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The striped state of ultracold bosons with Rashba spin-orbit coupling in a homogeneous infinite
system has, as we show, a constant particle flow, which in a finite-size system would accumulate
particles at the boundaries; it is thus not a physical steady state of the system. We propose,
as a variational ansatz, a condensate wave function for a weakly trapped system which behaves
similarly to the striped state near the center, but does not have particle flow at the boundaries.
This state has a line of unquantized coreless vortices. We show, by minimizing the total energy,
that our modified striped state has lower energy than the conventional striped state and it is thus
a physically appropriate starting point to analyze striped states in finite systems.

With the recent experimental realization of non-
Abelian gauge fields in ultracold atomic gases [1–3],
and in particular Rashba-Dresselhaus spin-orbit coupling
[4, 5], the properties of the novel phases possible in these
systems has come to the fore. Ultracold bosons with
Rashba-Dresselhaus spin-orbit coupling have been pre-
dicted to exhibit, depending on the details of the in-
terparticle interaction, a plane-wave state, which is a
Bose-Einstein condensate (BEC) of a single momentum
state, or a striped state, which is a BEC made of par-
ticles with two opposite momenta [6–10]. At nonzero
temperature, exotic phases such as a nematic superfluid
phase [11] and a BEC stabilized by interactions are pre-
dicted [12, 13]. In trapped systems, even more exotic
phases, such as a half-vortex phase and a lattice phase,
have been predicted [14–17]. When the trap potential
energy is small compared to the kinetic and the inter-
particle interaction energies, numerical calculations pre-
dict that in two dimensions phases similar to the plane-
wave and the striped phase in a homogeneous system
may emerge [15, 16].

In a homogeneous system the striped phase has, as we
show, alternating local particle current along the stripes,
which accumulate particles at the boundaries, and thus it
cannot be a physically realizable steady state in a finite
system. In this paper, we address the question of how
such a striped state can be modified to embed it into a
finite system. Two possible remedies are surface currents
at the ends of the stripes which recirculate the particle
flow, or flow between the stripes in bulk. We explore
this latter solution in this paper, considering a system
trapped by a weak harmonic potential in the direction
(along y) of the stripes. For simplicity in this first step
we do not confine the system transverse to the stripes.
We propose a variational ansatz for a modified striped
condensate wavefunction which behaves as the striped
state near the center, but does not have a net current
flow at the boundary. The wavefunction is Gaussian in
the direction of the stripes, with a complex phase de-
scribing divergence-free particle flow. Fixing the spatial
extent of the Gaussian by minimizing the energy, we show
that the modified striped state has lower energy than a
simple striped state, and thus is a physically acceptable

candidate for the ground state.
Local current in the striped phase. We consider bosons

in two hyperfine states, labelled ↑ and ↓, with pure
Rashba spin-orbit coupling, described by the Hamilto-
nian

H =

∫

d3rΨ†(r)

(

(p̂−A)
2

2m
− κ2

2m
+ V (r)

)

Ψ(r)

+Hint, (1)

where Ψ(r) = (ψ↑(r), ψ↓(r)) is the particle annihilation
operator, V (r) is the potential of the confining trap, and
A = −κ(σx, σy, 0) is the non-Abelian vector potential,
with coupling strength κ. We assume s-wave interactions
between particles,

Hint =
∑

σ,σ′=↑,↓

gσσ′

2

∫

d3rψ†
σ(r)ψ

†
σ′ (r)ψσ′ (r)ψσ(r). (2)

The Hamiltonian without interactions has a circle of
degenerate single-particle ground states with momenta
√

p2x + p2y = κ and pz = 0. The striped state, a su-

perposition of two states with opposite momenta on the
circle of degenerate single-particle ground states, is the
preferred ground state in the homogeneous (V (r) = 0) in-
finite system, if we take the renormalization of the inter-
action into account [10, 18, 19]. The macroscopic wave-
function of the striped state with momenta (±κ, 0, 0) is

Ψs(r) =
√
n

(

cos(κx)
−i sin(κx)

)

, (3)

where n is the density of particles.
The particle current in the presence of the gauge field,

jst(r) =
1

2im
(Ψ∗

s∇Ψs −∇Ψ∗
s Ψs)−

1

m
Ψ∗

sAΨs

=
(

0,−nκ
m

sin(2κx), 0
)

, (4)

does not vanish; there is a local flow of particles in the
striped state all the way out to y = ±∞. (We set ~ = 1
throughout.) Figure 1 plots (jx(r), jy(r)) as a function of
κx and κy. The flow in the y direction alternates as we
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move along the x axis. In a finite-size box, this flow would
drive particles to the boundaries in the y direction, ac-
cumulating particles at the edge. Thus the striped state
per se is not a stable steady state in a finite-size system.
On the other hand, experimentally realizable ultracold
atomic systems are inevitably finite, and we are in a need
of finding a physically acceptable state which is similar
to the striped state.
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FIG. 1: The particle current j(r) of a striped state as a func-
tion of x and y in units of κ−1. The thickness of the arrows
indicates the magnitude of the current.

