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We propose a scheme to generate four-mode cluster states with four atomic ensembles trapped in single-mode
cavities connected by short fibres. With the aid of the cavitydissipation, we find that a four-mode cluster state
can be unconditionally created by the simultaneous drivingof the ensembles with laser pulses of suitably chosen
Rabi frequencies and phases. The scheme could be easily extended to the case ofN -mode cluster states.
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Over the last decade there has been a lot of interest in the
generation of multi-mode continuous variable (CV) cluster
states [1, 2]. The cluster states have been recognized as theba-
sic building blocks for one-way quantum computation which
describes a realization of quantum computation beyond the
usual network picture [3–5]. Various theoretical and experi-
mental schemes for the generation of CV cluster states have
been proposed with most of them based on linear optics [6–
8]. In particular, the generation of four-mode cluster states
of the electromagnetic field modes has been demonstrated ex-
perimentally by utilizing two amplitude-quadrature and two
phase-quadrature squeezed states [6]. Furusawaet al. [7] have
proposed three different types of CV four-mode cluster states
and demonstrated how these states could be experimentally
constructed by applying squeezed light sources and a set of
beam splitters.

In linear optics schemes squeezed light appears as a source
of correlations necessary for the creation of entanglementbe-
tween separate bosonic modes [9]. However, the schemes are
extremely challenging due to practical problems of achiev-
ing a large efficiency in the coupling of squeezed light to the
beam-splitters and the non-avoidable coupling of the beam-
splitters to an environment. Therefore, alternative schemes
have been proposed involving atomic ensembles [10–13] that
have several advantages. Firstly, the external sources of
squeezed light are not necessary in this case, as squeezed
fields can be generated in the atomic ensembles by a suitable
driving of the atomic transitions. Secondly, since the dynam-
ics of the ensembles can be reduced to that of only the ground
states of the atoms, the decoherence could be significantly re-
duced due to long atomic ground-state coherence lifetimes.

An another important issue is the implementation of the
coupling between distant atoms or atomic ensembles. In most
treatments, the atoms or atomic ensembles are located in sep-
arate cavities connected by a fibre that can lead to reliable
transfer of a quantum state [14–18]. With this kind of cou-
pling, highly reliable swap and entangling gates have been
realized by trapping two-level atoms inside fibre-connected
cavities [18]. A different type of the coupling between distant
atomic ensembles have been proposed by Krauteret al. [19]
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who demonstrated, both theoretically and experimentally,that
an entanglement between two separated macroscopic atomic
ensembles can be created by the dissipative process of spon-
taneous emission.

So far, schemes considered for multi-mode entanglement
have involved atomic ensembles placed inside a single- or
two-mode cavity [12, 20]. Some of the common problems
of these schemes include separate steps of the preparation of
each atomic ensemble in a squeezed state that may take a rel-
atively long time. In this paper, we propose a procedure that
may lead to the generation of four-mode cluster states. The
scheme involves four atomic ensembles placed inside sepa-
rate cavities connected by short fibres and driven by a set of
laser pulses. In practice, this scheme could perform better
than the linear optic schemes in that the coherence could be
easily controlled by adjusting Rabi frequencies and phasesof
the external driving laser fields. Moreover, the fast perfor-
mance of the procedure could avoid the decoherence process
of the coherence between the ground states of the atoms. In
addition, the procedure could be easily extended to the case
of massive size cluster states ofN atomic ensembles placed
insideN separate cavities.

The system we consider consists of four cavities each con-
taining an atomic ensemble. The cavities are coupled to each
other by short optical fibres, as illustrated in Fig. 1(a). Inthe
interaction picture, the interaction Hamiltonian betweenthe
four cavity modes is given by

H1 = η
[(

a1a
†
2 + a2a

†
3 + a3a

†
4

)

+H.c.
]

, (1)

wherean anda†n are the annihilation and creation operators
for the nth cavity mode, andη is the coupling strength be-
tween the cavity modes.

