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Abstract

We demonstrate the existence and stability properties of fundamental and ring-profile vortex

solitons in a defocusing Kerr medium with an imprinted radially symmetric lattice with a lower-

index core covering several lattice rings. The decrease of energy flow with the growth of topological

charge is explained using the law of conservation of energy. In contrast to the vortices in bulk media

with competing nonlinearities, vortex solitons in radial lattices with defects are stable at lower or

moderate energy flow. In particular, we reveal that vortex solitons with different charges share a

substantially collective stability area. Higher-charged vortices at higher energy flow suffer a weak

oscillatory instability, which allows them surviving very long propagation distances without visible

distortions.
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I. INTRODUCTION

Vortices are fundamental objects which appear in many branches of physics [1]. In nonlinear

optics, vortex solitons are associated with the phase dislocations (or phase singularities)

carried by the nondiffracting optical beams [2], and share many common properties with

the vortices observed in other systems, e.g., superfluids and Bose-Einstein condensates [3, 4].

Optical vortex solitons have been intensively studied in diverse schemes, including bulk [5–

10], lattice-modulated [11, 12], nonlocal [13] media, and so on.

In bulk media, stable vortex solitons are known to exist in models with competing cubic-

quintic or quadratic-cubic nonlinearities [7, 9]. Yet, the experimental realization of vortex

solitons in such media is hard, as the requirement of very high energy flow of light usually ex-

cites other higher-order nonlinearities, which may be dominant and suppress the occurrence

of competing nonlinearities. Successful alternatives are confined systems, such as graded-

index optical fibers [14], nonlinear photonic crystals with defects [15], linear and nonlinear

optical lattices [11, 16, 17], or optical lattices with defects [18], where the azimuthal in-

stability of vortices can be suppressed by the corresponding confining potentials. Different

types of vortex solitons, such as discrete vortices [19], vortex-ring “discrete” solitons [20],

and second-band vortices [12] were observed in experiments.

Vortex solitons in harmonic, triangular, and hexagonal lattices exhibit discrete intensity

distributions [11, 12, 20, 21]. The potentials induced by the periodic lattices may prevent

or weaken the angular rotation of the vortex beams during propagation. Kartashov et al.

suggested another novel type of optically induced lattice, i.e., radial Bessel lattice, which

can be used to stabilize vortex solitons with continuous intensity distributions around the

phase dislocations [16].

Defects and defect states exist in a variety of linear and nonlinear systems, including solid

state physics, photonic crystals, and Bose-Einstein condensates. When lights propagate in

an optical lattice with a local defect, the band-gap guidance results in the formation of

linear or nonlinear defect modes [22, 23]. Recently, defect guiding phenomena of light in

diverse settings, such as photonic crystals [15], fabricated waveguide arrays [24, 25], and

optically induced photonic lattices [26–31], have been predicted theoretically and observed

experimentally. Ye and his coworkers proposed that stable nonlinear modes can be trapped

in a lower-index defect sandwiched between two optical lattices, or in the cylindrical core
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of a radial lattice [32]. The variation of defect scales, depths and shapes can be used to

stabilize and reshape the fundamental, dipole and vortex solitons [18].

Thus far, vortex solitons and their stabilities in lattices with defects are still poorly

understood. Dynamics of vortices in a radially symmetric lattice with a defect covering

several lattice rings have not yet been explored. Main efforts in local or lattice-modulated

nonlinear media were devoted to the analysis of vortex solitons with charges less than or equal

to two. Stable localized ring-profile vortex solitons with charges higher than two were only

predicted in defocusing media modulated by Bessel lattices [33] and mixed linear-nonlinear

circular arrays [17]. Moreover, the stability domain of vortex solitons shrinks rapidly with

the growth of topological charge with the only exceptions in mixed linear-nonlinear circular

arrays [17] and in azimuthally modulated Bessel lattices [34]. We also should point out

that, to realize the stable vortex solitons with different charges, one usually needs to adjust

the lattice parameters and input beams simultaneously, which increases the experimental

difficulty. Thus, the proposal of a simple model with fixed system parameters admitting

stable vortex solitons with different charges is an important issue.

In this paper, we reveal that the defocusing media with an imprinted radially symmetric

lattice with a lower-index defect covering several lattice rings can support stable vortex soli-

tons with higher charges under appropriate conditions. In contrast to the cases in competing

media, vortex solitons can propagate stably at lower or moderate energy flow. In lattices

with fixed depth and defect scale, vortex solitons are completely stable provided that the

propagation constant exceeds a critical value. In particular, we illustrate that the varia-

tion of topological charges slightly influences the existence and stability domains of vortex

solitons.