The particle circulation in the striped state is not quan-
tized, since the local velocity, vst ≡ jst/n is

∇× vst =

(

0, 0,−2κ2

m
cos(2κx)

)

. (5)

Such non-quantized vorticity is a generic feature of sys-
tems coupled to external gauge fields, e.g., Type II su-
perconductors.
Non-vanishing local flow is a common feature of striped

states in general Rashba-Dresselhaus spin-orbit coupling
fields of the form A = −κ(σx, ησy, 0) where 0 < η ≤ 1.
When η = 0, an equal mixture of the Rashba and Dres-
selhaus spin-orbit couplings, the local current vanishes.
In the experimentally realized spin-orbit coupling to date
is an equal mixture of the Rashba and Dresselhaus [1–3]
(with no problem of particles accumulating at the bound-
aries).
Modified striped state. We now assume that the sys-

tem is confined in the y direction by a harmonic potential,
V (r) = mω2y2/2. Taking the striped state (3) as a start-
ing point, we assume a macroscopic wavefunction for a
modified striped state of the form

Ψms(r) = γ(x, y)eiφ(x,y)
(

cos(κx)
−i sin(κx)

)

, (6)

where γ(x, y) and φ(x, y) are real functions of x and y.
Going beyond this form of ansatz, for example by mod-
ifying the spin part of the wavefunction, is beyond the
scope of this paper. In this state, the particle density is
γ2, and the particle current is

j(r) =
γ2

m
[∇φ+ (0,−κ sin(2κx), 0)]

= γ2
(∇φ
m

+ vst(r)

)

. (7)

Two physical conditions on Ψms are that the current van-
ishes at large |y|, and in equilibrium, ∇· j = 0. A natural
choice for a system harmonically confined in the y direc-
tion is

γ = c e−ζκ2y2/2, (8)

where ζ is a positive dimensionless variational parameter,
and the normalization c is determined by fixing the total
number of particles, N ,

c2 =
Nκ

L2

√

ζ

π
=

√
2 n̄ms. (9)

Here L is the linear size of the system in the x and z
directions, and n̄ms =

∫

dyγ4/
∫

dyγ2 is a mean particle
density. With this form for γ, the condition ∇ · j = 0 is
satisfied for

φ =
ζκy

ζ + 2
sin(2κx). (10)

Then

j(r) =
κ

m

2γ2

ζ + 2
(ζκy cos(2κx),− sin(2κx), 0) . (11)

In the limit ζ → 0, we recover the striped state (3) and
current (4). Figure 2 plots the current for ζ = 1 as a
function of κx and κy. When κy is small, the current
behaves similarly to that in the striped state and flows
in the ±y directions. However, as |y| grows, the current
bends towards the ±x directions, and particles no longer
accumulate at the boundaries in the y direction. Near
the center this state in a finite system behaves similarly
to a striped state.
The modified striped state has a line of vortices, along

the z-axis, at r = (νπ/2κ, 0, 0), where ν takes integer
values. While the particle velocity at the center of the
vortices vanishes, the density remains nonzero; the vor-
tices are coreless. The curl of the local velocity in the
modified stripe phase, v = j/γ2, is simply that of the
original striped phase, Eq. (5) [20].
Energy. We turn now to examine when the modified

stripe state is energetically favorable at zero temperature.
In mean field, the energy per particle of the modified
striped state is

〈E〉ms =

{

ǫk
ζ

2

(

1− 1

(ζ + 2)2

)

+ ǫi
√

ζ

}

+
ǫt
ζ
, (12)
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FIG. 2: The particle current j(r) of the modified striped state
(6), with ζ = 1, as a function of x and y in units of κ−1.
The magnitude of the current, shown by the thickness of the
arrows, falls off at large |y|. Note the line of vortices along
the x-axis.

where ǫk ≡ κ2/2m,

ǫi ≡
Nκ

16
√
2πL2

(3g↑↑ + 3g↓↓ + 2g↑↓) (13)

and ǫt ≡ mω2/4κ2.
First we compare the kinetic and interaction terms in

braces in Eq. (12) with the corresponding terms of the
simple striped state (3), whose energy per particle is

〈E〉s =
n

16
(3g↑↑ + 3g↓↓ + 2g↑↓) . (14)

The kinetic energy of the modified striped state is posi-
tive and thus larger than that (zero) of the simple striped
state. Furthermore, the ratio of the interaction energy in
the modified stripe phase to that in the simple striped
phase is n̄ms/n. More relevant is to compare the energy
of the modified state with a straightforward extension of
the striped state with a Gaussian-striped state described
by the condensate wavefunction,

Ψgs(r) = c e−ζκ2y2/2

(

cos(κx)
−i sin(κx)

)

. (15)

Although this state is a natural extension of the striped
state with a Gaussian decay, the divergence of the cur-
rent does not vanish, and is not physically acceptable.
Nonetheless, since the correct ground state must have
lower energy than the Gaussian-striped state, we com-
pare the energies of the Gaussian-striped and the mod-
ified striped states. The energy of the Gaussian-striped
state is

