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On a scale-invariant Fermi gas in a time-dependent harmonic potential
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We investigate a scale-invariant two-component Fermi gas in a time-dependent isotropic harmonic
potential. The exact time evolution of the density distribution in position space in any spatial di-
mension is obtained. Two experimentally relevant examples, an abrupt change and a periodic
modulation of the trapping frequency are solved. Small deviations from scale invariance are ad-
dressed within first order perturbation theory. We discuss the consequences for experiments with
ultracold quantum gases such as the excitation of a tower of undamped breathing modes and a new
alternative for measuring the Tan contact.

PACS numbers: 03.75.Ss, 67.85.-d

Introduction: Symmetries play a key role in modern
physics. They can provide useful insights into under-
standing of systems whose microscopic dynamics is not
known or poorly understood. If the microscopic descrip-
tion is available, symmetries serve as a guiding principle
for the construction of solutions. In this work we study
consequences of scale invariance which implies that phys-
ical observables do not depend on absolute lengths. We
consider a two-component Fermi gas with contact inter-
actions in any spatial dimension d governed by the Hamil-
tonian [1]

H =

∫

dx
[

−
∑

i=↑,↓
ψ†
i

∇2

2m
ψi + cψ†

↓ψ
†
↑ψ↑ψ↓

]

(1)

tuned to a scale-invariant regime and trapped in a time-
dependent isotropic harmonic potential. The symmetries
of this problem allow to find an exact time evolution pro-
vided the initial state is known. No knowledge of the
equation of state or spectral functions is needed. This
is especially beneficial for the much studied Fermi gas
with infinite scattering length in d = 3 which is theoret-
ically one of the most interesting scale-invariant system.
Symmetries alone predict a number of robust dynamical
phenomena, which we illustrate here using two examples.
Exact time evolution: Consider a Fermi gas

loaded in a time-dependent isotropic harmonic po-
tential described by the Hamiltonian Hosc = H +
∫

dxmω2(t)x2

2

∑

i=↑,↓ ψ
†
iψi. In the following, we assume

that for t < 0 the trap is static, i.e. ω(t < 0) = ωin,
and that at t = 0 the given N -body system is in the
eigenstate ψ(X) of the Hamiltonian Hosc with the en-
ergy E. Here X collectively denotes the set of positions
(x1, . . . ,xN ) of N Fermi particles [2]. Subsequently, for
t > 0 the trap frequency is varied with an arbitrary time
dependence ω(t). The time evolution of a scale-invariant
Fermi gas in d spatial dimensions can be obtained from
the initial wave-function by a combined gauge and scale
transformation

ψ(X, t) =
e−iθ(t)

λdN/2(t)
exp

[

imλ̇(t)

2λ
X2

]

ψ(X/λ(t)), (2)

where λ̇(t) ≡ dλ(t)
dt . Both θ(t) and λ(t) are determined

by the shape of ω(t). For one particle Eq. (2) goes back
to works [3] that is easily generalized to any number N
of noninteracting particles [4]. Recently Castin made an
insightful observation that the solution (2) is also valid
for the three-dimensional strongly-coupled unitary Fermi
gas [5]. This was achieved by showing that Eq. (2) obeys
the Bethe-Peierls contact condition at unitarity. We find
that the solution (2) is valid for a scale-invariant Fermi
gas in any spatial dimension [6].
One can check that for ψ(X, t) to be a solution, the

gauge angle θ(t) must solve θ̇(t) = E
λ2(t) with θ(0) =

0, while the scaling function λ(t) obeys the differential
equation

λ̈(t) =
ω2
in

λ3(t)
− ω2(t)λ(t), ωin ≡ ω(t = 0−) (3)

with the initial conditions

λ(0) = 1, λ̇(0) = 0. (4)

We recognize a one-dimensional Newton equation for a
particle in an inverse square and a time-dependent har-
monic potential. Physically, the scaling function λ(t) is
of a great interest, since it governs the time evolution of
various observables. Among them the most experimen-
tally relevant is the density distribution in position space
that evolves as n(x, t) = 1

λd(t)
n0(

x
λ(t) ), where n0(x) is an

initial density profile at t = 0. For the cloud of initial
radius rcl,0 this implies rcl(t) = λ(t)rcl,0. Since λ(t) does
not depend on energy E, the latter two formulae are valid
for any initial statistical mixture of stationary states such
as, for example, a thermal state.
Abrupt perturbation: First, we consider an experimen-

tal setting, where the frequency is changed abruptly at
t = 0 from the initial positive value ωin to the final posi-
tive value ωf, i.e. ω(t) = ωin + (ωf − ωin)θ(t). For t > 0
the potential corresponding to the Newton equation (3)

has a minimum at λmin =
√

ωin

ωf
around which λ(t) os-

cillates periodically starting from its initial state (4). In
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FIG. 1: Absolute values of the amplitudes a0 (solid red),
a1 (dashed green), a2 (dotted blue), a3 (dashed-dotted ma-
genta), a4 (solid black) as a function of α = (ωin/ωf)

