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Abstract

In parametric systems, squeezed states of radiation can be generated via extra work done by

external sources. This eventually increases the entropy of the system despite the fact that squeezing

is reversible. We investigate the entropy increase due to squeezing and show that it is quadratic

in the squeezing rate and may become important in the repeated operation of tunable oscillators

(quantum buses) used to connect qubits in various proposed schemes for quantum computing.
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Parametric devices using the nonlinear inductance and natural protection from deco-

herence of Josephson junctions are considered as prospective elements of quantum circuits

[1]. In particular, these have been proposed and implemented as quantum buses, providing

tunable coupling between solid state qubits (see, e.g., [2–6]). On the other hand, para-

metric Josephson devices can produce squeezed states of microwave radiation [7–11]. Such

experiments were performed in the 1980s [12, 13] and more recently [14].

In this paper we investigate the generation of squeezed states during the operation of a

quantum bus and estimate their additional contribution to the entropy of the system and

associated heat production. We will see that this contribution is quadratic in the squeezing

rate and should be taken into account if the system operates near its limit of efficiency

determined by the Landauer erasure principle (see, e.g., [15, 16]).

A quantum bus can be considered as a harmonic oscillator with tunable frequency ω(t);

tuning it in and out of resonance with qubits allows to manipulate their states (e.g., by

performing two-qubit gates). The changes of ω(t) should be fast compared to the charac-

teristic frequencies of qubits and the bus, i.e., ω̇/ω ≫ ω; the decoherence rate in the circuit,

however, must be much smaller than ω. But these are the very conditions which lead to the

generation of squeezed states. Indeed, a coherent state of a harmonic oscillator is squeezed

by a sudden change of the oscillator frequency [17]. Recall that a coherent state is a state

with equal and minimal uncertainties: 〈∆P 2〉 = 〈∆Q2〉 = 1/2, where P = (a − a†)/i
√
2

and Q = (a+ a†)/
√
2 are dimensionless momentum and position expressed through bosonic

creation and annihilation operators.

It is convenient to describe oscillator states by their Wigner functions (see, e.g., [18]):

W (α, α∗) =
1

2π2

∫

dλ dλ∗ e(−λα∗+λ∗α)
tr

[

e(λa
†−λ∗a)ρ

]

, (1)

which have the advantage of reducing to classical distribution functions in the classical limit.

Here ρ is the density matrix of the system. For a coherent state, the Wigner function is

Gaussian,

Wα0
(α, α∗) =

2

π
exp[−2|α− α0|2].

The amplitude and phase of the complex parameter α0 (which in the Schrödinger represen-

tation behaves as α0(t) = α0(0) exp[−iωt]) describe the classical limit of the oscillator state.

2



A squeezed state will have instead the Wigner function

W (α, α∗) =
2

π
exp

{

−2s [(x− x0) cos θ + (y − y0) sin θ]
2 − 2

s
[(y − y0) cos θ − (x− x0) sin θ]

2
}

.

(2)

Here x = Re α, y = Im α, s is the squeezing parameter, and θ determines the direction of

the squeezing axis. Similarly, the thermal state

Wth(α, α
∗) =

2/π

1 + 2n̄
exp[−2|α|2/(1 + 2n̄)],

characterized by the average photon number n̄ = {exp [ω/T ]− 1}−1, can be squeezed to [19]

W (α, α∗) =
2/π

1 + 2n̄
exp

{

− 2

1 + 2n̄

[

s (x cos θ + y sin θ)2 +
1

s
(y cos θ − x sin θ)2

]}

. (3)

After being introduced in Ref. [17], squeezing the oscillator states by a sudden change of

oscillator frequency was considered in a number of papers [8, 11, 20–24]. In particular, it

was shown [11, 21, 24] that, in the absence of decoherence, repeated abrupt small changes of

the oscillator frequency can produce arbitrarily large squeezing. Here we will mainly follow

the approach of [11].

