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1Institute for Quantum Optics and Quantum Information of the Austrian
Academy of Sciences, University of Innsbruck, A-6020 Innsbruck, Austria
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We present a systematic investigation of attractive binary mixtures in the presence of both spin- and mass-
imbalance in one dimensional setups described by the Hubbard model. After discussing typical cold atomic
experimental realizations and the relation between microscopic and effective parameters, we study several many-
body features of trapped Fermi-Fermi and Bose-Bose mixtures such as density profiles, momentum distributions
and correlation functions by means of density-matrix-renormalization-group and Quantum Monte Carlo simu-
lations. In particular, we focus on the stability of Fulde-Ferrell-Larkin-Ovchinnikov, dimer and trimer fluids in
inhomogeneous situations, as typically realized in cold gas experiments due to the harmonic confinement. We
finally consider possible experimental signatures of these phases both in the presence of a finite polarization and
of a finite temperature.

PACS numbers: 71.10.Pm, 05.30.Jp, 37.10.Jk

I. INTRODUCTION

The study of superfluidity of either bosons or fermions has
been a central topic in the field of ultracold atomic gases, start-
ing from seminal experimental studies on the Bose-Einstein
condensation of bosons [1–3] and continuing with investiga-
tions of the BCS-BEC crossover [4–7]. More recent exper-
iments with two-component Fermi gases have addressed the
case of a finite population imbalance, both in three spatial di-
mensions [8–11] and in one dimension [12]. Among the goals
of these experiments is the search for the transition from a
fully paired superfluid phase to the normal state and, in par-
ticular, for competing pairing states that survive a finite po-
larization. These include the Sarma state [13] or the Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) state [14, 15].

With the recent advances in engineering optical lattices
[16], it has also become possible to investigate fermionic pair-
ing states within the framework of the Hubbard model. For
repulsive onsite interactions the hope is to reach sufficiently
low temperatures to search for pairing states away from half
filling [17–19], whereas in the case of attractive interactions,
there is a natural tendency to pair formation. Besides ex-
periments with homonuclear mixtures, where the pseudo-spin
degree of freedom arises from preparing atoms in different
hyper-fine states, there is also the possibility of working with
heteronuclear mixtures such as, for instance, the 40K-6Li sys-
tem [20–23]. In that case, one deals with both a finite mass
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and population imbalance. On the other hand, bosonic gases
in optical lattices have provided the first example of a quan-
tum phase transition from a Mott insulator to a superfluid
state in the context of ultra cold atoms [24], which was subse-
quently observed in one dimensional setups [25, 26] as well.
In analogy with the fermionic case, both homonuclear and het-
eronuclear bosonic mixtures have been realized [27–29]. The
two-species Bose-Hubbard model encompasses a remarkably
rich physics, ranging from super-counterflow and antiferro-
magnetic phases in case of interspecies repulsion [30–32] to
pair superfluidity and density-wave instabilities in the attrac-
tive regime [33–35].

From a theoretical point of view, it is of advantage to con-
sider the one-dimensional case, for which both powerful an-
alytical and numerical methods are available that can pro-
vide us with practically exact answers in many regimes. In
ultra-cold atomic gases, it is also perfectly possible to real-
ize one-dimensional systems experimentally, both for bosons
[25] and fermions [12], adding strong motivation to study this
case. Moreover, one-dimensional systems have been demon-
strated to harbor unconventional superfluid phases which are
the central topic of this work. In our work, we are interested in
three types of superfluid states of two-component systems and
their existence in the attractive, asymmetric Hubbard model:
(i) the more conventional fully paired phase, which can be
considered as a fluid of Cooper pairs, (ii) superfluids of larger
composite objects such as trimers, and (iii) the FFLO state
in which a superfluid of pairs with finite center-of-mass mo-
mentum appears. The first two cases, i.e., the equal density
(or dimer fluid) and the trimer fluid, can be realized in both
Fermi-Fermi mixtures [36, 37] and Bose-Bose mixtures in
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one dimension [33] while the FFLO state exists only in the
case of two-component Fermi mixtures (see [38] and refer-
ences therein). In our study we use state-of-the art numerical
methods – the density matrix renormalization group (DMRG)
[39–41] and the stochastic series expansion Quantum Monte
Carlo [42]– to probe the stability of the aforementioned phases
at a finite population and mass imbalance in the presence of
a harmonic trapping potential. Our study complements pre-
vious works that mostly focussed on the homogeneous case
[34–37, 43–45]. Moreover, we incorporate aspects that are
typical of many experiments, namely (i) the possibility of tun-
ing the ratio of the effective masses through the depth of the
optical lattice; (ii) the fact that in a mass-imbalanced system
the two components usually experience a different trapping
potential; and (iii) the difficulty in controlling the population
of the two components to an arbitrary degree of precision, re-
sulting typically in a non-zero global polarization. Finally,
we also study the effect of a small but finite temperature on
the shell structure and coherence properties of trapped mass-
imbalanced two-component gases.

Let us give a brief account of our main results. In the case of
fermions and for the bulk system it is well-known that the fully
paired phase is the ground state of a two-component Fermi gas
away from half filling [46]. In the presence of a harmonic trap
and at a finite population imbalance, the fully paired phase
can only survive in the wings of the particle cloud at small
polarizations [47–50], as recently observed in an experiment
reported in Ref. 12. Here we show that adding mass imbalance
to the system stabilizes the fully paired phase in the trap: if the
light particles are the majority species, the fully paired phase
occupies the center of the trapped system, in agreement with
the grand-canonical phase diagram of the asymmetric Hub-
bard model at a finite spin polarization [36, 44, 45]. We fur-
ther show that a small temperature does not destroy the equal
density phase. The main conclusion is therefore that it is not
necessary to enforce the condition of a perfectly balanced gas
to observe and study properties of a dimer fluid. This result
applies to both fermions and hardcore bosons.

A particular feature of mass-imbalanced systems in one di-
mension is that they allow for the formation of bound states
of more than two components, which in the two-species Hub-
bard model with equal masses is forbidden. This can happen
for both fermions [36, 37, 45] and bosons [37]. The existence
of these states requires commensurate ratios of the densities
of heavy particles (n↓) versus light ones (n↑). For instance,
a trimer fluid can only be stable if 2n↑ = n↓ [36, 37], where
nσ = Nσ/L is the density of the pseudo-spin σ =↑, ↓ com-
ponent in a system of length L with Nσ particles of species σ.
For the homogeneous system, this sets the global polarization
P to

P = (N↑ −N↓)/N = −1/3 (1)

(N = N↑+N↓) and it is in fact possible to stabilize this phase
in a harmonic trap by enforcing this condition globally as was
shown in Ref. 45 at sufficiently low densities. Here we investi-
gate the fate of the trimer fluid upon deviating from the global
polarization of P = −1/3, both for the case of fermions and
bosons, finding that the trimer fluid rapidly gets pushed into

the wings of the gas and subsequently disappears even for very
small deviations from Eq. (1). Therefore, one needs to fine-
tune the global polarization to precisely P = −1/3 to ensure
that a large fraction of particles participates in this state. A
difference in the trapping potential for the two components,
however, has little effect on the trimer phase. For the case of
bosons, we demonstrate that the formation of the trimer fluid
leaves clear fingerprints in the momentum distribution func-
tion, a quantity that is easily accessible in experiments.

Finally, concerning the FFLO state, we show that it sur-
vives the addition of the harmonic trap and the mass imbal-
ance. Similar to the case of a system with population imbal-
ance only [47–51], this phase occupies the center of the trap
in a large parameter regime, corresponding in particular to the
case in which heavy particles are the majority ones. These
numerical observations are consistent with the known phase
diagrams for homogeneous system via the local-density ap-
proximation (LDA) [36, 44, 45].

The plan of the paper is the following. First, in Sec. II we
discuss typical experimental settings and conditions for two
examples: (i) a heteronuclear Fermi-Fermi mixture such as
40K and 6Li and (ii) a homonuclear Bose-Bose mixture, where
the mass imbalance arises due to a spin-dependent optical lat-
tice. This discussion serves to guide our numerical study. In
Section III, we provide an extensive analysis of the density
profiles of a mass-imbalanced Fermi mixture and we present
a state diagram for the various shell structures. In Sec. IV,
we study both hardcore and softcore bosons and probe the
stability of the dimer and trimer fluid. We conclude each of
these sections with a detailed summary of the results, while
the main aspects are summarized again in Sec. V.

II. EXPERIMENTAL SET-UPS FOR MASS-IMBALANCED
SYSTEMS IN OPTICAL LATTICES

The purpose of this section is to describe the experimen-
tal set-ups to realize mass-imbalanced systems described by
the asymmetric Hubbard model. In this context, we dis-
cuss heteronuclear mixtures, focussing on the example of the
Fermi-Fermi system 40K and 6Li. The case of a homonu-
clear Fermi-Fermi mixture for which the mass-imbalance is
induced by spin-dependent optical lattices has been described
in [52]. Then we turn to homonuclear Bose mixtures in a spin-
dependent optical lattice.

A. Model Hamiltonian

Our numerical analysis will be based on the attractive,
asymmetric 1D Hubbard model:

H = −
L−1∑
`=1,σ

tσ

(
c†`σc`+1σ + h.c.