The atomic ensembles contain the same number ofN iden-
tical four-level atoms. As illustrated in Fig. 1(b), each atom
has two stable ground states|0jn〉, |1jn〉 and two excited
states|µjn〉 and |sjn〉. Such a scheme might be realized in
practice, e.g., by employing alkali-metal atoms, with|0jn〉
and |1jn〉 chosen as different ground-state sublevels. The
ground state|0jn〉 of energyE0jn = 0 is coupled to the ex-
cited state|sjn〉 by a laser field of the Rabi frequencyΩs

kn

and frequencyωLsn
that is detuned from the atomic transition

frequency by∆sn = ωsn − ωLsn
, whereωsn = Esn/~ and

Esn is the energy of the state|sjn〉. Similarly, the ground state
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FIG. 1. (Color online) (a) A scheme for creation of four-modeclus-
ter states. Four cavities each containing an atomic ensemble are con-
nected by short fibres. (b) Atomic level configuration.

|1jn〉 of energyE1jn = ~ω1jn is coupled to the excited state
|µjn〉 by a laser field of the Rabi frequencyΩµ

kn and frequency
ωLµn

that is detuned from the atomic transition frequency by
∆µn = ωµn −ω1jn −ωLµn

, whereωµn = Eµn/~ andEµn is
the energy of the state|µjn〉. Here we assume that the cavity-
mode detunings∆µn = ∆sn = ∆, i.e. the modes of all the
cavities are coupled to the atomic transitions with the same
strengths and they are also equally detuned from the atomic
transition frequencies.

In our model we assume that the atomic transitions|1jn〉 →
|µjn〉 and |0jn〉 → |sjn〉 are driven by a set of laser fields
each composed of four distinct frequency components de-
tuned from each other byδmkn, with k, n = 1, 2, 3, 4 and
m = µ, s. For simplicity, we assume thatδmkn are independent
of m andn, so thatδmkn = δk. In addition, we assume that the
Rabi frequencies of the components,Ωµ

kn andΩs
kn are com-

plex numbers that could have different magnitudes|Ωm
kn| and

phasesφmkn (m = µ, s). The cavity modes of frequencyωc are
coupled to the transitions|0jn〉 → |µjn〉 and|1jn〉 → |sjn〉
with the coupling strengthsgµn andgsn (gµn = gsn ≡ g).

In the interaction picture, the Hamiltonian describing the
interaction between the atoms and the fields is

H2 =
4

∑

k=1

4
∑

n=1

N
∑

j=1

[

gan (|µjn〉〈0jn|+ |sjn〉〈1jn|) e−i∆t

+(Ωµ
kn|µjn〉〈1jn|+Ωs

kn|sjn〉〈0jn|) e−i(∆+δk)t+H.c.
]

, (2)

When the cavity damping is included, the dynamics of the
system are then determined by the density operator which sat-
isfies the following master equation

ρ̇ = −i[H1 +H2, ρ] + Laρ, (3)

whereLaρ =
∑4

n=1 κ
(

2anρa
†
n − a†nanρ− ρa†nan

)

. Here,κ

is the damping rate of the cavity modes, which is assumed to
be the same for all cavities.

Since the cavity modes are coupled to each other, it is found
convenient to introduce new bosonic operators that are linear
combinations of the cavity field operators

c1,4 =
1

√

2(λ21 + 1)
[λ1(a2 ∓ a3)∓ (a1 ∓ a4)] ,

c2,3 = ± 1
√

2(λ21 + 1)
[λ1(a1 ± a4)∓ (a2 ± a3)] . (4)

Expressed in terms of the new operators, the HamiltonianH1

in Eq. (1) takes a diagonal form

H1 = η
[

λ1(c
†
4c4 − c†1c1) + λ2(c

†
3c3 − c†2c2) + H.c.

]

, (5)

whereλ1 = 1/λ2 = (
√
5 + 1)/2.