II. MODEL

We consider light propagation along the z axis of a defocusing Kerr medium with an

imprinted transverse modulation of the refractive index. Dynamics of the beam can be de-

scribed by the nonlinear Schrödinger equation for the dimensionless complex field amplitude

A:

i
∂A

∂z
= −1

2

(

∂2A

∂x2
+

∂2A

∂y2

)

+ |A|2A− pR(x, y)A. (1)
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Here, the longitudinal z and transverse x, y coordinates are scaled in the terms of diffraction

length and beam width, respectively; p denotes the lattice depth; the refractive-index profile

is given by R(x, y) = cos2(Ωr) for r ≥ (2N − 1)π/(2Ω) and R(x, y) = 0 otherwise, where

r = (x2+y2)1/2 is the radial distance, Ω is the frequency, andN = 1, 2... is the number of rings

removed from the lattice and characterizes the defect scale. Thus, the transverse modulation

of refractive index features a lower-index guiding core. By comparing the defocusing bulk

media without external potentials, the radial lattices with defects can confine the beams in

a local region. An example of such refractive-index landscapes is shown in Fig. 1(a).

Although there are defects in radial lattices, the wings of nonlinear modes still penetrate

into the bulk of lattices. Thus, the existence of nonlinear modes strongly depends on the

transverse lattices. Since the term 1/rd/dr in Laplacian can be neglected at r → ∞,

the band-gap structure of a radially symmetric lattice is slightly different from that of 1D

periodic lattice [32]. Thus, it is convenient to use the band-gap structure of 1D periodic

lattice to approximately analyze the existence of solitons. Due to the fact that nonlinear

modes in defocusing Kerr media can only be found in the finite gaps, we are interested in the

solitons residing in the first finite gap. Equation (1) conserves several quantities, including

the energy flow U and the Hamiltonian H :

U =

∫

∞

−∞

∫

∞

−∞

|A(x, y)|2dxdy

H =
1

2

∫

∞

−∞

∫

∞

−∞

(

∣

∣

∣

∣

∂A

∂x

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂A

∂y

∣

∣

∣

∣

2

− 2pR|A|2 + |A|4
)

dxdy. (2)

We search for stationary solutions of Eq. (1) by assuming A(x, y, z) = q(r) exp(ibz+imφ),

where q is a r-dependent real function depicting the profile of stationary solution, b is a

propagation constant associating with the energy flow, and m is an integer known as the

topological charge of vortex soliton. The nonlinear mode degenerates to a fundamental

radially symmetric mode when m = 0. The substitution of the light field into Eq. (1) yields:

d2q

dr2
+

1

r

dq

dr
− m2

r2
q − 2bq − 2q3 + 2pRq = 0, (3)

which can be solved numerically by means of a Newton iterative method. Mathematically,

various families of stationary solutions are determined by the propagation constant b, lattice

depth p, modulation frequency Ω and defect scale N . We vary b, p, N and fix Ω ≡ 2 in

following discussions.
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The stability of solitons can be analyzed by considering the perturbed solution in the

form of: A(x, y, z) = [q(r) + u(r) exp(λz + inφ) + v∗(r) exp(λ∗z− inφ)] exp(ibz + imφ), here

the perturbation components u, v could grow with a complex rate λ during propagation,

and n is an integer representing the angle dependence of the perturbation and is termed

as an azimuthal index. The substitution of the perturbed solution into Eq. (1) results in a

system of eigenvalue equations:

iλu = −1

2
(
d2

dr2
+

1

r

d

dr
− (m+ n)2

r2
)u+ bu+ (v + 2u)q2 − pRu

−iλv = −1

2
(
d2

dr2
+

1

r

d

dr
− (m− n)2

r2
)v + bv + (u+ 2v)q2 − pRv. (4)

The coupled equations can be solved by a finite-difference method. In Cartesian coordinates,

the square of the above linearization operator is self-adjoint if the stationary solutions are

angle independent (fundamental solitons). Thus, the discrete eigenvalue is either purely real

or purely imaginary. The instability growth rates with purely real parts correspond to the

Vakhitov-Kolokolov (V-K) instability [35]. When the stationary solutions are angle depen-

dent (vortex solitons), the eigenvalues may have both real and imaginary parts associating

with an oscillatory instability. Stationary solutions are completely stable provided that all

real parts of eigenvalues equal zero.