2.

this case the exact solution of Eqs. (3) and (4) for t > 0
can be found to be [7]

λ(t) =

√

(1 + α) + (1− α) cos(2ωft)

2
(5)

where α ≡
(

ωin

ωf

)2

. The solution (5) can be expressed as

the Fourier series λ(t) =
∑∞

n=0 an cos(2nωft) which phys-
ically corresponds to a decomposition into undamped
isotropic breathing modes with frequencies ωn = 2nωf

and amplitudes an. The lowest amplitudes an can be
computed analytically as a function of α. Their absolute
values are plotted in Fig. 1 for α < 1. Quite intuitively,
the higher modes have smaller amplitudes compared to
the lower ones. One can excite the higher modes most ef-
ficiently by a strong perturbation with ωf ≫ ωin. In this
limit we find |a0| = 2

π and |an| = 4
π(4n2−1) for n ∈ N.

A two-dimensional Fermi gas in a time-dependent
isotropic trap was recently investigated at different val-
ues of the scattering length a2d in [9]. In this experiment
the collective breathing excitations were created by adia-
batic reduction of the strength of the trapping frequency
ω⊥ followed by an abrupt restoration to its original value.
Provided the first adiabatic step does not excite collective
modes, this experimental setting can be well described by
Eq. (5). In [9] two different perturbations were studied:
a weak perturbation with α = 0.64 and a strong one with
α = 0.36. In both cases only the lowest breathing mode
ω1 = 2ω⊥ was measured and no signature of the higher
ones was detected. In the regime of asymptotic scale in-
variance [10], i.e. in the limit a2d → ∞ or a2d → 0, this
fact can be understood from our calculation (see Fig. 1)
which predicts |a2

a1
| ≈ 3% for the weak perturbation and

|a2

a1
| ≈ 6% for the strong one. These are significantly be-

low the experimental resolution limit |a2

a1
| ≈ 20% of the

experiment [12]. In future the higher breathing modes
can be directly measured either by increasing the resolu-
tion limit of experiments or by enhancing the perturba-
tion of the trap to values α ≈ 0.
Periodic perturbation: Second, we investigate another

experimentally relevant setting, where the trapping fre-
quency oscillates periodically around its initial value ωin

as ω2(t) = ω2
in +∆ω2f(t) with f(t+ T ) = f(t) [13]. As

the frequency varies in time, the initially stable equilib-
rium position λ(0) = 1 of Eq. (3) can become unstable as
more and more energy is pumped in. We will first iden-
tify the condition for instability for a small perturbation
with 0 < (∆ω/Ω)2 ≪ 1, where Ω = 2π/T . To this end
we notice that the solution of the nonlinear equation (3)
with the initial conditions (4) can be related to the solu-
tion of the linear Newton equation for a time-dependent
harmonic oscillator (with the same initial conditions)

γ̈(t) = −ω2(t)γ(t) (6)

via the formula

λ2(t) = γ2(t)
[

1 + ω2
inξ

2(t)
]

(7)

with ξ(t) =
∫ t

0
dτ

γ2(τ) [6].

The stability analysis of the time-dependent harmonic
oscillator (6) is a textbook problem [6]. As a result, the
instability known as a parametric resonance occurs if one
period T of the frequency modulation contains approxi-
mately a whole number of half-periods of the characteris-
tic oscillations. For the resonant modulation frequencies
we obtain Ωn = 2ωin

n , where n ∈ N. Since the inverse
cube force in Eq. (3) is time-independent, it can not pro-
duce any additional resonances for λ(t) in Eq. (7). Hence
the above relation is also a necessary and sufficient con-
dition for the parametric resonance in the original non-
linear problem (3). Therefore we arrive at a conclusion
that there is an infinite set of modulation frequencies Ωn

that will cause the atomic cloud of a scale-invariant Fermi
gas to oscillate with the ever increasing amplitude up un-
til energies where the zero-range description (1) breaks
down.
What happens if the periodic perturbation is not

small? In order to make quantitative predictions in this
regime, we must specify the modulation function f(t).
For simplicity we consider

f(t) =

{

+1, t ∈ (0, T/2),
−1, t ∈ (T/2, T ).