)
+ U

L∑
`=1

n`↑n`↓

+

L∑
`=1,σ

Vσ(`− L/2)2n`, (2)
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where c†`σ creates a fermion with a pseudo-spin σ =↑, ↓ at
site `, n`σ = c†`σc`σ , n` = n`↑ + n`↓ is the local density, tσ
is the hopping parameter with an explicit dependence on the
pseudo-spin index, and U < 0 is the attractive onsite inter-
action energy. We set the lattice spacing to unity and impose
open boundary conditions. We add a harmonic confining po-
tential parameterized by constants Vσ . Without loss of gener-
ality we will consider t↑ > t↓. A positive (negative) polar-
ization P corresponds to a majority of light (heavy) particles.
We also introduce the local magnetization through

〈Sz` 〉 = 〈n`↑ − n`↓〉/2 . (3)

We further define the ratio of the trapping potentials as

η = V↑/V↓ . (4)

B. Heteronuclear Fermi-Fermi mixtures

The proposed experimental setup is schematically shown in
Fig. 1. Two pairs of counterpropagating laser beams with or-
thogonal linear polarization are orthogonally intersected. This
creates a 2D array of individual atom traps in the shape of one-
dimensional tubes. In this example we choose the wavelength
to be λtrap = 1024 nm, far red-detuned from the atomic tran-
sitions. Considering a two-species fermionic mixture of 6Li
and 40K, we take into account the transition wavelengths for
the D-lines (671.0 nm for lithium and 770.1 nm / 767.7 nm
for potassium). In order to realize one-dimensional optical
lattices we superimpose a pair of counterpropagating laser
beams that are perpendicular to the trapping beams and blue-
detuned with respect to the wavelengths of the D lines. In the
following subsections, we will discuss the resulting trapping
potentials Vσ , the hopping parameters tσ and the onsite inter-
action U .

1. Trapping potentials

The ratio of the optical trapping potentials V trap
i (i =Li,K)

is a fixed number that amounts for the given wavelengths to

V trap
Li /V trap

K ≈ 0.44. (5)

Note that V↑ ∝ V trap
Li and V↓ ∝ V trap

K . Due to the difference
in the optical potentials and the different masses the respective
trapping frequencies are generally different:

ωtrap
i =

√
V trap

0,i

√
2

mi

√
2

wl
, (6)

where wl is the waist of the trapping beams and V trap
0,i is the

trap depth in the center of the crossed beam setup.
In general the wavelength for the trap can be chosen such

that the difference in the optical potentials for the two atomic
species compensates the mass difference such that equal trap-
ping frequencies are obtained [53]. This so called magic
wavelength, λtrap

M , occurs for the mixture of 6Li- 40K at
799.9 nm.

FIG. 1: An array of independent one-dimensional optical dipole traps
is created by intersecting two perpendicular standing waves (these
are the four dark-grey beams in the figure, which are red detuned). A
third orthogonal optical standing wave (these are the two light-grey
beams in the figure, which are blue detuned) generates a repulsive
lattice potential along the traps. The density profiles of trapped atoms
can be observed by an imaging setup from a transverse direction.
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FIG. 2: The normalized lattice depth: At the magic wavelength
(λsw

M = 661.3 nm) the lattice depths are equal for 6Li and 40K (solid
line). Two nanometer above (dotted) and below (dashed) the lattice
depths differ, while the ratio is inverted at the magic wavelength.
Using a beam waist of 200µm less than one Watt of laser power is
sufficient to achieve relevant lattice depths.

2. The optical lattice

The one-dimensional optical lattice is realized by superim-
posing a pair of counterpropagating laser beams perpendicular
to the beams that form the trapping array. For a given inten-
sity of the lasers creating the optical lattice, potassium and
lithium will experience optical lattice potentials of a different
depths as illustrated in Fig. 2. The experimentally controllable
parameters are the amplitudes of the standing wave forming
the optical lattice, i.e., the lattice depths V sw

0,i . These, and the
masses determine the respective frequencies:

ωsw
i =

√
V sw

0,i

√
2

mi
k . (7)
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It is useful to introduce the atomic recoil energies as

ER,i =
h̄2k2

2mi
=

h̄2π2

2mia2
, (8)

where k = 2π/λsw is the wave vector of the standing wave,
λsw is the laser wavelength, and a = λsw/2 is the lattice spac-
ing. This allows us to express the frequencies as:

ωsw
i =

√
4ER,iV sw

0,i

h̄2 . (9)

For wavelengths of the lattice laser blue-detuned to the atomic
transitions there exists a single magic wavelength, λsw

M , at
which the lattice depths V sw

0,i normalized to the respective re-
coil energies ER,i are equal:

V sw
0,i

ER,i
= Ṽ0.

For the 6Li-40K mixture this occurs at 661.3 nm. In Table I
we summarize the magic wavelengths and the ratios of the
optical trapping potentials at λtrap = 1024 nm for different
combinations of alkaline atomic species. As is obvious from
the table, in all cases, the trapping potentials differ.

We assume a separable three-dimensional lattice potential
of the form

V (x, y, z) = V‖(x) + V⊥(y) + V⊥(z) (10)

= V0,‖ sin2(kx) + V0,⊥
[
sin2(ky) + sin2(kz)

]
.

This allows us to calculate the hopping matrix elements from
the one-dimensional Mathieu equation. The result is shown
in Fig. 3 (solid lines). In the limit of a deep lattice, one can
obtain an analytical expression [16]:

ti,λ =
4ER,i√

π

(
V sw0,i,λ

ER,i

)3/4

exp

(
−2

√
V sw0,i,λ

ER,i

)
λ =‖,⊥,

(11)
with i =K,Li and recoil energies ER,i. This result is also
included in Fig. 3 (dashed lines), and it agrees with the exact
solution for large V sw

0 or, correspondingly, at a larger laser
power Psw.

The ratio of the tunneling energies of 6Li and 40K is shown
in Fig. 4. While the bare mass ratio is mLi/mK ∼ 0.15, we
deduce that the ratio of the actual hopping matrix elements
further depends on the laser power Psw through the lattice
depth V sw

0,i . This is illustrated in Fig. 4 Thus in general, the
ratio t↑/t↓ can be tuned and is not solely given by the bare
mass ratio. In our numerical analysis of a two-component
Fermi mixture, we will work at t↓/t↑ = 0.3, corresponding to
tLi/tK = 10

3 . This requires to detune the wavelength slightly
above the magic wavelength λsw

M (compare Fig. 4.)
The onsite repulsion U between two atoms of different

species is given by [54]:

U =
2πh̄2ai,j
µi,j

∫
dr3|ψi(x, y, z)|2|ψj(x, y, z)|2 (12)
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FIG. 3: The tunneling energies at the magic wavelength λsw
M are the

same for 6Li and 40K (solid line). The asymptotic expression (dashed
line) only describes the exact solution of the Mathieu equation at
sufficiently large lattice depths (see Eq. (11)). The maximum at low
lattice depths is not physical.
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FIG. 4: Ratio of the tunneling energies for 6Li and 40K for different
lattice wavelengths. At the magic wavelength the ratio is constant at
the inverse mass ratio (solid line). Two nanometers above and below
the magic wave-length the ratio of the tunneling energies differs from
the bare mass ratio (dashed lines). By increasing the lattice power
the ratio of the tunneling energies can be tuned over a wide range
that can be set by the choice of the wavelength. The DMRG and
SSE simulations presented in this work are done for a ratio of the
tunneling energies tLi/tK = 10

3
.

In the expression, ψσ are the Wannier functions , µi,j is the
reduced mass, and ai,j is the scattering length that could be
different for two atomic species, hyperfine flavors, or Bose-
Fermi mixtures.

For the evaluation of U we assume a deep lattice V sw0,i �
ER,i and that the particles occupy the lowest band. We can
then approximate the Wannier functions by the ground state
functions of a 1D harmonic oscillator:

ψi(x, y, z) = ψi,‖(x)ψi,⊥(y)ψi,⊥(z)

ψi,‖(x) = (πσ2
i‖)
−1/4 exp(−x2/2σ2

i‖)

ψi,⊥(y) = (πσ2
i⊥)−1/4 exp(−y2/2σ2

i⊥) (13)

ψi,⊥(z) = (πσ2
i⊥)−1/4 exp(−z2/2σ2

i⊥)
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TABLE I: Magic wavelengths resulting in identical trapping frequen-
cies or lattice potentials for different combinations of alkaline atoms.
The calculation takes both D lines for each species into account.

V trap
0,1 /V

trap
0,2 λtrap

M λsw
M

at 1064 nm (nm) (nm)
6Li40K 0.44 799.9 661.3
6Li87Rb 0.4 804.8 666.3
6Li133Cs 0.23 905.1 666.7
23Na40K 0.39 - 481.1
23Na87Rb 0.35 945.8 551.7
40K87Rb 0.9 807.3 655.4

with

σi,λ =

√
h̄

miωsw
i,λ

λ =⊥, ‖ . (14)

Notice that for soft-core bosons, one needs to consider excited
states.

A simple and straightforward Gaussian integration yields:

Ui,j =
2πh̄2ai,j
µi,j

1

π3/2

1√
σ2
i,‖ + σ2

j,‖

1

σ2
i,⊥ + σ2

j,⊥
.