III. NUMERICAL RESULTS

Firstly, we discuss the properties of fundamental radially symmetric solitons residing in

the first band gap of the undefected lattice. For nonlinear modes with m = 0, it follows

from Eq. (3) that q(r → 0) =
√
−b, which means that the solitons can be found only

at b < 0. In deep lattice, the energy flow is a monotonically decreasing function of the

propagation constant. When the lattice is shallow, there exists a narrow region close to

the upper cutoffs of propagation constant, where the energy flow dependence changes its

slope, i.e., dU/db > 0 [Fig. 1(b)]. Such solitons feature a plateau inside the defect region

and pronounced decaying oscillations in the bulk of lattice [Figs. 1(c) and 1(d)]. According

to the relation q(r → 0) =
√
−b, the height of the plateau decreases with the growth of

propagation constant. Similar behavior occurs for the decaying swings in the bulk of lattice.

By comparing the profiles of solitons in lattices with defect scales N = 3 and N = 10, it is

easily found that the width of plateau is solely determined by the defect scale. This property
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FIG. 1. (Color online) (a) Radial lattice with defect. (b) Energy flow of fundamental solitons vs

b. The inset zooms in on the graph near the upper cutoff with p = 1.4. (c, d) Profiles of solitons

at p = 2.2, N = 3 and 10, respectively. (e) Perturbation growth rate vs b at p = 1.4. (f) Stable

propagation of soliton at p = 2.2, b = −0.5. Cut of intensity distribution at y = 0 is shown. Bar

areas in (c, d) correspond to R(x) ≥ 1/2. N = 3 except for (d). All quantities are plotted in

dimensionless units.

allows one to realize flat-topped solitons with different core sizes by changing the defect scale

N . Linear-stability analysis on the stationary solutions reveals that fundamental solitons in

shallow lattices are stable in a substantial part of their existence domain, except for a narrow

region (dU/db > 0) near the lower cutoffs of propagation constant, where V-K instability

may take place [Fig. 1(e)]. The V-K instability vanishes and the solitons are completely

stable in their whole existence domain when the lattices are deeply modulated. A stable

propagation example is shown in Fig. 1(f).

Now, we consider vortex solitons with unit charge supported by the defocusing Kerr media

with an imprinted radial lattice with a defect. Without loss of generality, we set the defect

scale N = 10 in the following discussions. In contrast to the fundamental solitons, the energy

flow U of vortices is always a monotonically decreasing function of propagation constant b

[Fig. 2(a)]. Vortex soliton only exists when the lattice depth exceeds a critical value. For

example, as shown in Fig. 2(b), the threshold value of lattice depth for the appearances of
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FIG. 2. (Color online) (a) Energy flow of vortex solitons with m = 1 vs b for different p. (b)

Areas of existence and instability (patched) on the (p, b) plane. Solid lines denote the edges of the

first gap of 1D periodic lattice. (c, d) Contour and amplitude profiles of vortices at p = 4.2, b =

−0.8, U = 556.2 and p = 4.2, b = −0.1, U = 37.9, respectively. In all cases N = 10. All quantities

are plotted in dimensionless units.

vortices with unit charge is pth ≈ 1.18, below which no localized vortex solutions can be

found. For p ≤ 2.57, the existence domain expands with the lattice depth. It shrinks with

the growth of lattice depth if p ∈ (2.57, 7.05], due to the restriction of the ascending lower

edge of the first band gap. It is the restriction of the first gap which accounts for the hoofed

existence domain [Fig. 2(b)].

Figures 2(c) and 2(d) display two typical profiles of vortex solitons with unit charge

at different energy flow. The vortex at higher energy flow looks like a flat-topped beam

embedded with a dark core at which the amplitude is zero and the phase is undefined.

Vortices become more localized with the growth of propagation constant. Vortices at higher

energy flow penetrate deeply into the bulk of lattice, which leads to the multi-ring structures

of beam intensity distributions. By comparing with the dark vortex solitons (with non-

vanishing amplitudes at infinity) in uniform defocusing media, the vortices in our model are

localized. In other words, the radial lattice with a defect plays a role of confining the vortex
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into a local region.
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FIG. 3. (Color online) Spectra of the linearization operator (a, b) and unstable and stable

propagations (c, d) of vortex solitons shown in Figs. 2(c) and 2(d). All quantities are plotted in

dimensionless units.