The diagonal form of the HamiltonianH1 prompts us to
make the transformationH ′

2(t) = exp(iH1t)H2 exp(−iH1t)
to get the atom-field coupling HamiltonianH ′

2(t) in the in-
teraction picture. Also we assume that the cavity modes and
the driving lasers are significantly detuned from the atomic
transition frequencies,|∆+ δk| ≫ g, |Ωm

kn|. Under this large
detuning condition, only Raman two-photon take place be-
tween the levels|1jn〉 and |0jn〉, so the interaction of the
atoms with the fields occurs in a highly nonresonant disper-
sive manner. We then perform the standard adiabatic elimi-
nation [22, 23] of the atomic excited states and obtain an ef-
fective HamiltonianHe1 = −iH ′

2(t)
∫

H ′
2(t

′)dt′, which de-
scribes the dynamics of the atomic system confined to only the
ground states determined by collective spin operatorsSzn =

1
2

N
∑

j=1

(|0jn〉〈0jn| − |1jn〉〈1jn|), S†
n =

N
∑

j=1

|1jn〉〈0jn|.

In the current experiments with atomic ensembles ofN ≃
105 atoms trapped inside a cavity [21, 24], the coupling
strengths of the atomic transitions to the cavity modes are of
order ofgµn = gsn = g/2π = 10 kHz, the coupling strength
between the cavity modesη/2π = 40 kHz. The cavity decay
rateκ/2π = 20 kHz are achieved. Putting∆µn = ∆sn =
∆/2π = 2 × 104 kHz, |Ωm

kn| = 10g, δk = 0.06∆, then
|∆+ δk| occurs to be much larger than the coupling strengths
g and|Ωm

kn|, so that the condition of|Ωm
kn|/|∆+ δk| ≪ 1 can

be achieved. Hence the approximation of the effective Hamil-
tonianHe1 assumed here appears to be practical. Moreover,
with this choice of the parameters, the spontaneous emis-
sion rate due to off-resonant excitation of the atomic excited
states is estimated at14 (γ/2π)(|Ωm

kn|/∆)2 < 40 Hz, where
γ/2π = 6 MHz has been assumed. Thus, at that parameter
choice the spontaneous emission is negligible.

Since we have taken into account large detunings of the
driving fields, we expect that the excitation of the atoms is
much smaller than the number of atoms, i.e.,〈Szn〉 ≪ N . In
this case, we can express the collective spin operators in terms
of bosonic operators by using the Holstein-Primakoff repre-
sentation [25],Szn = −N/2 andS†

n =
√
Nd†n, wheredn

and d†n obey the standard bosonic commutation relation,
[dn, d

†
n] = 1. In this representation, we regard the collective

atomic operatorsdn andd†n as the bosonic operators.
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After that we make the further transformation
exp(iHe0t)He1 exp(−iHe0t) − He0 , with He0 =

[(λ1η + δ1)c
†
1c1 + (λ2η + δ2)c

†
2c2 − (λ2η − δ3)c

†
3c3 −

(λ1η − δ4)c
†
4c4 +H.c.] to obtain the new effective atom-field

interaction Hamiltonian

He=−
∑

n=1,4

βn

[

Ωµ
n1d

†
1+λ1Ω

µ
n3d

†
3+(−1)n

(

λ1Ω
µ
n2d

†
2+Ωµ

n4d
†
4

)

+ Ωs
n1d1 + λ1Ω

s
n3d3 + (−1)n(λ1Ω

s
n2d2 +Ωs

n4d4)]cn

+
∑

m=2,3

βm

[

λ1Ω
µ
m1d

†
1−Ωµ

m3d
†
3−(−1)m

(

Ωµ
m2d

†
2−λ1Ωµ

m4d
†
4

)

+λ1Ω
s
m1d1−Ωs

m3d3−(−1)m(Ωs
m2d2−λ1Ωs

m4d4)]cm+H.c.,
(6)

with

β1,4 =

√
Ng

∆∓ ηλ1
, β2,3 =

√
Ng

∆∓ ηλ2
. (7)

where we have discard the constant energy terms and choose

δ1,4 =

√

2(1 + λ21)Ng
2

∆∓ ηλ1
∓ λ1η,

δ2,3 =

√

2(1 + λ21)Ng
2

∆∓ ηλ2
∓ λ2η, (8)

to compensate the Stark shifts. It is seen from Eq. (6) that the
dispersive interaction gives rise to nonlinear, squeezingtype
couplings between the collective and cavity modes.