This expression can be simplified if we work at the magic
wavelength for the lattice, since for this case we have:

σi,‖ = σj,‖ =
a

πṼ
1/4
0

.

Expressing the energies in units of one of the recoil energies,
we obtain

Ui,j
ER,i

=
4ai,ja√
2π3/2

(
1 +

mi

mj

)
1

σ2
i,⊥ + σ2

j,⊥
Ṽ

1/4
0 . (15)

In the extreme 1D limit, this entire expression can be sim-
plified even further, since the Wannier functions become Dirac
deltas in the transverse direction:

U1D
i,j

ER,i
=

4ai,ja√
2π

(
1 +

mi

mj

)
Ṽ

1/4
0 . (16)

These equations indicate the recipe for controlling the interac-
tions, which can be done by either changing the lattice depth
with lasers, or by tuning the scattering length using Feshbach
resonances. Notice that if the lattice is too deep, multi-band
processes can occur, but the validity of the one-band approxi-
mation is generally satisfied in practice.

C. Homonuclear two-component Bose gases in spin-dependent
optical lattices

In the case of bosons the Hubbard Hamiltonian contains
also intraspecies interactions with a strength Uσσ:

H = −
∑
`,σ

[
tσ

(
b†`σb`+1σ + h.c.

)
+ Uσσn`σ (n`σ − 1)

]

+ U

L∑
`=1

n`↑n`↓ +
∑
`,σ

Vσ(`− L/2)2n`. (17)

Here b†`σ creates a boson of type σ =↑, ↓ on site `. In this
case, mass imbalance can be realized either in heteronuclear
mixtures (such as 87Rb/41K [27, 55]) or in hyperfine mixtures
in spin-dependent optical lattices (such as in the case of 87Rb
as realized in a number of recent experiments [28, 29]. We
will focus the following short discussion on the latter example,
in which the Hubbard parameters can be tuned by the lattice
depth, by the optical lattice wavelength, and by an interspecies
Feshbach resonance. We consider 87Rb in the hyperfine mix-
ture of | ↑〉 = |F = 1,mF = 1〉 and | ↓〉 = |F = 1,mF = 0〉
hyperfine states, which are collisionally stable and for which
several Feshbach resonances have been identified [56]. State-
dependent optical lattices can be easily realized when the op-
tical lattice wavelength is close to the D1 and D2 lines –
795 and 780 nm respectively [57]. We consider a highly
anisotropic optical lattice, with wavelength λ⊥ = 830 nm and
depth V0,⊥ = 40 Er for the transverse components defining
1D tubes, and wavelength λ|| = 784 nm and variable depth
V0,|| for the longitudinal component along the tubes. Here
Er = h̄2k2

L/(2m) is the recoil energy, where kL = 2π/λ⊥
for the transverse components and kL = 2π/λ|| for the lon-
gitudinal one. As in the previous section, we use the solution
of the Mathieu equation to determine the hopping rates t↑ and
t↓, and we calculate the intraspecies couplings U↑↑ and U↓↓ in
the Gaussian approximation [16]. For instance, we find that
the hopping ratio t↓/t↑ spans the interval 0.3− 0.1 when V0,||
goes from 6 Er to 20 Er; in the same parameter range, the
ratios U↑↑/t↑ and U↓↓/t↓ are above 10, suppressing double
occupancy of the same species: in this case an appropriate
description of the system is provided by a model of hardcore
bosons, on which we will focus our attention later in the pa-
per. The interspecies coupling U , which would naturally be
very strong in this parameter interval (U/t↑ > 10), can be
suppressed by exploiting the aforementioned Feshbach reso-
nances.

III. MASS-IMBALANCED TWO-COMPONENT FERMI
GASES

A. Overview: population- and mass-imbalanced 1D mixtures

In this section we study the density profiles and s-wave pair-
ing correlations of a mass- and population imbalanced two-
component Fermi gas with attractive interactions in a har-
monic trap. This extends previous studies of population im-
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balanced mixtures on the one hand and mass-imbalanced sys-
tems on the other hand. We shall briefly review the known
results.

The phase diagram of a spin-imbalanced two-component
Fermi gas with equal masses and attractive interactions can
be obtained from the Bethe ansatz, both in the continuum
[47, 48] and in lattice models [46]. Only recently, it was rig-
orously shown that the partially polarized phase is the one-
dimensional analogue of the FFLO state by means of numer-
ical methods [49, 51, 58–60], confirming predictions from
mean-field theory [61, 62] and bosonization [63]. In 1D, this
means that the pair-pair correlation functions are modulated
with Q = kF↑ − kF↓ and decay as a power law, slower
than any competing correlation in the two-particle channel
(kFσ = πnσ is the Fermi momentum). The computation of
correlations using the Bethe ansatz is generally very difficult,
and therefore, the exponents of correlations were first calcu-
lated by numerically solving the corresponding Bethe ansatz
equations [64]. Very recently, first analytical results for the
FFLO correlations from Bethe ansatz have been presented in
[65]. In more general models that incorporate the coupling of
fermions to a molecular channel [66–68], the partially polar-
ized phase is of the FFLO type on the BCS side only [69, 70].
The fate of the FFLO state in coupled one-dimensional sys-
tems has been recently addressed [64, 71–74].

For spin-imbalanced systems in one dimension, it is by now
well-established that there is a two-shell structure in a har-
monic trap [47–51]. The central shell is always occupied by
the partially polarized phase, while in the wings there is a fully
paired phase at low polarizations and a fully polarized phase
at large polarizations. Thus, there is a critical polarization Pc
at which the shell structure changes (exactly at Pc, the whole
system is in the partially polarized phase). This was first pre-
dicted by applying the local density approximation to the ex-
actly known phase diagram [47, 48] and then confirmed in
numerical simulations [49–51]. The FFLO-type correlations
in the partially polarized phase are stable against the presence
of a harmonic trap [51]. The effect of temperature on the shell
structure was studied using both Bethe ansatz methods com-
bined with the local density approximation [75] and Quan-
tum Monte Carlo simulations [49, 76]. In a recent experiment
with a 3D array of one-dimensional tubes [12], the theoretical
predictions for the shell structure were quantitatively verified
[47, 48, 75]. For more details, see the review [38].

A mass-imbalanced system of attractively interacting
fermions is no longer integrable. The phase diagram for the
population and mass-imbalanced case was therefore obtained
by using field theory and DMRG calculations [36, 37, 44, 45,
77]. In Ref. [44], the main focus was on the partially po-
larized phase which shrinks as the mass imbalance increases
due to the instability of a strongly mass imbalanced systems
against a collapse for P < 0 and phase separation for P > 0
[43]. The partially polarized phase is, for the most part and
similar to the case of a spin-imbalanced mixture, of the 1D
FFLO type [44]. A complete phase diagram for the case of a
majority of heavy particles was presented in Ref. [36], where
in particular, the existence of trimer-fluid phases was demon-
strated. These trimer phases can exist if the densities of the

two components obey a certain ratio, namely

2n↑ = n↓ . (18)

This is a necessary condition only; in Ref. [36] it was shown
that the trimer gap goes to zero above a critical density n↓,c.
Moreover, in the trimer-fluid phase, the trimer correlations de-
cay algebraically [45], while the (s-wave) pairing correlations
decay exponentially [36]. Note that there are in fact many
more stable multimer bound states at other rational ratios of
n↑ and n↓ [36, 37, 45], which we will not study in this work.

As a consequence of the presence of these trimer phases
(and phases of liquids of even larger compounds), the par-
tially polarized phase is separated from the vacuum by an ex-
tended line in the µ-h phase diagram [36], in contrast to the
population imbalanced system, where this is a critical point
[46, 47, 50].

Another main difference is the broken particle-hole symme-
try of the the mass- and spin-imbalanced mixture compared
to the case of only spin-imbalance. This has immediate con-
sequences for the shell structure in a harmonic trap. To il-
lustrate this, let us resort to the local density approximation,
valid if the trapping potential is sufficiently smooth, as it is
the case with parabolic potentials whose harmonic oscillator
length is much larger than the lattice spacing or the interparti-
cle distance. In the case of a single species and within LDA,
the local properties of the trapped system can be quantita-
tively related to those of a bulk system whose chemical po-
tential equals the local chemical potential in the trap, namely
µ` = µ − Vσ(` − L/2)2. In the case of a two-component
mixture the chemical potential is generally species depen-
dent, and one can parametrize the two chemical potentials as
µ↑ = µ + h/2 and µ↓ = µ − h/2. The LDA assigns to local
regions of the trap the behavior of a bulk system with local av-
erage chemical potential µσ → µ`σ , but with fixed chemical
potential difference (or magnetic field) h = µ↑ − µ↓.