Consider an arbitrary time dependence of the system frequency ω(t). Let us also denote

the creation/annihilation operators belonging to the Fock state of an oscillator with the

frequency ω(t = 0) by a0, a
†
0, and those corresponding to ω(t), by aω, a

†
ω. The Hamiltonian

keeps its standard form,

H(t) = h̄ω(t)
(

a†ωaω +
1

2

)

, (4)

and the commutation relations between aω, a
†
ω hold, if the old and new operators are related

via a Bogoliubov transformation

aω =
[ω(t) + ω(0)]a0 − [ω(t)− ω(0)] a†0

2
√

ω(t)ω(0)
, (5)

which can be explicitly written as [17]

a0 = V †(t)aωV (t); a†0 = V †(t)a†ωV (t) (6)

where

V (t) = exp

{

−1

4

[

ln
ω(0)

ω(t)

]

[

a2ω − (a†ω)
2
]

}

; V †(t) = exp

{

1

4

[

ln
ω(0)

ω(t)

]

[

a2ω − (a†ω)
2
]

}

. (7)
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In order to work in the initial Fock space at t = 0, we apply the transformation V −1(t) =

V †(t), which gives

H(t) → H̃(t) = V (t)H(t)V †(t)− ih̄V (t)
∂

∂t
V †(t) =

h̄ω(t)
(

a†0a0 +
1

2

)

+ ih̄
ω̇(t)

ω(t)

[

a20 − (a†0)
2
]

. (8)

Hereafter we correct an error made in [11], where the transformation (8) was effectively

applied twice in the same direction, which quantitatively (but not qualitatively) affected the

results. For the Wigner function, with α, α∗ always referring to the coherent states in the

same Fock space (at t = 0), we find the master equation ([11], mutatis mutandis)

∂

∂t
W (α, α∗, t) = 2ω(t)Im

(

α∗ ∂

∂α∗

)

W (α, α∗, t) +
∂ lnω(t)

∂t
Re

(

α
∂

∂α∗

)

W (α, α∗, t), (9)

or

∂

∂t
W (x, y, t) = ω(t)

(

x
∂

∂y
− y

∂

∂x

)

W (x, y, t) +
1

2

∂ lnω(t)

∂t

(

x
∂

∂x
− y

∂

∂y

)

W (x, y, t). (10)

We did not include the diffusive terms, which describe decoherence (including relaxation),

thus assuming that the system maintains coherence over many cycles of frequency-switching

and of its free evolution with frequency ω(t). Equation (10) is a first-order linear equation

and can be solved by the method of characteristics. The characteristic equations are

dx

dt
=

ω̇

2ω
x− ωy;

dy

dt
= ωx− ω̇

2ω
y. (11)

In the limit of fast frequency change, when the ω̇-terms dominate, these equations lead to

squeezing of the quantum state:

d lnx

dt
≈ d ln

√
ω

dt
;

d ln y

dt
≈ −d ln

√
ω

dt
, (12)

so that W (x, y,∆t) ≈ W (
√
sx, 1√

s
y, 0), with squeezing parameter s = ω(∆t)/ω(0), and ∆t

the duration of the fast frequency change [cf. Eqs. (2, 3)]. In the quasistatic limit, Eq. (11)

simply describes the rotation of the Wigner function as a whole: slow changes of parameters

do not produce any squeezing, as expected.

As we mentioned above, in the absence of decoherence, periodic changes of the oscillator

frequency can produce an arbitrarily high degree of squeezing, even if the difference betweeen

the two limiting values, ω0 and ω1, is arbitrarily small. It is only necessary that at least
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one of the transitions (ω0 → ω1 or ω0 → ω1) is fast on the scale of ω, and these transitions

are tuned to the phase of the oscillator. This may also take place during the operation of

a quantum bus, which would normally switch fast on- and off-resonance with the qubits

coupled to it. As we shall see, there are entropy costs associated with the production of

squeezed states. Therefore this side-effect should be avoided in the operation of quantum

buses.

Let us return to the characteristics equation (11). Without loss of generality, we can

consider two regimes of oscillator frequency switches ω0 ↔ ω1: the “ratchet” regime (when

one transition, e.g., ω0 → ω1, is fast, and the opposite one is slow [11, 24]), and the “seesaw”

regime (when both transitions are fast [21]). In either case, if two consecutive fast switches

occur at the moments tn−1 and tn, the point on a characteristic will evolve according to






x

y







tn+0

=







√
sn cos θn,n−1

√
sn sin θn,n−1

− 1√
sn

sin θn,n−1
1√
sn

cos θn,n−1













x

y







tn−1+0

≡ Λn







x

y







tn−1+0

. (13)