In this case, the master equation of Eq. (3) reduces to

ρ̇ = −i[He, ρ] + Lcρ, (9)

where the dissipative part of the master equation is of the form
Lcρ =

∑4
n=1 κ

(

2cnρc
†
n − c†ncnρ− ρc†ncn

)

, which is of the
same form asLaρ after we introduce new bosonic operators
cn as Eq. (4).

Now we demonstrate how to apply the effective Hamilto-
nian (6) to generate a four-mode cluster state. We set a pure
linear-type cluster state as an example, which is of the follow-
ing form

|ψL〉 = exp

{

− ξ

10

[

d21 − d22 − d23 + d24 − 8i(d1d2 + d3d4)

− 4 (d1 + id2)(d3 − id4)]−H.c.} |0d〉, (10)

where ξ is a squeezing parameter, and|0d〉 =
|0d1

, 0d2
, 0d3

, 0d4
〉 represents the initial state with zero

photons in each of the collective atomic modesdn.
To demonstrate that the state|ψL〉 is an analog of a linear-

type cluster state, we introduce the variances of linear com-
binations of the quadrature componentsqn = (dn + d†n)/

√
2

andpn = −i(dn − d†n)/
√
2. It is not difficult to show that in

the state|ψL〉, the quadrature components are

∆(p1 − q2) = ∆(p4 − q3) = e−2ξ,

∆(p2 − q1 − q3) = ∆ (p3 − q2 − q4) =
3

2
e−2ξ. (11)

We see that the variances tend to zero when the squeezing pa-
rameterξ → ∞. Hence, according to the definition of cluster
state [7], the state|ψL〉 is an analog of a linear-type four-mode
cluster state.

We now show how to unconditionally prepare the linear-
type cluster state (10) among four atomic ensembles located
in four separate single-mode cavities coupled by short fibres.
Firstly, we make a unitary transformationdLn

= TdnT
† as

dL1
= −(id1 + d2)/

√
2,

dL2
= −(id1 − d2 − 2id3 − 2d4)/

√
10,

dL3
= −(d3 + id4)/

√
2,

dL4
= (2d1 + 2id2 + d3 − id4)/

√
10. (12)

It is easy to check that the modesdLn
are orthogonal to each

other, so the state|ψL〉 can be written as

|ψL〉 = T † exp

[

ξ

2

4
∑

n=1

(d2Ln
− d†2Ln

)

]

|0dLn
〉, (13)

where|0dLn
〉 = |0dL1

, 0dL2
, 0dL3

, 0dL4
〉. Thus, each mode

might be prepared separately in a desired state.
Secondly, we show that the modes can be simultaneously

prepared in squeezed states by a suitable choice of the Rabi
frequencies and phases of the driving lasers. It is not dif-
ficult to find that the choice of the Rabi frequenciesΩα

ij =
|Ωα

ij | exp(iφαij) (α = µ, s, i, j = 1, 2, 3, 4) with

|Ωµ
11| = |Ωµ

33| = |Ωs
11|/r = |Ωs

33|/r = Ω,

|Ωµ
12| = |Ωµ

34| = |Ωs
12|/r = |Ωs

34|/r = Ω/λ1,

|Ωµ
21| = |Ωµ

43| = |Ωs
21|/r = |Ωs

43|/r = Ω/(
√
5λ1),

|Ωµ
22| = |Ωµ

44| = |Ωs
22|/r = |Ωs

44|/r = Ω/
√
5,

|Ωµ
23| = |Ωµ

41| = |Ωs
23|/r = |Ωs

41|/r = 2Ω/
√
5,

|Ωµ
24| = |Ωµ

42|= |Ωs
24|/r= |Ωs

42|/r = 2Ω/(
√
5λ1), (14)

and the phases

φµ12 = φµ22 = φµ41 = φµ43 = φs12 = φs22 = φs41 = φs43 = 0,

φµ21 = φµ23 = φµ42 = φs11 = φs34 = φs44 = π/2,

φµ24 = φµ33 = φs24 = φs33 = π,

φµ11 = φµ34 = φµ44 = φs21 = φs23 = φs42 = 3π/2, (15)

results in the effective Hamiltonian of the form

THeT
† =

4
∑

n=1

β′
n

(

cnd
†
Ln

+ rcndLn
+H.c.