In general, to induce a finite polarization into the system the
magnetic field h has to overcome (in modulus) either one of
the following gaps (that we shall refer to as polarization gaps):

∆+ = E(N↑ + 1, N↓ − 1)− E(N↑, N↓)

∆− = E(N↑ − 1, N↓ + 1)− E(N↑, N↓) . (19)

where E(N↓, N↑) is the ground state energy of a system with
a given N↑ and N↓ in the bulk case. The gaps ∆± are related
to the spin (pairing) gap ∆s as ∆s = ∆+ + ∆−. In other
words, to obtain P 6= 0, one needs either h > ∆+ (P > 0) or
h < ∆− (P < 0). In the case of equal masses the polariza-
tion gaps are both equal to ∆s/2, and hence they are known
to be finite through the Bethe Ansatz solution of the model in
the case of attractive interactions U < 0 [46]. In particular,
as depicted in Fig. 5, the Bethe Ansatz solution predicts that
∆s is a decreasing function of µ below half filling. There-
fore, in this situation, applying the LDA to a trapped system a
larger spin gap is found in the trap’s wings where the density
is lower: h being constant across the trap, this means that a
polarization P induced by h will appear first at the trap center
only, moving gradually to the trap wings as h (or P ) increases.
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FIG. 5: Polarization gaps ∆± (see Eq. (19)) for the one-dimensional
attractive Hubbard model for hardcore bosons/fermions with equal
populations. n is the total particle density. Adapted from Ref. [44].

The situation changes radically in the case of mass imbal-
ance. For a two-component Fermi gas the gaps ∆± were cal-
culated via DMRG in Ref. [44] (these results carry over to
the case of a two-component gas of hardcore bosons to be
discussed later). As could be anticipated, the two polariza-
tion gaps become unequal, ∆+ 6= ∆−, and, most importantly,
they are no longer particle-hole symmetric functions of the
chemical potential (but the spin gap ∆s is). In particular, ∆+

becomes an increasing function of the chemical potential (or
the density, respectively), which is schematically depicted in
Fig. 5. This implies that, in the mass-imbalanced case, an
increasing (positive) magnetic field h will first polarize the
trap’s wings, while the trap center remains unpolarized and
exhibits full pairing.

B. Predicted shell structure in a trap

Based on the above considerations and on the phase dia-
gram of Ref. [36] valid for t↑/t↓ = 0.3, one can expect a
variety of shell structures in a harmonic trap using the lo-
cal density approximation. For P < 0, there will be three
cases: (i) a partially polarized core plus fully paired wings for
0 < |P | < |Pc1|, (ii) an extended region with only a partially
polarized phase at |Pc1| < P < |Pc2|, and (iii) a partially
polarized core and fully polarized wings at |P | > |Pc2|. In
Ref. [45], it was demonstrated that at P = −1/3 there is only
a partially polarized phase where the commensurability con-
dition for the existence of trimers is fulfilled locally at every
point in the trap, confirming the predictions of Ref. [36]. In
the case of P > 0, we expect only one critical polarization
Pc3, separating a three-shell structure from a two-shell struc-
ture. At small P , the equal-density phase occupies the core
of the system, followed by an intermediate shell that is par-
tially polarized, and a fully polarized region in the wings. At
large P > Pc3, the core is partially polarized, surrounded by a
fully polarized shell. One goal of our work is to confirm these
predictions by using DMRG simulations [39, 40].

We first compute the density and spin-density profiles at
zero temperature using DMRG to obtain the state diagram of

such a system and show that this is consistent with the quali-
tative expectations drawn from the grand-canonical phase di-
agram [36, 44]. We devote particular attention to the stability
of phases with commensurate densities, i.e., the fully paired
phase and the trimer phase against the presence of the trap. In
addition, we calculate the pairing correlations in the presence
of the trap and show that they are of the FFLO type in the par-
tially polarized phase (excluding of course the regions of the
trimer fluid). Next, we investigate the effect of varying U on
the critical polarization separating different shell structures at
P > 0. Then, we study the behavior in spin-dependent traps,
motivated by the discussion from Sec. II B. Finally, we use
quantum Monte Carlo simulations to analyze the effect of a
finite temperature on the shell structure, focussing on the sta-
bility of the fully paired phase at P > 0.

C. Relation to experimental parameters

Let us first make the connection between the symbols used
here and the experimental set-up more transparent. We envi-
sion a 6Li-40K mixture in an optical lattice. We associate

t↑ = tLi (20)
t↓ = tK . (21)

We will work with t↓ = 0.3t↑, which implies to go to a
wave-length larger than λsw

M (compare Fig. 4). We avoid
the regime of very strong mass imbalance t↓ � t↑ since in
that regime, the system is unstable against phase separation
(P > 0) or a collapse (P < 0) [43]. Since the bare mass ratio
is mLi/mK ≈ 0.15, it is therefore advantageous to tune the
system to an intermediate ratio of effective masses. For most
of the simulations we will work with U = −4t↑ (implying
U ≈ −13.3t↓).

Furthermore we will consider the ratio of the trapping fre-
quencies, parameterized by η = V↑/V↓ as a free parameter,
and we will first discuss η = 1. The discussion from Sec. II B
suggests that for the 6Li-40K mixture, η ≈ 0.4 and we will
explore this in our DMRG analysis as well.

D. Density profiles in a harmonic trap at zero temperature

We investigate the density profiles at T = 0 using DMRG.
Our DMRG simulations are done on chains with L <∼ 140
sites, and using between m = 400 and m = 800 states.
We consider variable trapping potentials, confining the atomic
cloud well within the simulation box. In order to label the
emergent shell structures, we introduce a set of acronyms: PP
(partially polarized), ED (equal density), FP (fully polarized),
TP (trimer phase). Then, we use strings of these acronyms
that describe the shell structure, going from the core to the
wings. As an example, the label PP-ED stands for a system
with a PP phase in the core and an ED phase in the wings.
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FIG. 6: (Color online) Density profiles for P > 0: (a) At low P ,
there are two shells: ED in the core and PP and FP in the wings. (b)
At large P , PP sits in the core and FP sits in the wings. Parameters:
t↓ = 0.3t↑, U = −4t↑, N = 50, V = 10−3t↑ and (a) P = 1/5,
(b) P = 2/5. (solid lines: 〈ni〉, dashed lines: local population
difference −2〈Szi 〉).
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difference −2〈Szi 〉).

1. Equal trapping potentials, V↑ = V↓, low densities

In this section, we consider the case of η = 1, i.e., equal
trapping potentials for both components. Typical density and
spin-density profiles obtained from DMRG simulations are
shown in Figs. 6 and 7 for P > 0 and P < 0, respectively.
These results confirm our qualitative expectations discussed
in Sec. III A, namely that at P > 0, there are three shells for
P < Pc3 (ED-PP-FP) and two at large polarizations P > Pc3
(PP-FP, compare Fig. 6). At P < 0, there are two critical po-
larizations separating the different shell structures from each
other: (i) PP-ED for P < Pc1, (ii) PP for Pc1 < P < Pc2,
and (iii) PP-FP for P > Pc2 (compare Fig. 7).

The particular case of Pc1 < P < Pc2 is addressed in
Fig. 8. Right at P = −1/3 and at sufficiently low density,
the trimer condition 2n↑ = n↓ is fulfilled in the entire trapped
cloud (see Fig. 8(a) where we reproduce the results from
Ref. [45]). In this parameter regime, the results of Refs. [36]
and [45] suggest that the ground state is a trimer fluid. Upon
deviating only slightly from P = −1/3 (which ensures the
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FIG. 8: (Color online) P < 0, density profiles that match the trimer
condition n↓ = 2n↑ (solid lines: 〈ni〉, dashed lines: local population
difference −6〈Szi 〉). (a) P = −1/3: the trimer condition is fulfilled
in the entire trap (first shown in Ref. [45]). (b) P = −5/21 > −1/3,
(c) P = −19/51 < −1/3: PP in the core, the trimer condition is
fulfilled in a thin outer shell. Parameters: t↓ = 0.3t↑, U = −4t↑,
N = 51, Vσ = 2 · 10−6t↑.

trimer condition globally), the trimer condition is no longer
fulfilled locally, i.e. 2〈ni↓〉 6= 〈ni↑〉. This demonstrates that
in order to stabilize the trimer fluid in a harmonic trap one
needs to fine-tune the global polarization to P = −1/3.

2. Large density regime

While our main interest is in the low-density regime, we
here also include examples of typical density profiles at large
densities, i.e., where one of the two components has density
〈niσ〉 = 1. These are presented in Fig. 9. The first two ex-
amples are for P < 0 and have 〈ni↓〉 = 1 in the core of the
system, followed by a thin partially polarized shell. At small
P < 0, the outer wings are fully paired [see Fig. 9(a)] while
at large P < 0, they are partially polarized [see Fig. 9(b)].
In the regime of P > 0, the light atoms form a band insu-
lator with 〈ni↑〉 = 1 first. In the particular example shown
in Fig. 9(c), the core is surrounded by a thin PP phase and a
broad fully polarized wing. Qualitatively, one-species band
insulators with 〈niσ〉 = 1 form faster at P < 0 than at P > 0,
i.e., by increasing the total particle number or by making the
trap tighter. Not surprisingly, it is energetically favorable to
displace the light atoms (σ =↑) into the outer regions.
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3. Equal trapping potentials: State diagram

Our results for the shell structure of a mass- and spin-
imbalanced system at t↓ = 0.3t↑ and U = −4t↑ are sum-
marized in the state diagram Fig. 10. We focus on those re-
gions of polarization P and effective density ρ = N

√
V in

which no component has formed a band insulator yet (i.e.,
we restrict ourselves to 〈niσ〉 < 1). Evidently, in most of
the state diagram the partially polarized phase sits in the core
with the exception of the region 0 < P < Pc3, where the
equal density phase occupies the central region of the trap.
It is interesting to emphasize that this does not happen for a
purely spin-imbalanced system: there, any arbitrarily small
polarization pushes the equal density phase to the outer wings
[47, 48, 50]. In that sense, the mass imbalance stabilizes the
fully paired/equal density phase. In particular, if one is inter-
ested in this phase, it is therefore not necessary to fine-tune
the global polarization to P = 0. This is a consequence of the
broken particle-hole symmetry in a mass-imbalanced system
as discussed in Sec. III A.