To examine the stability of vortex solitons with unit charge, we conduct linear-stability

analysis on the stationary solutions according to Eqs. (4). Typical spectra of the linearization

operator for vortex solitons at b = −0.8 and b = −0.1 in lattice with defect scale N = 10

at p = 4.2 are shown in Figs. 3(a) and 3(b), respectively. Vortices at higher energy flow

suffer an oscillatory instability with complex growth rates [Re(λ) ≪Im(λ)], while vortices

at lower or moderate energy flow are completely stable [Re(λ) = 0]. To confirm the stability

analysis results, we numerically integrate Eq. (1) with a standard beam propagation method

code, using the stationary solutions as the initial inputs. Representative unstable and stable

propagation examples are illustrated in Figs. 3(c) and 3(d). Obviously, unstable vortex

solitons can survive large distances (hundreds of diffraction lengths), greatly exceeding the

present experimentally feasible sample lengths.

We summarize the linear-stability analysis results in Fig. 2(b). We show the critical

value of propagation constant bn=1
cr above which no perturbations with the azimuthal index

n and nonzero real part of growth rate were found. Vortex solitons are dynamically stable

in a broad region near the upper cutoffs of propagation constant. It is the combination of
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defocusing nonlinearity and confining potential who affords the stability of vortex solitons.

The precise structure of instability regions (patched) is rather complicated. There may exist

multiple narrow stability windows.
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FIG. 4. (Color online) (a) Areas of existence and instability (patched) of vortex solitons with

m = 3 on the (p, b) plane. Solid lines denote the edges of the first gap of 1D periodic lattice.

(b) Profiles of vortices at p = 4.2. (c) Phase distribution at b = −0.5, p = 4.2. (d) Real part of

instability growth rate associating with n = 2 vs b at p = 5. In all cases N = 10. All quantities

are plotted in dimensionless units.

Next, we focus on the vortex solitons with higher topological charges in a radially lattice

with a defect imprinted in a defocusing Kerr medium. Figure 4(a) shows the hoofed existence

domain of vortex solitons with m = 3. Vortex solitons can be found in lattices with p ∈
[1.18, 6.97]. By comparing the existence domains of vortex solitons with m = 1 [Fig. 2(b)]

and m = 3, one can find that the upper cutoff of propagation constant drops from ∼ −0.04

to ∼ −0.08, which leads to the decrease of the upper threshold value of lattice depth p

(from 7.05 to 6.97) and thus the shrinkage of the existence domain. Yet, the existence area

of vortex solitons with m = 3 still occupies almost the whole of the first gap of undefected

lattice (for b < 0).

The energy flow of vortex solitons with m = 3 also decreases with the propagation

constant. The pronounced decaying oscillations of such modes in the bulk of lattice become
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stronger with the decrease of propagation constant [Fig. 4(b)]. The maxima of intensity

distribution around the phase dislocation move towards the center of the defect core with

the growth of propagation constant. Figure 4(c) displays an example of screw-type phase

distribution of vortex soliton with m = 3.

The instability of vortex solitons with higher charges usually depends on the azimuthal

index n [10, 16, 33]. Linear-stability analysis results reveal that for vortices with m = 3,

the instability area associating with n = 2 is always dominant. For vortex solitons with

m = 3 in a lattice with p = 5, the widths of instability windows associating with azimuthal

indices n = 1, 2 and 3 occupy ≈ 26.77%, ≈ 38.69% and ≈ 16.93% of the width of the

whole existence domain, respectively. An example of instability growth rate corresponding

to azimuthal index n = 2 versus propagation constant is illustrated in Fig. 4(d). It indicates

that vortex solitons suffer a weak azimuthal instability, which allows them to propagate

without obvious shape distortion over large propagation distances. Vortex soliton will be

completely stable provided that its propagation constant exceeds a critical value.

By comparing the stability areas of vortex solitons with m = 1 [Fig. 2(b)] and m = 3

[Fig. 4(a)], one finds that the stability area of vortices with m = 3 is slightly narrower than

that of vortices with m = 1, which constitutes one of our central results. That is to say, the

stability area is slightly affected by the growth of topological charge, which allows one to

realize stable vortex solitons with even higher charges. Since vortices with different charges

share a collective stability area, one can input beams with different charges to excite vortex

solitons with corresponding charges in certain parameter windows without changing the

lattice depth, defect scale, modulation frequency etc. It should be noted again that vortex

solitons with different charges can propagate stably at lower or moderate energy flow, which

is in sharp contrast to the cases in competing media, where very high energy flow is needed

to stabilize the vortices [7, 9]. Thus, in addition to the Bessel lattice [16], the radial lattice

with defect is another effective alternative for the realization of stable vortex solitons at

lower or moderate energy flow, especially for vortices with higher charges.