(8)

As before, due to the mapping (7), it is sufficient to an-
alyze the stability of the time-dependent harmonic oscil-
lator described by Eq. (6). The resonance condition now
reads [6]

2 =
∣

∣

∣
2 cos

(

ω+T

2

)

cos

(

ω−T

2

)

−
(

ω−
ω+

+
ω+

ω−

)

sin

(

ω+T

2

)

sin

(

ω−T

2

)

∣

∣

∣
,

(9)

where ω± =
√

ω2
in ±∆ω2. The solution of this transcen-

dental equation can be found numerically and is plotted
in solid red in Fig. 2. For a weak perturbation with
(∆ω/Ω)

2 ≪ 1 we recover the previously found discrete
set of resonant frequencies. As the strength of the pertur-
bation increases the instability regions become broader.
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FIG. 2: Stability diagram parametrized by the dimension-
less perturbation strength versus the dimensionless initial fre-
quency. For f(t) given by Eq. (8) the solutions are unstable
in the green-shaded region. Black dashed curves illustrate the
instability boundary for f(t) = cos(Ωt).

A notable feature of Fig. 2 is that even the antitrapped
Fermi gas with (ωin/Ω)

2
< 0 can be stabilized by the

properly tuned periodic perturbation. This is a direct
analogue of the inverted (Kapitza) pendulum stabilized
by a vertically oscillating point of suspension.

Symmetries and beyond: In fact, the infinite tower of
breathing modes in an isotropic trap is a general conse-
quence of scale or more precisely of nonrelativistic confor-
mal invariance [14–16]. Indeed, using solely the genera-
tors P, K, H , C and D of the Schrödinger group (see [16]
for the Schrödinger algebra and the definitions of these
generators for the Fermi gas) we can construct the oper-

ators Q† = 1√
2

(

P√
ω
+ i

√
ωK

)

, L† = 1
2

(

H
ω − ωC + iD

)

.

One can show that in the harmonic trap with the fre-
quency ω, the operator Q† excites center-of-mass en-
ergy eigenstates by acting repeatedly on a N -body pri-
mary state. Since [Hosc,Q

†] = ωQ†, the excited states
have energies E0 + nω, where n ∈ N and E0 denotes
the energy of the primary state. In a similar fashion
L† excites breathing eigenstates with energies E0 +2nω.
This is true since L, L† and Hosc satisfy [L,L†] = Hosc

ω ,

[Hosc, L
†] = 2ωL†. The primary state must be annihi-

lated by Q and L. While for N = 1 the unique primary
state is the ground state of the total Hamiltonian, for
N ≥ 2 there is an infinite number of the primary states.
The energy spectrum is thus organized in infinite ladders
with a ladder built on top of every primary state. While
the individual center-of-mass (breathing) states do not
actually deform in time because they are the eigenstates
of the total Hamiltonian, the time evolution of a linear
combination of the states from a given ladder produces
dipole (breathing) density oscillation decomposable into
modes with frequencies nω (2nω). A simple way how to
coherently excite such a linear combination is to perform
the abrupt quench (5). It is clear from the solution (5)
that the states from different ladders do not mix under
such a rapid change of the trapping frequency [17].

Due to separability of the center-of-mass and internal
motion in a harmonic trap, one can construct the oper-

ator B† = L† − Q†·Q†

2mN , which excites internal breathing

eigenstates. Indeed, B, B† and Hosc satisfy [B,B†] =
Hosc

ω − {Qi,Q
†
i}

2mN , [Hosc, B
†] = 2ωB† and B and B† act

only on the internal degrees of freedom of the atomic
cloud [18].
As argued above, the infinite equidistant tower of in-

ternal breathing modes is a generic feature of a scale-
invariant many-body system loaded into an isotropic har-
monic trap. But what happens to these modes if the sym-
metries are realized only approximately? Within first
order perturbation theory the correction to the energy
of the nth internal breathing state caused by a small
symmetry-breaking Hamiltonian perturbation δH is

δEn =
〈0|BnδHB†n|0〉
〈0|BnB†n|0〉 , (10)

where |0〉 stands for a N -body primary state in the har-
monic trap. Here we assume that the internal breathing
states are non-degenerate with other energy eigenstates
in the trap. This should be fulfilled in the strongly in-
teracting unitary Fermi gas in three spatial dimensions
which we restrict our attention to in the following.
Consider first the breaking of scale invariance by a fi-

nite (but large) scattering length a3d. For the Fermi gas
near the unitarity regime the Hamiltonian perturbation
can be expressed using the local composite dimer field φ
via

