lett.80, 2245 (1998).
[56] V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev.

A61, 052306 (2000).
[57] J. Wesenberg and K. Mølmer, Phys. Rev. A 65, 062304

(2002).
[58] M. B. Plenio and S. Virmani, Quant. Inf. Comput. 7, 1

(2007).
[59] J. Dajka, M. Mierzejewski, and J.  Luczka, Phys. Rev.

A77, 042316 (2008).