To confirm the above conclusions, we investigate the dynamics of vortices with m =

4, 5...10. The existence and stability domains shrink slowly with the topological charge due

to the slow decrease of the upper cutoff of propagation constant. The energy flow decreases

with the growth of topological charge when the lattice parameters are fixed [Fig. 5(a)]. This

can be explained by the law of conservation of energy. For linearly polarized vortex beam, the
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FIG. 5. (Color online) (a) Energy flow of vortex solitons with different m vs b. (b) Profiles of

vortex solitons with different m at b = −0.4. (c, d) Unstable and stable propagations of vortex

solitons with m = 6 at b = −0.67 and b = −0.4, respectively. (e, f) Field modulus and phase

distribution of vortex soliton with m = 9 at b = −0.4, z = 1024. In all panels, p = 5. All quantities

are plotted in dimensionless units.

total energy includes two parts. The first part is the energy carried by the photons, and the

second part is the rotational energy associating with the orbital angular momentum. From

the definition of the energy flow of vortex solitons [Eqs. (2)], one finds that the expression

of energy flow only defines the energy carried by the photons. Yet, the rotational energy of

vortex solitons is proportion to the square of topological charge and effectively rotational

radius. Given that the allowed energy of different modes in a fixed system is a constant,

the energy flow carried by photons decreases with the increase of rotational energy. The

conclusion may be generalized to vortex solitons with continuous intensity distributions in

other models.

The above discussions can also explain the decrease of the thickness of vortex solitons

shown in Fig. 5(b). With the growth of topological charge, the decrease of effective mass

of the beam is in companion with the increase of effectively rotational radius and angu-

lar velocity. For fixed propagation constant, the delocalization of vortex soliton weakens

with the growth of topological charge. A representative propagation example of unstable
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vortex solitons is illustrated in Fig. 5(c). The vortex can propagate without visible shape

distortion over hundreds of diffraction lengths. Figures 5(d) and 5(e) show two instances of

stable propagations of vortex solitons at b = −0.4 with topological charges m = 6 and 9,

respectively. The phase structure of vortex soliton at z = 1024 with m = 9 is displayed in

Fig. 5(f).

We also solve the vortex solutions with a Neumann boundary condition (rather than zero

boundary condition) and found there exist vortex solutions with non-vanishing amplitudes

when the lattice depth is small. It indicates that there exists a transition between the

delocalized and localized vortices. That is to say, the localized vortex soliton is a continuum

of the delocalized dark vortex in the vanishing lattice case, and it belongs to the family

of dark solitons. The discussion of dynamics of dark vortex solitons with non-vanishing

amplitudes is beyond the scope of this paper.

By comparing with the conventional dark vortex solitons in bulk defocusing media, the

higher-charged dark vortex solitons in our model exhibit some new features, though they

can bifurcate from the conventional dark vortex solitons. First, due to the confining effect

of the optical potential, the dark vortices are localized while the amplitudes of conventional

dark vortex solitons do not vanish at infinity. Second, the unstable vortex soliton in this

paper suffers an oscillatory instability with complex growth rates, which is different from

the conventional dark vortex solitons, which usually break up into several single-charged

vortices built in an infinite ground. They are also different from the unstable bright vortices

in focusing media, where vortex solitons may break up into several fragments associating

with the topological charge of vortices [10]. Third, the properties of vortex solitons in the

present model can be controlled by adjusting the lattice or defect parameters, which may

be useful in their practical applications.

Finally, we briefly discuss the influence of lattice parameters on the existence of vortex

solitons. Localized vortex solutions cannot be found in radial lattices without defects. The

existence domain expands with the growth of defect scale and approaches an ultimate at

N = 4. It shrinks with the increase of modulation frequency Ω. The existence domain

shrinks slowly with the topological charge if other parameters are fixed. No matter what

topological charge or lattice parameters are, the stable area always occupies a region near

the upper cutoffs of propagation constants. We stress that although the vortex solitons

residing in the patched areas shown in Figs. 2(b) and 4(a) are unstable, they can survive

12



large propagation distances. Unstable vortex solitons with higher charges exhibit a similar

behavior. Thus, we expect that all vortices in radial lattices with defects can be observed

in experiments.

IV. CONCLUSIONS

In conclusion, we addressed the dynamics of fundamental and vortex solitons in defo-

cusing kerr media with an imprinted radial lattice featuring a lower-index defect covering

several lattice rings. The defect scale can be utilized to control the energy flow of both types

of solitons. Vortex solitons with various charges are stable in a region near the upper cutoffs

of propagation constant. Although higher-charged vortices at higher energy flow suffer os-

cillatory instability, they can survive very long distances without visible distortions. Vortex

solitons at lower or moderate energy flow are completely stable under appropriate condi-

tions. Especially, we revealed that the variation of topological charges slightly influences the

existence and stability domains of vortex solitons.
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