Here θn,n−1 is the phase angle accumulated during the period of slow evolution, and sn is

the squeezing achieved at the nth step. In the “ratchet” regime: sn = s = ω1/ω0 (or vice

versa), while in the “seesaw” case: s2n = 1/s2n+1 = s. Obviously, det Λn = 1. After two

consecutive switches

(ΛnΛn−1)
r =







(s− 1) cos θn,n−1 cos θn−1,n−2 + cos θn,n−2 (s− 1) cos θn,n−1 sin θn−1,n−2 + sin θn,n−2

−
(

1
s
− 1

)

cos θn,n−1 sin θn−1,n−2 − sin θn,n−2

(

1
s
− 1

)

cos θn,n−1 cos θn−1,n−2 + cos θn,n−2





 (14)

and

(ΛnΛn−1)
s =







−(s− 1) sin θn,n−1 sin θn−1,n−2 + cos θn,n−2 (s− 1) sin θn,n−1 cos θn−1,n−2 + sin θn,n−2

−
(

1
s
− 1

)

sin θn,n−1 cos θn−1,n−2 − sin θn,n−2 −
(

1
s
− 1

)

sin θn,n−1 sin θn−1,n−2 + cos θn,n−2





 .(15)

Here θn,n−2 = θn,n−1 + θn−1,n−2. In the case of periodic switchings, θn+1,n = Θ, this reduces

to

(ΛnΛn−1)
r =







(s− 1) cos2Θ+ cos 2Θ s+1
2

sin 2Θ

−1/s+1
2

sin 2Θ
(

1
s
− 1

)

cos2Θ+ cos 2Θ





 (16)

and

(ΛnΛn−1)
s =







−(s− 1) sin2Θ+ cos 2Θ s+1
2

sin 2Θ

−1/s+1
2

sin 2Θ −
(

1
s
− 1

)

sin2Θ+ cos 2Θ





 . (17)
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The resonance conditions, Θr = πq and Θs = π(q+1/2), when either (16) or (17) diagonalize,

ensure that after 2N switchings the state will be squeezed exponentially to an arbitrary

degree,






x

y





 =







±s 0

0 ±1
s







N 





x0

y0





 = ±







sNx0

s−Ny0





 , (18)

no matter how small (s−1). For finite values of (s−1), an exact resonance is not necessary.

For example, in the ratchet case a runaway squeezing will happen if [24]

s > sc =
1 + | sinΘ|
| cosΘ| . (19)

Deviations from periodic switching in the operation of a quantum bus, fluctuations of circuit

parameters, and eventually relaxation and decoherence in the system will limit the actual

degree of squeezing. Nevertheless, the very operation of a quantum bus will tend to produce

squeezed states.

Squeezing is in itself a reversible process. Nevertheless, in the presence of decoherence

it will lead to an increase of the system’s entropy, which can be associated with internal

friction [25]. To be specific, consider the so-called “energy entropy” [25, 26]

SE [ρ] ≡ −
∑

n

pn ln pn ≥ S[ρ] ≡ −tr [ρ ln ρ] , (20)

where ρ is the density matrix, {pn}∞n=0 are its diagonal terms in the energy basis, and S

is the standard (“fine-grained”) von Neumann entropy. The two entropies coincide if and

only if ρ commutes with the Hamiltonian. Obviously, unlike S, SE can increase in a closed

system. This property of SE makes it analogous to the “coarse-grained entropy” introduced

in the classical case by Gibbs [27], as opposite to the “fine-grained” classical entropy, which

also does not change in a closed system due to Liouville’s theorem. Some “coarse-graining”

procedure is therefore essential for the description of closed systems, be they classical or

quantum. While there exist different ways of introducing coarse-grained quantum entropy

(see, e.g., [28]), the energy entropy is perhaps the simplest and most logical choice, given

the special role played by the Hamiltonian and its eigenstates. The von Neumann entropy

naturally approaches SE as the decoherence processes wipe out the off-diagonal terms of the

density matrix in the energy representation. The additional advantage of using SE in our

case is that it can be conveniently expressed through the Wigner function [29], since

pn = 2(−1)n
∫

dα dα∗ e−2|α|2 Ln(4|α|2)W (α, α∗)

6



= 2(−1)n
∫ ∫

dx dy e−2(x2+y2) Ln(4(x
2 + y2))W (x, y). (21)

Here Ln(x) is the Laguerre polynomial. We can associate with the additional entropy,

δS(s) = SE(s)− SE(0), of a squeezed state a specific amount of heat,

δQ(s) = T δSE(s), (22)

which will be eventually released into the system.