〈E〉gs = ǫk
ζ

2
+ ǫi

√

ζ +
ǫt
ζ
. (16)

The energy difference between the modified striped state
and the Gaussian-striped state arises just from the ki-
netic energies,

〈E〉ms − 〈E〉gs = − κ2

2m

ζ

2(ζ + 2)2
< 0. (17)

Thus, modifying the striped state with spatially depen-
dent phase to make the current divergence-free decreases
the energy below that of the Gaussian extension of the
striped state, showing that our ansatz wavefunction for
the modified striped state is a promising weakly confined
striped-like ground state.
We also compare the energy of the modified striped

state with that of a Gaussian extension of the plane-wave
state, described by the wavefunction

Ψgp = c e−ζκ2y2/2 e
iκx

√
2

(

1
−1

)

. (18)

The current vanishes in this phase and it is thus physical.
Its energy is

〈E〉gp = ǫk
ζ

2
+

Nκ
√
ζ

8
√
2πL2

(g↑↑ + g↓↓ + 2g↑↓) +
ǫt
ζ
. (19)

The kinetic energy and trap energy are the same as for
the Gaussian-striped state. The interaction energy of
the plane-wave state is lower when g↑↓ < (g↑↑ + g↓↓)/2,
in which case the mean-field ground state in an infinite
system is also a plane-wave state [8]. Thus, within mean-
field coupling with weak confinement, the modified stripe
phase is preferred over the Gaussian-plane-wave ground
state if (and only if) the interspecies interaction is larger
than the average intraspecies interaction.
Finally we determine ζ variationally; minimization of

〈E〉ms with respect to ζ, implies that the optimal ζ is a
function of the dimensionless ratios ǫk/ǫt and ǫi/ǫt. Fig-
ure 3 shows the resulting energy of the modified striped
state, 〈E〉ms/ǫt, as a function of ǫk/ǫt and ǫi/ǫt, while
Fig. 4 shows the optimal ζ.
As ω → 0, the energy (12) is minimized when ζ = 0,

which is the simple striped state; as can be seen in Fig. 4,
ζ grows with increasing ω. In the limits of kinetic energy
dominant over the interaction energy and vice versa, we
can obtain the asymptotic behaviors of ζ and the corre-
sponding energy analytically.
First, when ǫk ≫ ǫi, minimizing (12) ignoring

the interaction term one obtains ζ ≃
√

8ǫt/3ǫk =

2mω/(
√
3κ2). The energy to leading order is 〈E〉ms ≃√

3ω/4. This asymptotic behavior is valid when the es-
timated interaction energy using the asymptotic value of
ζ is smaller than the kinetic and the trap energies, which
yields the condition ǫi/ǫt ≪ (ǫk/ǫt)

3/4. In the other
limit, ǫi ≫ ǫk, a similar analysis leads to ζ ≃ (2ǫt/ǫi)

2/3

and 〈E〉ms ≃ 3(ǫ2i ǫt/4)
1/3. The condition at which this

asymptotic behavior is valid is ǫi/ǫt ≫ (ǫk/ǫt)
3/4. In this

limit the extent of the Gaussian in y is independent of κ.
For typical experimental parameters of spin-orbit coupled
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2/3

i

FIG. 3: The energy of the modified striped state 〈E〉ms as a
function of the kinetic and interaction energies; all energies
are in units of ǫt.

∼ ǫ
−2/3

i

∼ ǫ
−1/2

k

FIG. 4: The inverse width, ζ, of the Gaussian γ, as a func-
tion of the kinetic and interaction energies in units of ǫt; note
that the figure is turned 90◦ from Figs. 3 and 5. The sur-
face rises indefinitely as the kinetic and interaction energies
become small.

87Rb [2], ω/2π ∼ 50Hz, κ ∼
√
2π/800nm, N ∼ 5 × 105,

and L ∼ 100µm, one has ǫk/ǫt ∼ 10000 and ǫi/ǫt ∼ 2300;
here one is in the latter limit, with ζ ∼ 0.01.
The optimal value of ζ for the Gaussian striped phase is

similarly a function of the dimensionless ratios ǫk/ǫt and
ǫi/ǫt. In Fig. 5 we show the difference of the energy of
the modified striped state and the Gaussian-striped state
in a trap, as a function of ǫk/ǫt and ǫi/ǫt. The energy
of the modified striped state always lies below that of
the Gaussian-striped state, with the difference becoming
larger as the kinetic energy becomes large compared to
the trap energy.

In summary, the modified striped state is not only
physically allowed, but it is also an energetically favor-
able starting description of steady state striped states in a

FIG. 5: The energy difference of the modified striped state
and the Gaussian-striped state, 〈E〉ms − 〈E〉gs; again all en-
ergies are in units of ǫt.

harmonic trap. The arguments given in this paper hold
in two as well as three dimensions, mutatis mutandis,
and thus the state (6) is the preferred stripe-like ground
state in either situation. As we noted earlier, the mod-
ified striped state has a line of coreless vortices, which
can be probed to identify the state in possible future ex-
periments.
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