The trimer phase, realized at global polarization P =
−1/3, extends up to ρ ≈ 0.22 (triangles up in Fig. 10). To
determine this point we have followed the density in the cen-
ter of the trap and compared it to the critical density of the
bulk system beyond which the trimer gap closes [36], which
is at n = 0.5 for U = −4t↑. In Ref. [45], it was further shown
that at sufficiently low density and at P = −1/3, the trimer
correlations in the trap follow a power law. One possibility to
observe the formation of trimers in an experiment would be
to open the trap and to let the gas expand in 1D in the optical
lattice (such an experiment was performed in 2D and 3D op-
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FIG. 10: (Color online) State diagram for V↑ = V↓ (U = −4t↑,
t↓ = 0.3t↑).

tical lattices with balanced two-component Fermi gases [78]).
Due to the formation of heavy objects, i.e., the trimers, that
are protected by the associated excitation gap [36], the expan-
sion should be substantially slower at P = −1/3 compared
to other polarizations. A similar behavior was seen in numer-
ical simulations for the expansion of two-component Fermi
gases with a high density of doublons [79, 80]. Our sugges-
tion therefore is to monitor the expansion velocity as a func-
tion of both polarization (at low densities ρ <∼ 0.22) and of
effective density at P = −1/3.

Regarding the critical polarizations Pci (i = 1, 2, 3), we ob-
serve a weak dependence on effective density. Most notably,
going to small ρ further stabilizes the ED-PP-FP regime. This
is consistent with the usual argument that in one dimension,
pairing at equal densities is more robust at low densities [38].

It is further instructive to discuss the spatial extent of the
atomic cloud, and of the clouds of each individual compo-
nent. This follows the analysis of Ref. [47] for the one-
dimensional spin-imbalanced Fermi gas, where it was sug-
gested that the critical polarization can be read off from the
polarization dependence of the radii. In fact, a similar analy-
sis was then used in the experimental work on density profiles
of one-dimensional spin-imbalanced Fermi gases [12].

We now take a cut at a fixed ρ = N
√
V through the state

diagram and we estimate the spatial extentRx (x = n, ↑, ↓) as
the region with a finite particle density, where Rn is the cloud
radius and Rσ are the radii for σ =↑, ↓. Typical results are
shown in Fig. 11. Several aspects deserve being mentioned.
First, the cloud is the smallest in the region Pc2 < P < Pc1,
where only a partially polarized phase is present. Secondly,
for P < Pc2 (where Pc2 is the critical polarization separating
PP from PP-FP), one observes R↑ < R↓, while for Pc2 <
P < 0, one has R↑ = R↓ = Rn. At Pc1 and Pc3, however,
there are no clear features in the dependence of the radii on
polarization (we have to keep in mind, though, that the particle
numbers are fairly small).

While we have mostly focussed on U = −4t↑, it is also
interesting to study the effect of U on the stability of the ED
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phase. The dependence of Pc3 on U is shown in Fig. 12. In-
creasing |U | makes the regime in which the ED phase occu-
pies the core of the system larger, as expected.

4. Equal trapping potentials: FFLO correlations in the PP phase

We now show that in the PP phase the FFLO correlations
are robust to the presence of the trap. We focus on the region
P < 0, since at P > 0, the PP phase sits in the core only for
P > Pc3. In that regime, however, the spin density typically
strongly varies across the trap, which disfavors clear signa-
tures of the FFLO state. In a harmonic trap, the signatures
of the FFLO state are the cleanest whenever the polarization
varies slowly with the chemical potential [51, 71].

In order to demonstrate the presence of FFLO correlations
we compute the Fourier transform of the pair-pair correlations

np(k) = (1/L)
∑
lm

exp[ik(`−m)] ρ`m . (22)
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FIG. 13: (Color online) Momentum distribution of pairs in the PP
phase at P < 0 for V↑ = V↓ = 10−4t↑, U = −4t↑ (t↓ = 0.3t↑).
We display data for P = −4/15,−2/5,−8/15,−2/3,−4/5, with
the peak in npair

k shifting from left to right, respectively (we do not
see a clear signature for 0 < |P | < 1/5). Inset: Position Q of the
maximum in npair

k vs P (squares) and vs πneffPeff (circles, see text
in Sec. III D 4). The dashed line is Q = πneffPeff , i.e., Eq. (24).

where

ρ`m = 〈c†`↑c
†
`↓cm↓cm↑〉 .

Here, and throughout the paper, we adopt the same discretiza-
tion of the k vectors as in a homogeneous system, namely
nσ(k = 0) expresses the number of particles with momentum
k in the interval [−π/L, π/L) for a system of size L.

Our DMRG results are displayed in Fig. 13. Clearly, in the
curves with |P | > 0, we observe a maximum in npair

k at some
incommensurate momentum Q, indicative of oscillating pair
correlations. In a homogeneous system in one dimension and
in the FFLO state, the modulation Q is given by

Q = kF↑ − kF↓ = π(N↑ −N↓)/L . (23)

i.e., Q ∝ P . In a harmonic trap, first of all, not all majority
fermions participate in the FFLO state since all particles in the
FP regions have to be excluded. Second, the length entering
in Eq. (23) is the one that is actually occupied by the quasi-
condensate. Therefore, Q is not simply proportional to the
global polarization in the case of a trapped system. If one ac-
counts for that, following the procedure described in Ref. [51]
then one obtains

Q = πneffPeff (24)

where neff = Neff/Leff and Peff = (N↑,eff − N↓,eff)/Neff .
Leff is the region occupied by the quasi-condensate, and all
Nσ,eff are obtained by integrating 〈n`σ〉 over that region.
Equation (24) should properly describe the scaling of the posi-
tionQ of the maximum in np(k) if the spin-density is approx-
imately constant in the PP shell. We plot Q vs both the total
polarization P (circles) and πneffPeff (squares) in the inset of
Fig. 13. Q deviates from Eq. (24) by up to 10%. This can
partially be explained by taking into account the uncertainties
of determining Q and Leff from the finite-size data.

To complete the discussion, one would need to show that
the FFLO correlations decay algebraically along the trap (see
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the discussion in Ref. [51] for the spin-imbalanced case). For
a homogeneous system with mass- and spin-imbalance, the
momentum distribution functions were discussed in Refs. [43,
44], while in Refs. [36, 45], it was shown that away from P =
−1/3, the (s-wave) paring correlations decay algebraically,
modulated with cos(Qx).

5. Unequal trapping potentials, V↑ 6= V↓

We now turn to the case of unequal trapping potentials, η 6=
1. η > 1 implies that the light atoms are squeezed into the core
of the trapped gas whereas for η < 1, they are being pushed
out.

In the case of η 6= 1 and a vanishing global polarization
P = 0, a partially polarized phases can be induced if the
trapping potentials are sufficiently different form each other
(results not shown here). However, drastically different trap-
ping potentials are necessary even at small |U | ∼ t↑ and the
partially polarized phase has a strongly varying spin density.
This disfavors this set-up as a way of realizing the FFLO state,
which leaves clearer fingerprints whenever the spin density
varies slowly with the chemical potential [71].

Next we address the question whether unequal trapping po-
tentials drastically alter the state diagram or not, and we first
focus on the stability of the ED phase. As an example, we
consider P = 0.2, shown in Figs. 14(a)-(c) for η = 1, 10
and η = 0.4, respectively. At η = 1, the ED phase occupies
the core of the system. Only a very large η achieves enough
compression of the light particles as to wash out completely
the ED phase. At η = 0.4 on the other hand, the central ED
shell grows bigger than for η = 1, as more excess ↑-particles
migrate towards the wings.

To render this observation more quantitative, we plot the
critical polarization Pc3 as a function of η in the inset of
Fig. 14(b). Pc3 monotonously decreases with increasing η,
with a very weak dependence on η beyond η ≈ 5. It is im-
portant to stress that for the experimental parameters sketched
in Sec. II B, the equal density shell is actually stabilized since
η < 1.