δH = −ma
−1
3d

4π

∫

dxφ†φ. (11)

Since this perturbation does not affect the motion of the
center of mass, δEn equals to the energy shift δEn associ-
ated with the internal motion only. By substituting this
perturbation into Eq. (10) and using general properties
of nonrelativistic scale invariance, we derive [6] for the
shift of the level spacing δ∆n = δ(En − En−1)

δ∆n =
Sn−2

Sn−1
δ∆n−1 +

ζω

Sn−1
δEn−1, (12)

where ζ = −1/4, Sk = (k+1)(E0+kω) and δ∆0 = 0. Pro-
vided the internal part of the energy E0 = E0 − 3ω/2 at
unitarity and its shift δE0 are known for a given primary
state of the N -particle system, the recursion relation pre-
dicts the frequency shifts of the whole tower of breath-
ing modes. The deviations from the scale-invariant value
∆n = 2ω are the largest for the lowest breathing modes.
At high energies as n → ∞ the shift δ∆n ∼ n−3/2 → 0
[6].
A precise experimental measurement of the lowest level

spacing shifts δ∆n in a many-particle Fermi gas near uni-
tarity can provide a new way to measure the Bertsch pa-
rameter ξB and the Tan contact Ctrap. Indeed, at T = 0
the local density approximation predicts for the ground
state energy E0 ≈ E0 = 34/3

√
ξBN

4/3ω/8 [19]. On the
other hand, the contact can be directly extracted from
the energy shift via δE0 = −ma−1

3d Ctrap/4π [20]. By sub-
stituting these two expressions into Eq. (12) we obtain
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for the lowest shift δ∆1 =
mCtrapa

−1

3d

2·34/3π
√
ξBN4/3 , which allows

to determine the ratio Ctrap/
√
ξB. An additional mea-

surement of δ∆2 would allow to extract separate values
of ξB and Ctrap from Eq. (12).
In experiments scale invariance is broken by a finite

effective range reff. In this case the Hamiltonian pertur-
bation can be expressed as

δH =
mreff
16π

∫

dx
(

φ†(−i∂t −HCM)φ+ c. c.
)

, (13)

where HCM = ω{Qi, Q
†
i}/2mN . This perturbation is

invariant under translations and Galilean boosts, in ad-
dition it affects only the internal motion. For the per-
turbation (13) we obtain the recursion relation (12) with
ζ = 3/4 [6]. For high levels the shift scales as δ∆n ∼
n−1/2 → 0 when n → ∞ [6]. For the scattering length
and effective range perturbations, we found that the rela-
tion (12) is in agreement with the perturbation expansion
around unitarity, done recently in [21], of the analytical
solution for two particles in a harmonic trap [22].
Let us also consider a long-range two-body

(an)isotropic perturbation of the form

δH ∼
∫

dxdyn(x)
g(θ)

|x − y|ρ n(y) (14)

with n =
∑

i=↑,↓ ψ
†
iψi, ρ ∈ R and g(θ) is some function

of the angle between the unit vector pointing at some
fixed direction (e.g. induced by an external field) and
the vector x− y. In this case we again get the recursion
relation (12) with ζ = α(α − 2)/4 [6]. Note that for the
inverse-square interaction potential (ρ = 2) the pertur-
bation is scale-invariant and thus does not modify the

breathing frequencies. In the context of cold atom ex-
periments, Eq. (12) allows to estimate the effect of weak
magnetic dipole-dipole interactions (ρ = 3) on the tower
of breathing frequencies.

Conclusion: In this work we studied a scale-invariant
Fermi gas in a time-dependent isotropic harmonic po-
tential. Within the zero-range model (1) the exact
time evolution can be found by solving an effective one-
dimensional Newton equation. As examples we con-
sidered two experimentally relevant settings. First, an
abrupt change of the trapping frequency ω(t) in the form
of a step function was studied. We found the exact so-
lution of this problem, decomposed it into a series of
breathing modes and discussed why only the lowest mode
was observed in the recent experiment [9]. The influence
of a small deviation from scale invariance on the frequen-
cies of breathing modes was studied using first order per-
turbation theory. Second, periodic oscillations around
the initial value of the trapping frequency were investi-
gated. We identified modulation frequencies at which the
system becomes unstable and exhibits parametric reso-
nances. We also observed that an antitrapped Fermi gas
can be stabilized by periodic frequency oscillations. The
findings of this paper are valid at arbitrary temperature
provided the zero-range model (1) accurately describes
the Fermi gas. Higher breathing modes, parametric res-
onances and the Kapitza pendulum investigated in this
work can be directly realized in future experiments with
ultracold quantum gases.
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