)

, (16)

with β′
n = Ωβn/

√
2. The termcnd

†
Ln

describes a linear-
mixing process between the cavity anddLn

modes. It can
lead to the possibility of exchanging the quantum information
between the cavity field and the modedLn

. On the other hand,
the termcndLn

describes a nondegenerate parametric ampli-
fication process. This term is responsible for the generation of
continuous variable entanglement between the cavity anddLn

modes.
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Under the interaction with the laser pulses, the system
to decay to a stationary state with the cavity damping.
To see it clear, we make a squeezing transformation of
the density operator̃ρ = S†(ξ)TρT †S(ξ) with S(ξ) =

exp[(ξ/2)
∑4

n=1(d
2
Ln

− d†2Ln
)], and find that the master equa-

tion of the transformed density operator can be written as

d

dt
ρ̃ = −i

4
∑

n=1

β′
n

[

cnd
†
Ln

+ c†ndLn
, ρ̃
]

+ Lcρ̃, (17)

where ξ = 1
2 ln(

1+r
1−r

) with 0 < r < 1. It is seen that
the master equation (17) represents dynamics of linearly cou-
pled modes with the cavity modes damped with the rateκ.
In order to ensure that the system decays to a stable steady
state, we calculate the eigenvalues of Eq. (17) and findη± =

−κ
2 ±

[

(

κ
2

)2 − (β′
n)

2
]

1

2

. As long as the effective Rabi fre-

quency overcomes the cavity damping,|β′
n| > κ/2, both

eigenvalues have negative real parts. Under this condition
and for a sufficiently long duration of the driving laser pulses,
t ≫ 1/κ, the cavity dissipative relaxation will drive the sys-
tem to a stationary state, in which all the modescn will be
found in their vacuum states|0cn〉, while the modesdLn

will
be found in squeezed vacuum states. We then take the inverse
unitary transformation and find that the system is in a pure
state described by the density operator

ρ = T †S(ξ)ρ̃S†(ξ)T = |ψL〉〈ψL| ⊗ |0cn〉〈0cn |, (18)

where|ψL〉 = T †S(ξ)|0dLn
〉 is an example of the the pure

linear-type CV quadripartite cluster state, and the variances of
Eq. (11) tend to zero whenξ → ∞.

There have already been many applications of linear clus-
ter states. For example, a deterministically controlled-Xop-
eration has been designed with cluster states created in a lin-
ear optics scheme [26, 27]. The unconditional CV one-way
quantum computation and a controlled-phase gate have also
been demonstrated experimentally a linear optics scheme by
use of a linear CV cluster state with four entangled optical
modes [28, 29]. Following the scheme demonstrated experi-
mentally by Furusawaet al. [28], the four-mode linear clus-

ter state created in atomic ensembles may have the potential
applications in quantum computation based on the atomic en-
sembles.

Although we have discussed here only of how to generate a
linear four-mode cluster state, the proposed procedure canbe
easily extended to the case of different shapes of cluster state,
such asT or square shapes. Moreover, the procedure can also
be extended the case ofN -mode cluster states involving an
arbitrary number of atomic ensembles trapped in independent
cavities connected by short fibres. By applying a set of lasers,
we can constructN independent single-mode squeezed vac-
uum states in the combined bosonic representation similar to
Eq. (12). Then, by the appropriate choice of the Rabi fre-
quencies and the phases of the laser pulses, we can find that
the cavity modes decay to the vacuum state whereas the col-
lective atomic modes decay to squeezed vacuum states. The
resulting stationary state of the collective modes would bein
anN -mode cluster state.

In summary, we have proposed a procedure which gener-
ates four-mode cluster states in a fast single step of the prepa-
ration. We have shown that this could be done only by a proper
driving of atomic ensembles composed of four-level atoms lo-
cated in four distant cavities connected by an optical fibre.
What is required is the simultaneous driving of the atomic en-
sembles with laser pulses of suitably chosen Rabi frequencies
and phases. Moreover, the procedure can be easily applied
to generate other type of cluster states, such as square orT -
shape cluster states [7]. It could be easily extended to the
generation ofN -mode cluster states ofN atomic ensembles
only by a suitable change of the Rabi frequencies and phases
of the driving lasers.
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