The trimer phase, realized at global polarization P = −1/3
in the entire trap at sufficiently small densities, is remarkably
stable against varying η. This is demonstrated in Fig. 15,
where, starting from the parameters of Fig. 8(a), we vary η
from η = 64 to η = 0.4. By compressing the trap for the
light fermions (η > 1) the cloud size shrinks drastically, thus
increasing the density in the center of the trap. Eventually, the
trimer condition Eq. (18) is no longer fulfilled along the entire
trap: the heavy fermions prefer to stay in the wings [see the
example of η = 64 in Fig. 15(a)]. One also drives the core of
the system out of the regime in which the trimer gap is finite
(compare Refs. [36, 45]). In the opposite regime, η < 1, the
cloud expands, yet down to η ∼ 0.1, we still observe a perfect
match of 〈ni〉 = −6〈Szi 〉, equivalent to 2〈ni↑〉 = 〈ni↓〉.
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E. Density profiles at finite temperatures

As seen in the previous sections, the formation of an ED
dimer liquid in the trap center is very robust to the presence of
a finite, positive polarization P for a large window of charac-
teristic densities ρ. Here we probe the robustness of this phe-
nomenon to the further effect of finite temperatures, by mak-
ing use of quantum Monte Carlo (QMC) simulations based on
the Stochastic Series Expansion (SSE) algorithm [42]. In our
present study we use a canonical formulation based on double
directed-loop updates [81]. Figure 16 refers to a path through
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FIG. 16: (color online) (a) Finite-temperature state diagram of a mass
imbalanced mixture with t↓ = 0.3t↑, U = −4t↑, and V↑ = V↓ =
1.5 · 10−4t↑. The polarization scan is obtained by fixing N↑ = 24
and varying N↓. (b) Trajectory in the P − ρ plane (compare Fig. 10)
described with the above parameters.

the state diagram of Fig. 10. This corresponds to an exper-
imentally situation, in which N↑ = 24 is kept fixed, while
N↓ is varied, scanning the P axis at variable ρ. The actual
trajectory in the P − ρ plane is indicated in the figure. Here
t↓ = 0.3t↑ and U = −4t↑ as in the previous sections, while
V↑ = V↓ = 1.5 · 10−4t↑. As a criterion for dimer liquid
formation in the trap center we require that the local magne-
tization vanishes over the 10 central sites. This criterion is
met at T ≈ 0 (actually T = 4 · 10−3t↑, ensuring the elim-
ination of thermal effects) over a sizable polarization range
0 ≤ P <∼ 1/3, as already seen in Fig. 10. As T is increased
above zero, the polarization range featuring an unpolarized
dimer liquid (i.e., the ED phase) in the trap core shrinks,
but it remains sizable up to temperatures T ≈ 0.2 t↑/kB ,
proving the robustness of ED pairing to realistic conditions.
Indeed, even though pairing correlations in one-dimensional
systems become short-ranged as soon as T becomes finite,
the finite gaps ∆± that were defined in Eq. (19) prevent the
thermally excited majority (↑) particles from flowing from the
trap wings into the center. The parameter region featuring an
unpolarized core in Fig. 16 shrinks asymmetrically from the
side of positive polarizations: indeed at higher P the excess
↑ particles sitting in the trap wings have a higher potential
energy, and therefore they need a smaller thermal energy to
overcome the gaps ∆± and to flow into the trap center.

F. Heteronuclear, mass-imbalanced Fermi gases: Summary

So far we have studied the properties of three pairing states
of a spin- and population imbalanced Fermi gas in a har-
monic trap, namely the equal density (or dimer fluid) phase,
the trimer fluid phase and the FFLO state.

Our main result for the ED phase is that it occupies the core
of a trapped system over a wide range of positive polariza-
tions. Unequal trapping potentials which are typical for a het-
eronuclear system destabilize the ED phase if the confinement
for the light particles is much stronger than for the heavy ones,
whereas in the opposite regime, the ED phase is favored. This
phase is stable against thermal fluctuations as long as they do
not overcome the polarization gaps ∆±.

Stabilizing the trimer fluid phase in a trapped system seems
to require a fine-tuning of the global polarization to P =
−1/3. The FFLO phase can, according to our results, eas-
ier be studied on the P < 0 side since there, we observe flat
spin-density profiles.

IV. MASS-IMBALANCED TWO-COMPONENT BOSE
GASES

While fermionic mixtures have been shown to support three
different types of superfluid phases, FFLO, ED and trimer
phase, which are stable even in the presence of a trapping
potential, the question naturally arises whether such pairing
instabilities are indeed possible when considering bosonic bi-
nary mixtures. The main difference between fermionic and
bosonic statistics resides in the fact that bosons can (quasi-
)condense, resulting in a sharp peak at wavevector k = 0 in
the momentum distribution

nσ(k) =
1

L

∑
ij

eik(`−j)Bσ(`; j) (25)

where

Bσ(`; j) = 〈b†σ,`bσ,j〉 (26)

is the one-body density matrix (OBDM), and b`σ, b
†
`σ are

bosonic operators. Strictly speaking, the distinctive feature
of phases dominated by one-body coherence is the power-law
decay of the OBDM, Eq. (26) - which may or may not result in
a divergent nσ(k = 0) peak depending on the exponent of the
power law. Yet in a trapped system such a power-law behav-
ior is hard to extract, due to the inhomogeneity imposed by
the trap; and, more importantly, from an experimental point
of view the most accessible observable is the momentum dis-
tribution. Hence in the following we will concentrate on the
nσ(k = 0) (or condensate) peak, and in particular on its rel-
ative changes in height and width as one-body coherence is
suppressed or enhanced.

The model Hamiltonian in Eq. (17) has been investigated in
a series of regimes. If the densities, the masses and the inter-
action parameters are the same for the two species, a paired
phase appears above a critical value of the interaction ratio
|U |/Uσσ [33, 34, 82], that is, one needs sufficiently strong
intraspecies repulsion in order to open a spin gap which sup-
presses one-body coherence. The resulting paired phase has
an exponentially decaying OBDM, and a power-law decaying
pair-correlation function,

P (i; j) = 〈b†i↑b
†
i↓bj↓bj↑〉 . (27)



13

A number of numerical and analytical calculations support
such a picture, which fully recovers the fermionic case in the
Tonks-Girardeau (or hardcore) limit Uσσ → ∞. In the pres-
ence of a finite mass imbalance, the ED paired phase may
evolve into a charge-density-wave phase and then into a crys-
talline phase for specific filling fractions, as explicitly shown
in the hardcore case in Ref. [35]. Finally, a collapsed phase
appears in the strongly attractive regime |U |/Uσσ >∼ 1, since
the intraspecies repulsion is not sufficiently strong to prevent
very large single-site occupancies.

On the other hand, in the absence of a trap an arbitrary
imbalance in the populations will lead to a revival of one-
body coherence, which becomes algebraically decaying (the
same property applies to fermions). In the case of bosons,
finite-momentum pairing is not observed in the presence of
population imbalance, so that population imbalanced bosonic
mixtures with attractive interactions do not feature qualita-
tively different signatures with respect to mixtures of decou-
pled species. This issue is quite relevant experimentally, given
that having perfectly balanced populations is essentially im-
possible: even in the case of homonuclear mixtures, fluctua-
tions of order

√
Nσ are generally expected in the population

of both species.

A. Pairing in trapped hardcore bosons with mass and
population imbalance

Is then bosonic pairing impossible to observe experimen-
tally in one-dimensional gases? Luckily the answer is “no”,
if one adds the two further ingredients which are the central
topic of this paper, namely mass imbalance and a trapping
potential. In the hardcore case, one can extend the LDA ar-
gument presented in Sec. III A and conclude that, in presence
of mass imbalance, a dimer fluid is stable in the center of the
trap up to a finite polarization, depending on t↓/t↑ and U .

This picture is fully confirmed by a direct calculation of
trapped hardcore bosons, shown in Fig. 17. There we sim-
ulate the experimental situation of a trapped hardcore boson
mixture, in which N↑ = 24 is kept fixed, while N↓ is varied,
thereby varying the polarization P continuously. We moni-
tor the evolution of the core density nCσ (averaged over the
10 core sites) revealing that a finite window of positive polar-
izations exists for which the core remains unpolarized, such
that nC↑ = nC↓. In this situation ED pairing is robust at the
trap center, and this has strong signatures in the global coher-
ence properties of the cloud, captured by the momentum dis-
tribution. Indeed in the polarization window in which the core
densities are equal, the peak height n↓(k = 0) is strongly sup-
pressed, and it hardly changes as P decreases, even thoughN↓
is increasing. The peak height n↑(k = 0) shows two kinks at
the two boundaries of the polarization window in question. In
particular the point P = 0 marks a sharp kink-like minimum
associated with full pairing of all particles across the trap.
Similar features are revealed in the full width at half maximum
(FWHM) of the nσ(k) distributions: the polarization window
with equal core densities shows a strong enhancement of the
FWHM for the ↓-particles, and its boundaries are marked by

FIG. 17: (color online) Polarization dependence of core density and
momentum distribution in a mixture with N↑ = 24 and varying N↓.
The system size L = 140 enters into the definition of nσ(k = 0).
Other parameters as in Fig. 16. (a) Core density; (b) height of the
condensate peak; (c) full width at half maximum (FWHM) of the
condensate peak (in units of the inverse lattice spacing); (d) trajectory
in the P − ρ plane.

two kinks in the FWHM for the ↑-particles. Hence bosonic
pairing at the trap center is robust to the presence of a finite
positive polarization, and it bears strong signatures at the level
of the momentum distribution.

A detailed calculation of the polarization gap ∆+ is still
missing for the softcore boson case. Nonetheless in the fol-
lowing we will show that for realistic parameters a softcore
boson mixture in a trap exhibits a similar behavior as well.