As an example, consider a squeezed thermal state (3), for which an exact solution can be

actually found [29] in terms of the hypergeometric function [30]:

pthn = κ
n
∑

q=0

Cq
n(−1)q

(

2

1 + κ
s

)n+1−q

2 F1

(

1

2
, n+ 1− q; 1;−κ(s− 1/s)

1 + κ/s

)

, (23)

where κ = tanh(ω/2T ). A more convenient approximation, valid for small squeezing, κ(s−
1) ≪ 1, is given by

pn ≈ peqn
C1(ε)

I0

(

κε
(

n

1− κ
+

n + 1

1 + κ

))

≈ peqn
C2(ε)

I0

(

ωε

T
(n + 1/2)

)

. (24)

Here peqn = (1−exp[−ω/T ]) exp[−nω/T ] is the equilibrium population of the nth energy level

of the oscillator, ε ≡ |s − 1| characterizes squeezing, I0(z) is the modified Bessel function,

and the last expression in Eq. (24) is valid for ω/T ≪ 1. The normalization constants

C1,2 = 1 + O(ε2). The occupation of states with numbers n < N0 will initially decrease,

and of those with numbers n > N0 increase with squeezing. Expanding the Bessel function,

I0(z) = 1 + z2/4 + . . ., we see that d(pn − peqn )/dε = 0, if

n = N0 ≡
2T

ω
− 1

2
. (25)

This is in good agreement with the results based on the exact formula in Eq. (23) (Fig. 1).

The corresponding change in entropy is given by

δSE(ε) = −
∑

n

δpn ln p
eq
n = − ε2

16

(ω/T )2

(1− exp[−ω/T ])2
×

{

ln(1− e−ω/T )
(

1 + 6e−ω/T + e−2ω/T
)

− ω

T

9e−ω/T + 14e−2ω/T + e−3ω/T

1− e−ω/T

}

≈ −ε2

2

{

(1− ω

T
) ln

ω

T
− 3 + 5

ω

T

} (

ω

T
≪ 1

)

. (26)

With the same accuracy, the equilibrium entropy of an unsqueezed thermal state becomes

S = − ln[2 sinh(ω/2T )] + (ω/2T ) coth(ω/2T ) ≈ − ln(ω/T ) + 1.
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FIG. 1: (Color online.) Occupation numbers of the energy levels of a harmonic oscillator in a

squeezed thermal state [Eq. (23)] as a function of squeezing ε = |s − 1|. (a) ω/T = 0.2, estimated

boundary number N0 = 2T/ω − 1/2 = 9.5; levels (top to bottom) 8, 9, 10, 11, 12. (b) ω/T = 0.4,

N0 = 4.5; levels (top to bottom) 3, 4, 5, 6, 7.
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Therefore in the leading term in T/ω ≫ 1 the squeezing contribution to the entropy is

δSE(ε) ∼ ε2

2
S, (27)

and the amount of additional heat released into the system due to squeezing will be

δQ ∼ T
ε2

2
S =

(s− 1)2

2
T S (28)

per cycle. Detuning between the bus and qubits can be typically 10-30% [6], making the

prefactors in Eqs. (27,28) as high as 0.25, i.e., the contribution of squeezing to the system

entropy becomes comparable to the equilibrium entropy of the device. Of course, this

contribution becomes important only when the system operates near the Landauer erasure

limit, with QL = T ln 2 [15, 16]. If a need ever arises to limit its effect, the quadratic

dependence of δQ on the squeezing parameter indicates that even a slight decrease of the

difference between the operating frequencies of the bus will drastically reduce it. One

also should avoid a periodic operation of the bus, to exclude the resonant increase of the

squeezing rate.

CONCLUSION

We have shown that the operation of a quantum bus will lead to squeezing of its

quantum state, and calculated the corresponding additional heat, which will be injected

into the system. This contribution is quadratic in the squeezing rate (proportional to the

ratio of the working frequencies of the bus) and can become important only in systems

operating either near the Landauer erasure limit or under the conditions when there is a

resonant increase of squeezing by repeated bus operation.
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