B. Trimer formation in hardcore bosonic mixtures:
momentum distribution signatures

In this and all of the following sections, we will focus on
the case of a finite population imbalance, and in particular,
the case P < 0, in which, as discussed earlier, ED pairing is
always absent in the trap center. In this regime, trimer for-
mation can instead appear when P = −1/3. Such a case of
strongly imbalanced population has not been extensively stud-
ied yet; in particular, the emergence of trimer formation has
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FIG. 18: (color online) Evolution of core density and momentum
distribution in a mixture with N↑ = 12 and varying N↓; here V↑ =
V↓ = 1.8 · 10−5t↑, and the other parameters are as in Fig. 17. (a)
Core density; (b) height of the condensate peak; (c) full width at
half maximum (FWHM) of the condensate peak; (d) trajectory in the
P − ρ plane.

up to now been discussed only in systems of fermionic atoms
or dipolar molecules [36, 37, 83, 84]. The key point here is
to qualitatively and quantitatively understand the competition
between possible trimer instabilities and the emergence of ei-
ther phase separation or single species superfluidity as a func-
tion of the hopping imbalance, which is expected to play a
prominent role as in the fermionic case.

We begin our discussion with the case of hardcore bosons,
moving then to the case of softcore bosons in the next sections.
Ref. 36 has shown that, in the grand-canonical ensemble, a
mixture of hardcore bosons or fermions with mass imbalance
t↓/t↑ = 0.3 exhibits a direct transition from a trimer liquid
phase with fixed polarization P = −1/3 to a vacuum phase
as the chemical potential is lowered. Hence, within the LDA
approximation, a trapped mixture cannot realize a trimer liq-
uid phase in the trap center unless its polarization is exactly
at P = −1/3: indeed, if the polarization differs from −1/3,
the extra particles of either species cannot be accommodated
in the trap wings, given that a trimer liquid in the trap center
can only be flanked by an empty region.

This condition seems to put a very serious limitation to

the possibility of observing a trimer liquid phase in a real-
istic trapped system, given that, as mentioned above, a fine-
tuning in the population of the two species is experimentally
very hard. Nonetheless, strong signatures of the formation of
a trimer liquid phase at P = −1/3 can be seen in a broader
range of polarizations, and specifically in the momentum dis-
tribution. Figure 18 shows a polarization scan at very low
temperature in a mixture containing N↑ = 12 particles and a
variable number N↓ of ↓-particles with t↓ = 0.3t↑. We chose
a very weak trapping potential (V↑ = V↓ = 1.8 ∗ 10−5t↓),
leading to low densities in the system, for which trimer for-
mation is a most robust phenomenon [36]. We observe that, as
expected from LDA, the polarization −1/3 is achieved in the
trap center (nC↓ = 2nC↑) only when the global polarization
P is exactly at the same value. When the trimer condition on
the polarization is satisfied, a trimer liquid appears to form,
as shown by an anomaly in the one-body coherence proper-
ties, namely a weak suppression in the height of the conden-
sate peak nσ(k = 0) as well as a slight enhancement of its
width. But the most notable feature is that the formation of
trimers at polarization P = −1/3 influences the whole evo-
lution of the one-body coherence properties for nearby values
of P . Indeed a sharp kink appears in the height of the conden-
sate peak n↓(k = 0) at P = −1/3, marking a net change of
slope in the dependence of this quantity on P . In fact a simi-
lar kink is observed for P = 0, at which the ED paired phase
extends throughout the trap. That kink is associated with the
fact that ↓-particles added to the system to give P < 0 will
not form dimers with ↑-particles, giving rise to a strong en-
hancement of ↓-particle coherence. On the other hand, the
further enhancement of coherence for P < −1/3 shows that
for −1/3 < P < 0 the ↓-particles added to the system have
the tendency to form trimer bound states with the ↑-particles,
and it is only when the trimer formation has been saturated at
P = −1/3 that the one-body coherence grows faster with in-
creasing N↓, whence the kink at P = −1/3. In principle the
extra ↓-particles added to give P < −1/3 might form quartets
(3 ↓’s and 1 ↑), which would lead to another kink in the con-
densate peak when P becomes smaller than −1/2 (saturation
of quartets), and the same for bound states formed from even
more particles. On the other hand the binding energy of these
complexes, if finite, will be increasingly low as the size of the
complex increases, so that the kinks in the n↓(k = 0) curve
will be increasingly weak.

C. Trimer binding energy for bosonic mixtures

In the present section we focus on softcore bosons, and
we address the experimentally relevant case of 87Rb mixtures
confined in species-dependent optical lattices. As discussed
in Sec. II, this case is an archetypical case aimed at underpin-
ning the interplay between bosonic soft-coreness and trimer
pairing. Such settings provide intermediate hopping asymme-
try and sufficiently large intraspecies repulsion, as required to
avoid phase separated regimes for large values of U/t↑. We
will start our discussion by considering the effect of a finite in-
traspecies interaction in the low-density limit, identifying the
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more favorable parameter setup to observe trimer physics in a
finite, inhomogeneous system, which will then be investigated
by means of DMRG and QMC simulations.

Understanding the three-body pairing mechanism in the
low-density limit sheds light onto the more complicated
many-body picture: in fact, a finite trimer binding energy with
magnitude comparable to the hopping rates tσ is a good start-
ing point to observe the TP phase at the many-body level,
as has been noticed in the fermionic case [36]. At the few-
body level, the main difference between the fermionic case
and the bosonic one stems from the finite intraspecies repul-
sion, which, in a |U | � tσ perturbation picture, allows for
additional exchange processes in the bosonic case. At a quali-
tative level, these terms soften the repulsion between a bound
↑ − ↓ pair and a ↓-particle, thus potentially increasing the
trimer binding energy by a factor of order ' t2↓/(U↓↓ − U).

In order to get quantitative information, we evaluate the
trimer binding energy via DMRG simulations, by considering
the quantity

ET (L) = EL(1, 1) + EL(0, 1)− 2EL(1, 2) (28)

where EL(N↑, N↓) is the ground-state energy of a system of
lengthL and populationN↑, N↓ respectively. The trimer bind-
ing energy, which corresponds to the trimer gap in the zero-
density limit [36], is then defined as ET = limL→∞ET (L),
and can be extrapolated using a fourth-order algebraic fit of
simulation data with L = 20, 40, 60, 80, 100. Typical re-
sults for the parameter range V0/Er ∈ [6, 12] are shown in
Fig. 19 (upper panel), where, for comparison, we also present
results for the hardcore (HC, Uσσ = ∞) case. The first no-
table feature is that the trimer binding energy of soft-core
(SC) bosons is always larger than the HC one, thus confirming
the raw qualitative picture described above; the difference be-
tween the two notably shrinks at larger lattice depths, where
the intraspecies repulsion becomes larger (U↓↓/t↑ ' 56.9 for
V0 = 12). Moreover, deeper lattices induce larger mass im-
balance, which by itself is reflected in a larger binding energy
with respect to the hopping rate t↑.

In order to establish the optimal experimental setting to ob-
serve trimer physics, one has to take into consideration that a
finite temperature T in ultracold gases may indeed prevent any
relevant observation of paired phases with associated binding
energy smaller than kBT . In the lower panel of Fig. 19, we
show the binding energy in units of nK in the same parameter
regime as in the upper panel: in fact, large values of V0 signif-
icantly decrease the absolute value of ET , making the effect
of thermal fluctuations more and more relevant.

Combining the aforementioned arguments, we conclude
that the best setting where trimer physics may indeed be ob-
servable is determined in our case by the condition V0/Er ≈
6; moreover, since in this case U↓↓ ' U↑↑ ' 10t↑, we will
choose in the following U = −3t↑, as larger interspecies at-
traction may indeed lead to a collapse in an inhomogeneous
setup.

FIG. 19: (Color online) Trimer binding energy for 87Rb mixtures as
a function of the lattice depth V0 (in units of the recoil energy Er).
Note that here, the recoil energy is identical for the two components
as it only depends on the bare mass. Panel (a): ET in units of t↑. In
this case, deeper lattices lead to larger mass/ratio, and such a larger
ET . Panel (b): ET in nK units as considered in Sec. II. Deeper
lattices strongly reduce the temperature scale, as evident from the
sharp decrease of the binding energy in such scale. For all interac-
tion strengths considered, the soft-core case has typical energy scales
always larger than the hardcore one.

D. Density profiles and correlation functions in a harmonic
trap at zero temperature

In the following, we employ DMRG calculations in order
to elucidate the presence and stability of the trimer phase in
trapped systems, keeping up to 400 states per block and ap-
plying up to 10 sweeps, with a truncation error in the final
DMRG step usually smaller than 10−7. We consider equal
trapping potentials, Vσ = V , starting with a commensurate
polarization P = −1/3 and then study the effects of incom-
mensurate polarizations.

1. Equal trapping potentials, commensurate polarization

As we have seen in Sec. III D, fermionic gases with ex-
actly commensurate polarization can stabilize a trimer phase
over the entire system, as is evident from the density profiles
shown in Fig. 8(a). Since the trimer instability is favored in the
low-density regime, we focused on population regimes where
the typical total density in the middle of the trap fluctuates
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around 〈ni〉 <∼ 0.5. In Fig. 20, a typical density profile is
shown for N = 21 particles in a L = 140 site system: as in
the fermionic case, 〈ni〉 and −6〈Szi 〉 coincide within numeri-
cal errors all over the system, thus providing a first signature
of trimer formation. Another independent evidence of trimer
formation is then obtained by looking at the correlation func-
tion decay in the central part of the system; in particular, in
the trimer phase, both B(x;L/2) and pairing correlations

D(x;L/2) = 〈b†↑,L/2b
†
↓,L/2b↑,L/2+xb↓,L/2+x〉 (29)

are expected to decay exponential with x, whilst trimer corre-
lations

T (x;L/2) = (30)

〈b†↑,L/2b
†
↓,L/2+1b

†
↓,L/2b↑,L/2+xb↓,L/2+xb↓,L/2+1+x〉

are expected to decay algebraically. In Fig. 21, the decay of
correlation functions in the middle of the system for the same
parameter set of Fig. 20 clearly shows that, while both sin-
gle particle and dimer correlations decay exponentially, the
trimer correlations do not, further confirming the stability
of the trimer phase in the inhomogeneous setup. Moreover,
T (x;L/2) does not show dominant oscillating behavior with
x, in accordance with the bosonic nature of the three-body
bound state [86].

2. Incommensurate polarization

As we have seen in Sec. III D for the case of fermions and
in Sec. IV B for hardcore bosons, even a very small deviation
from commensurate densities has a drastic effect on trimer
phases. The consequences of P 6= −1/3 may be even more
drastic in the bosonic case, which are not subject to the Pauli
principle and can thus form higher density regions in the mid-
dle of the trap.

We have investigated the same parameter regime as in
Sec. III in the presence of a minimal density imbalance,
δ = P + 1/3 ' 0.1, which does also represent the typi-
cal experimental threshold of population control. Similarly
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FIG. 20: (Color online) Polarization and total density distribution
in the P = −1/3 case for attractive 87Rb bosonic mixtures. Here,
N = 21.
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FIG. 22: (Color online) Polarization and total density distribution in
the P = −7/15 case for attractive 87Rb bosonic mixtures. The total
number of particles in the system is N = 21.

to the fermionic case, the trimer liquid is fragile with respect
to incommensurability. At first, one sees that the condition
2〈n↑,i〉 = 〈n↓,i〉 is not fulfilled in the middle of the trap: as
shown in Fig. 22, there is a significant departure from com-
mensurability even for the smallest density imbalance con-
sidered. Secondly, correlation functions are also strongly af-
fected: in particular, single-particle correlations change sig-
nificantly from exponential to algebraic decay, signally the
emergence of quasi-condensation. In Fig. 23, we compare the
superfluid correlation of the heavy species at different density
imbalance for different values of P : in both incommensurate
cases, the decay in the center of the trap is algebraic.

E. Momentum distribution signatures for soft-core bosons:
finite-temperature effects

Despite the fragility of trimer formation to slight departures
from the P = −1/3 condition, a strong signature of this phe-
nomenon is still observed in the evolution of the one-body
coherence when P is changed around the value −1/3, as dis-
cussed in Sec. IV B. Here we discuss the robustness of this ef-
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FIG. 23: (Color online) Comparison between superfluid correlations
of the heavy species at different polarizations.

fect for finite temperatures, and for the softcore case. Figs. 24
and 25 show the height of the condensate peak with a vary-
ing polarization P for a mixture containing N↑ = 12 atoms
and a variable number N↓ of ↓-atoms. Fig. 24 refers to hard-
core bosons at increasing temperatures, while Fig. 25 shows
the case of softcore bosons with the same parameters as for
87Rb with V0 ≈ 6Er, and with U = −3t↑. In both cases the
trapping potential is very weak, V↑ = V↓ = 1.8 · 10−5 t↑.

We observe that the distinct signatures of the formation of
dimer and trimer liquids – the kinks in nσ(k = 0) at P = 0
and P = −1/3 respectively – are still observed in the softcore
case, albeit less clearly than in the hardcore case, particularly
for what concerns the trimer kink. Both for the softcore and
the hardcore case the kinks appear to be robust at fairly low
temperatures, although the trimer kink is quickly rounded off
as T reaches values in the range of 0.05 − 0.1 t↑/kB . This
shows clearly that the observation of trimer formation with
the current experimental diagnostics of time-of-flight mea-
surements is indeed possible as far as the Hamiltonian param-
eters are concerned (e.g. for 87Rb mixtures), but it requires
extreme conditions of very low densities and very low tem-
peratures. The two latter requirements are actually compati-
ble, as very low temperatures can be in principle achieved by
further evaporative cooling or algorithmic cooling [85] of the
atoms already loaded in the optical lattice.

F. Summary: Homonuclear two-component Bose gases

Binary bosonic mixtures represent a valuable setup where
both dimer and trimer liquid physics in the presence of mass
imbalance leaves strong signatures in the momentum distri-
bution accessible to experiments. In case of hardcore in-
traspecies repulsion, equal density pairing in the central part
of the trap is relatively stable with respect to thermal effects,
and may be observed in a wide range of polarizations as long
as the density of the lighter species is larger, that is at P > 0.
Trimer physics is instead more delicate: why in general, soft-
core interactions increase the trimer binding energy at fixed
mass imbalance, a very small departure from the commensu-
rate condition P = −1/3 drastically changes both correlation

FIG. 24: (color online) Polarization dependence of the conden-
sate peak at various temperatures for a trapped mixture of hardcore
bosons with N↑ = 12 and increasing N↓. Other parameters are as in
Fig. 18.

FIG. 25: (color online) Polarization dependence of the condensate
peak at various temperatures for a trapped mixture of softcore bosons
withN↑ = 12 and increasingN↓. HereUσσ = 10t↑ andU = −3t↑;
all other parameters are as in Fig. 24.

functions and the real space distribution of trapped systems.
Nevertheless, sufficiently low temperatures and densities may
indeed allow for the observation of such exotic liquids in a
trapped gas by looking at the momentum distribution of the
heavier component in both hardcore and soft-core mixtures,
a sharp signature being the strong suppression of the zero-
momentum contribution as a function of P .

V. DISCUSSION AND SUMMARY

Ultracold atomic gases represent ideal setups to explore
unconventional superfluid states of low-dimensional quantum
systems such as FFLO states and superfluids of composite par-
ticles. In this work, we have investigated binary bosonic and
fermionic mixtures in the presence of both a finite spin- and
mass imbalance, taking into consideration typical experimen-
tal features such as the inhomogeneity induced by trapping
potentials and a finite temperature. In the first part, we have
shown how one can modify the effective mass imbalance by
considering a proper tuning of the underlying optical lattice
potential, inducing different tunneling rates for the different
species. In the second part, taking full advantage of the de-
tailed microscopic Hamiltonian study of Sec. II, we have car-
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ried out a combined DMRG and QMC numerical study of
both Fermi-Fermi and Bose-Bose mixtures for realistic ex-
perimental parameters. In the fermionic case, a finite mass-
imbalance helps in stabilizing fully paired phases in the pres-
ence of spin imbalance: in sharp contrast with the equal mass
case, a majority of light particles stabilizes an equal density
region in the middle of the trap in a broad regime of total den-
sities and polarizations. This phase is also robust to finite tem-
perature effects, as corroborated by QMC simulations. The
partially polarized phase is of the FFLO type, with a clear sig-
nature in the momentum distribution of pairs. FFLO should
be easier to see on the P < 0 side, where the heavy fermions
are the majority species. We can thus conclude that mass-
imbalanced fermionic mixtures such as 6Li-40K represent a
valuable setup to observe equal-density pairing and FFLO su-
perfluidity in 1D systems under realistic experimental con-
ditions. Large mass imbalance is known to lead to a richer
showcase of superfluid states known as composite liquids: as
a case study, we have investigated the presence and stability of
trimer liquids in both bosonic and fermionic mass-imbalanced
mixtures. While the typical binding energy of trimer bound
states is smaller than standard pairs, in the case of exactly
commensurate densities trimer liquids are indeed robust in in-
homogeneous setups even in the presence of slightly differ-
ent trapping potentials. In the bosonic case, an experimen-
tal signature of such strongly correlated composite liquids is
provided by the single particle momentum distribution, which
displays a sharp kink in its polarization dependence even at
finite (albeit small) temperature. However, the experimental
observability of bosonic trimer liquid has to face two relevant
issues. The first one is population control: in fact, once one

departs from P = −1/3, the trimer liquid is not stable, as
signaled by both the density distribution and the correlation
function decay in the central part of the trap. The second one
is temperature, as trimer binding energies are usually of order
of 10 nK, and are limited by the hopping imbalance (in fact,
very large interspecies attraction do not lead to large binding
energies, as shown in the fermionic case in Ref. 36). In sum-
mary, the experimental realization of trimer liquids in binary,
mass-imbalanced mixtures represents a challenging task, as
both low temperature and densities, combined with an accu-
rate control over the spin imbalance, will be necessary. Nev-
ertheless, such phases may indeed leave appreciable experi-
mental signatures even on easily accessible observables such
as the momentum distribution function.
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